Testing for parameter change in a general class of integer-valued time series models

William KENGNE

Université de Cergy-Pontoise

Joint work with M.L. DIOP (Université Gaston Berger, Sénégal)

CIRM, "Processus" February 19, 2016

An example

US recession data in the period 1855-2013

Introduction

Exponential family autoregressive models

Test for change detection

Introduction

Exponential family autoregressive models

Test for change detection

Counts data modeling

- ▶ Count data : Y_1, \dots, Y_n ;
- ▶ Integer-valued process $(Y_t)_{t \in \mathbb{Z}}$;
- Y_t may depends on $(Y_{t-i})_{i\geq 1}$.

How such data can be modeled?

Linear Poisson autoregression

$$Y_t/Y_{t-1}, \dots \sim \text{Poisson}(\lambda_t) \text{ with } \lambda_t = \alpha_0 + \alpha_1 \lambda_{t-1} + \beta_1 Y_{t-1}.$$

Properties

- Stationary: Ferland et al. (2006);
- ► Ergodicity, inference : Fokianos *et al.* (2009).

Nonlinear Poisson autoregression

$$Y_t/Y_{t-1}, \dots \sim \text{Poisson}(\lambda_t) \text{ with } \lambda_t = f(\lambda_{t-1}, Y_{t-1}).$$

Properties

- Stationary : Neumann (2011);
- Inference in a semi-parametric setting: Fokianos and Tjøstheim (2012).

See also Doukhan et al. (2012) and Doukhan and Kengne (2015) for more general setting.

Introduction

Exponential family autoregressive models

Test for change detection

Exponential family autoregressive models

Davis and Liu (2012)

Consider a process $Y=(Y_t)_{t\in\mathbb{Z}}$ satisfying :

$$Y_t | \mathcal{F}_{t-1} \sim \rho(y | \eta_t) \text{ with } X_t = f_{\theta^*}(X_{t-1}, Y_{t-1})$$
 (1)
$$X_t = \mathbb{E}(Y_t | \mathcal{F}_{t-1}) = A'(\eta_t)$$

with a discrete distribution that satisfied

$$\begin{split} \rho(y|\eta) &= \exp\left\{\eta y - A(\eta)\right\} h(y) \\ \theta^* &\in \Theta \subset \mathbb{R}^d \; ; \; \mathcal{F}_{t-1} = \sigma\left\{\eta_1, X_{t-1}, X_{t-2}, \cdots\right\} \\ &\sup_{\alpha} \left|f_{\theta}(x, y) - f_{\theta}(x', y')\right| \leq \delta_1 \left|x - x'\right| + \delta_2 \left|y - y'\right|. \end{split}$$

Example 1

Negative binomial INGARCH(1,1)

$$Y_t | \mathcal{F}_{t-1} \sim \text{NB}(r, p_t), \text{ with}$$

$$r \frac{(1 - p_t)}{p_t} = \mathbb{E}(Y_t | \mathcal{F}_{t-1}) = X_t = \alpha_0^* + \alpha^* Y_{t-1} + \beta^* X_{t-1};$$

the true parameter $\theta_0 = (\alpha_0^*, \alpha^*, \beta^*)$ belongs to a compact set $\Theta \subset (0, +\infty) \times [0, +\infty)^2$ such that $\alpha + \beta < 1$.

NB(r, p) denotes the negative binomial distribution.

Particular case of (1) :
$$\eta_t = \log\left(\frac{X_t}{X_t + r}\right)$$
; $A(\eta_t) = r \log\left(\frac{r}{1 - e^{\eta_t}}\right)$.

Example 2

Binary time series

Let $(Y_t)_{t\in\mathbb{Z}}$ be a binary time series satisfying :

$$Y_t | \mathcal{F}_{t-1} \sim \mathrm{B}(X_t)$$
 with $X_t = \alpha_0^* + \alpha^* Y_{t-1} + \beta^* X_{t-1}$;

the true parameter $\theta_0 = (\alpha_0^*, \alpha^*, \beta^*) \in \Theta$ where Θ is a compact subset of $(0, +\infty) \times [0, +\infty)^2$ such that $\alpha_0 + \alpha + \beta < 1$

Particular case of
$$(1)$$
 : $\eta_t = \log\left(rac{X_t}{1-X_t}
ight)$; $A(\eta_t) = \log\left(1+e^{\eta_t}
ight)$.

See Fokianos et al. (2013b) for similar model with explanatory variables.

Likelihood estimator

Let (Y_1, \ldots, Y_n) be a trajectory generated from the model (1), according to θ_0 . The conditional log-likelihood is

$$L_n(\theta) = \log \left(\mathcal{L}(\theta | Y_1, \dots, Y_n, \eta_1) \right) = \sum_{t=1}^n \ell_t(\theta)$$
 with $\ell_t(\theta) = \eta_t(\theta) Y_t - A(\eta_t(\theta))$.

$$\eta_t(\theta) = (A')^{-1}(X_t(\theta))$$

The maximum likelihood estimator

$$\widehat{\theta}_n := \underset{\theta \in \Theta}{\operatorname{argmax}}(L_n(\theta)).$$

Consistency and asymptotic normally take place (Davis and Liu (2012)).

Introduction

Exponential family autoregressive models

Test for change detection

Change-point problem

Observations : Y_1, \dots, Y_n .

H₀: (Y_1, \ldots, Y_n) is a trajectory of $(Y_t)_{t \in \mathbb{Z}}$ solution of (1), depending on $\theta_0 \in \Theta$.

