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An example

US recession data in the period 1855-2013
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Introduction



Counts data modeling

» Countdata: Y1, -, Y
» Integer-valued process (Y:)tez;
> Y: may depends on (Y;—;)i>1.

How such data can be modeled?



Linear Poisson autoregression

Y:/Yi-1, -+ ~ Poisson(A;) with A\ = ap + a1 Ai—1 + b1 Yi1.

Properties

» Stationary : Ferland et al. (2006);
» Ergodicity, inference : Fokianos et al. (2009).



Nonlinear Poisson autoregression

Yt/ th]_, eV Poisson()\t) with )\t == f()\tfl, thl).
Properties

» Stationary : Neumann (2011);

> Inference in a semi-parametric setting : Fokianos and
Tjgstheim (2012).

See also Doukhan et al. (2012) and Doukhan and Kengne (2015)
for more general setting.
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Exponential family autoregressive models

Davis and Liu (2012)

Consider a process Y = (Y})tcyz satisfying :
YelFeo1 ~ p(ylne) with X = fge (X1, Yi-1)
X = B(Ye|Fe-1) = A'(ne)
with a discrete distribution that satisfied
p(yln) = exp {ny — A(n)} h(y)

0 cOCRY; Fror=o0{n, Xe—1,Xe_2,--}

fe

sup (fo(x,y) — fo(X',y)| < b1 |x = x|+ 62|y — ]



Example 1
Negative binomial INGARCH(1,1)

Yt|ft71 ~ 1\”_3)(,'7 pt)a with
(1= p)

o =E(Y¢|Fio1) = Xe =g + " Y1 + 8" Xe—1;
t

the true parameter 6y = (ag, a*, 5*) belongs to a compact set
© C (0,+00) x [0, +00)? such that a + 3 < 1.

NB(r, p) denotes the negative binomial distribution.

Particular case of (1) : n; = log (X +r)' A(ne) = rlog (ﬁ)




Example 2

Binary time series

Let (Y),cz be a binary time series satisfying :
Yt|ft_]_ ~ B(Xt) with Xt = O[a + o Yt_]_ + /B*Xt_]_;

the true parameter 6y = (ag, o*, 3*) € © where © is a compact
subset of (0, +00) x [0, 4+00)? such that ag +a + 3 < 1

Particular case of (1) : n; = log <1§B<t); A(ne) = log (1 + e™).

See Fokianos et al. (2013b) for similar model with explanatory
variables.



Likelihood estimator

Let (Y1,..., Ys) be a trajectory generated from the model (1),
according to 6p. The conditional log-likelihood is

La(0) = log (L(0] Y4, .., Y, 1)) Zz
with £¢(0) = n:(0) Y — A(1:(6)).

ne(0) = (A)7H(X:(0))

The maximum likelihood estimator

~

0, := argmax(L,(6)).
0cO

Consistency and asymptotic normally take place (Davis and Liu
(2012)).
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Change-point problem

Observations : Y1,---, Y.

H()Z

Hq:

(Y1,...,Ys) is a trajectory of (Y;)tez solution of (1),
depending on 6 € ©.

307, 65 with 67 # 05,0 < t* < nsuch that (Y1,---, Ys=) is a
trajectory of {Yt(l), t € Z} and (Yisy1,--+, Yn) a trajectory
of {YP tez},

{Yt(l), t €7} and {Yt(2), t € Z} are stationary solutions of (1)
depending on 67 and 65.



Change-point problem

General strategy
Construct a function ¢ and choose a constant C > 0.

> maxi<k<n [lo(Yi, o Xk) = o(Xe, o, Ya)llvi, v, > € =
change;

> maxi<k<n lo(Y, -, Xk) — (Y1, Ya)lvi, v, > € =
change.

Question:
What are the suitable choice of ¢ and C?



Test statistic

Let gn(TkJ(/) be the MLE computed on the observations
Yi, Yig1, -5 Yie

The asymptotic covariance matrix of the estimator under Hy:

9~y (A" (e0)) (P2 ) (22 T)

= problem under Hj.

0=0,(T1,1)



Test statistic

Let (up)n>1 be an integer number sequence satisfying
Up — 400, °= — 0 as n — +o0.

00 00

1 " ame(0)\ [ One(0)\ "
A .
a2 O (7557) (*557) lescrn

Qn(up) = % [ul,, iA” (1:(0)) <8nt(9)> <8nt(0)> ' ‘a:é‘n(n,un)




Test statistic

Let (v,,),,>1 be an integer number sequence satisfying
Vp — +00, &2 2 — 0 as n— +oo.

The test statistics:

Ch,= max Cx, where
Vn<k<n—vp ’
~ 1

Cok = M( 0n(T1) = 0n(Ticr1.)) Q) (Bn(Ti) = 6u(Tics1.) )

@ (3)

q : the weight satisfying

_ 1 cg’(t)
Io,1(q,c)—/0 =0 exp(— t(1—t))dt’ c>0.




Asymptotic behavior

Theorem

Under Hy with the above assumptions, if dc > 0 such that
(g, c) < oo, then

N w. 2
6P qup WO
n—+o00o oot q3(T)

where Wy is a d-dimensional Brownian bridge.

Theorem
With the above assumptions. Under Hy, if 0] # 05 then
~ P

C, — +o0.
n—-+o00
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lllustration for NB-INGARCH(1,1)

(1—p:)
Pt
Under Hp : 6y = (0.20,0.30,0.25) ; under Hy : 61 = (0.70,0.3,0.25)

Yi|Fi—1 ~ NB(r, pt), with r = X; = ag+a” Y1+ 8" Xe1

(a) 1000 observations of a NB-INGARCH(1,1) without change (b) 1000 observations of a NB—INGARCH(1,1) with change at k=500
rrrrr
(©) The statistic test for & NB-INGARCH(L,1) without change (@ The statistic test for a NE-INGARCH(L,1) with change
«& &
° 20 w00 o aco 1000




[llustration for binary time series

Yt|ft71 ~ B(Xt) with Xt = ag + O[* th]_ + ﬁ*th]_
Under Hq : 6p = (0.30,0.15,0.25) ; under Hy : 8; = (0.05,0.15,0.25)

(a) 1000 observations of a binary time series model without change (b) 1000 observations of a binary time series model with change at k=500

o 200 a00 o00 a00 1000
Time
(c) The statistic test for a binary time series model without change (d) The statistic test for a binary time series model with change
« &
q ,
M/J% MW vM




US recession data

(a) US recession data in period 1855-2013
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(b) Enk for change-point detection with a BIN-INGARCH(L,1) model
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