H₁: $\exists \theta_1^*, \theta_2^*$ with $\theta_1^* \neq \theta_2^*, 0 < t^* < n$ such that (Y_1, \cdots, Y_{t^*}) is a trajectory of $\{Y_t^{(1)}, t \in \mathbb{Z}\}$ and (Y_{t^*+1}, \cdots, Y_n) a trajectory of $\{Y_t^{(2)}, t \in \mathbb{Z}\}$, $\{Y_t^{(1)}, t \in \mathbb{Z}\}$ and $\{Y_t^{(2)}, t \in \mathbb{Z}\}$ are stationary solutions of (1) depending on θ_1^* and θ_2^* .

Change-point problem

General strategy

Construct a function φ and choose a constant C > 0.

- ▶ $\max_{1 \leq k \leq n} \|\varphi(Y_1, \dots, X_k) \varphi(X_1, \dots, Y_n)\|_{Y_1, \dots, Y_n} > C \Rightarrow$ change;
- ▶ $\max_{1 \leq k \leq n} \|\varphi(Y_1, \dots, X_k) \varphi(Y_1, \dots, Y_n)\|_{Y_1, \dots, Y_n} > C \Rightarrow$ change.

Question:

What are the suitable choice of φ and C?

Test statistic

Let $\widehat{\theta}_n(T_{k,k'})$ be the MLE computed on the observations $Y_k, Y_{k+1}, \cdots, Y_{k'}$.

The asymptotic covariance matrix of the estimator under H₀:

$$\widehat{\Omega}_{n} = \frac{1}{n} \sum_{t=1}^{n} \left(A'' \left(\eta_{t}(\theta) \right) \left(\frac{\partial \eta_{t}(\theta)}{\partial \theta} \right) \left(\frac{\partial \eta_{t}(\theta)}{\partial \theta} \right)^{T} \right) \Big|_{\theta = \widehat{\theta}_{n}(T_{1,n})}$$

 $\Rightarrow \text{ problem under } H_1.$

Test statistic

Let $(u_n)_{n\geq 1}$ be an integer number sequence satisfying $u_n\to +\infty, \frac{u_n}{n}\to 0$ as $n\to +\infty$.

$$\widehat{\Omega}_{n}(u_{n}) = \frac{1}{2} \left[\frac{1}{u_{n}} \sum_{t=1}^{u_{n}} A''(\eta_{t}(\theta)) \left(\frac{\partial \eta_{t}(\theta)}{\partial \theta} \right) \left(\frac{\partial \eta_{t}(\theta)}{\partial \theta} \right)^{T} \Big|_{\theta = \widehat{\theta}_{n}(T_{1,u_{n}})} + \frac{1}{n - u_{n}} \sum_{t=u_{n}+1}^{n} A''(\eta_{t}(\theta)) \left(\frac{\partial \eta_{t}(\theta)}{\partial \theta} \right) \left(\frac{\partial \eta_{t}(\theta)}{\partial \theta} \right)^{T} \Big|_{\theta = \widehat{\theta}_{n}(T_{u_{n}+1,n})} \right].$$

Test statistic

Let $(v_n)_{n\geq 1}$ be an integer number sequence satisfying $v_n \to +\infty, \frac{v_n}{n} \to 0$ as $n \to +\infty$.

The test statistics:

$$\widehat{C}_n = \max_{v_n \leq k \leq n - v_n} \widehat{C}_{k,n}$$
 where

$$\widehat{C}_{n,k} = \frac{1}{q^2 \left(\frac{k}{n}\right)} \frac{k^2 (n-k)^2}{n^3} \left(\widehat{\theta}_n(T_{1,k}) - \widehat{\theta}_n(T_{k+1,n})\right)' \widehat{\Omega}_n(u_n) \left(\widehat{\theta}_n(T_{1,k}) - \widehat{\theta}_n(T_{k+1,n})\right);$$

q: the weight satisfying

$$I_{0,1}(q,c) = \int_0^1 \frac{1}{t(1-t)} \exp\left(-\frac{cq^2(t)}{t(1-t)}\right) dt, \ c > 0.$$

Asymptotic behavior

Theorem

Under H_0 with the above assumptions, if $\exists c>0$ such that $I(q,c)<\infty$, then

$$\widehat{C}_n \xrightarrow[n \to +\infty]{\mathcal{D}} \sup_{0 < \tau < 1} \frac{\|W_d(\tau)\|^2}{q^2(\tau)};$$

where W_d is a d-dimensional Brownian bridge.

Theorem

With the above assumptions. Under H_1 , if $\theta_1^* \neq \theta_2^*$ then

$$\widehat{C}_n \xrightarrow[n \to +\infty]{P} +\infty.$$

Introduction

Exponential family autoregressive models

Test for change detection

Illustration for NB-INGARCH(1,1)

$$Y_t | \mathcal{F}_{t-1} \sim \text{NB}(r, p_t), \text{ with } r \frac{(1-p_t)}{p_t} = X_t = \alpha_0^* + \alpha^* Y_{t-1} + \beta^* X_{t-1}$$

Under H_0 : $\theta_0 = (0.20, 0.30, 0.25)$; under H_1 : $\theta_1 = (0.70, 0.3, 0.25)$

1000 observations of a NB-INGARCH(1.1) with change at k=500

Illustration for binary time series

 $Y_t | \mathcal{F}_{t-1} \sim \mathrm{B}(X_t) \quad \mathrm{with} \quad X_t = \alpha_0^* + \alpha^* Y_{t-1} + \beta^* X_{t-1}$ Under $\mathsf{H}_0: \theta_0 = (0.30, 0.15, 0.25)$; under $\mathsf{H}_1: \theta_1 = (0.05, 0.15, 0.25)$

US recession data

(b) \widehat{C}_{nk} for change–point detection with a BIN–INGARCH(1,1) model

THANK YOU FOR YOUR ATTENTION.