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The GQARCH model

Definition 1 (The GQARCH model)

rt = ζtσt ,

σ2
t = ω2 + (a +

∞∑
j=1

bjrt−j)2 + γσ2
t−1, (1)

where:
{ζt}: standardized (0, 1) i.i.d. innovations

ω ≥ 0, a, 0 ≤ γ < 1: parameters

bj , j ≥ 1: coefficients
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GQARCH: the role of parameters

ω > 0: nonvanishing volatility (σt ≥ ω)

hyperbolically decaying bj ∼ cjd−1, 0 < d < 1/2 allow
modelling of long memory in volatility

a 6= 0: allow modelling of the leverage effect:
Cov(rt−j , σ

2
t ) < 0 (past returns are negatively correlated

with future volatility)
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GQARCH: particular case of Sentana’s QARCH

By iterating (1) σ2
t can be written as a quadratic form in

lagged variables rt−1, rt−2, · · · :

σ2
t =

∞∑
`=0

γ`
{
ω2 +

(
a +

∞∑
j=1

bjrt−`−j
)2}

Hence (1) represents a particular case of Sentana’s
(1995) Quadratic ARCH with p = q =∞:

σ2
t = θ +

p∑
i=1

ψi rt−i +
p∑

i=1
aii r 2

t−i + 2
q∑

i=1

q∑
j=i+1

aijrt−i rt−j
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Two particular cases of GQARCH:

Engle’s (1990) Asymmetric GARCH(1,1):

σ2
t = c2 + (a + brt−1)2 + γσ2

t−1

(proposed to capture the leverage effect)

The Linear ARCH (LARCH) (Robinson, 1991):

σt = a +
∞∑

j=1
bjrt−j (2)

(proved to capture both the leverage effect and the long memory in
volatility)
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The LARCH model

LARCH (properties): Giraitis, Robinson and Surgailis (2000),
Berkes and Horváth (2003), Giraitis, Leipus, Robinson and Surgailis
(2004), (estimation): Beran and Schützner (2009), Francq and
Zakoian (2010), Truquet (2014)

The squared stationary solution
{
r2
t
}

of the LARCH model
with bj decaying as jd−1, 0 < d < 1/2 may have covariance
long memory (Giraitis et al. (2000))

For the LARCH model, abj < 0 implies the leverage effect
(Giraitis et al. (2004))

The main drawback of the LARCH model: volatility σt may
assume negative values

Because of the last fact, QMLE for the LARCH model may be
inconsistent (Francq and Zakoian, 2010)
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Properties of GQARCH: stationary solution
rt = ζtσt , σ

2
t = ω2 + (a +

∑∞
j=1 bj rt−j)2 + γσ2

t−1 (1)

Theorem 2
Let γ ≥ 0. Then

γ +
∞∑

j=1
b2

j < 1 (3)

is a necessary and sufficient condition for the existence of a
stationary solution of (1) with Er 2

t <∞.
In the latter case, this solution {rt} is unique and a martingale
difference sequence with
E[rt |ζs , s < t] = 0,E[r 2

t |ζs , s < t] = σ2
t .

Condition (3) coincides with the corresponding stationarity
condition for the LARCH model in Giraitis et al. (2000)

Ieva Grublytė p. 16 of 97



Properties of GQARCH: stationary solution
rt = ζtσt , σ

2
t = ω2 + (a +

∑∞
j=1 bj rt−j)2 + γσ2

t−1 (1)

Theorem 2
Let γ ≥ 0. Then

γ +
∞∑

j=1
b2

j < 1 (3)

is a necessary and sufficient condition for the existence of a
stationary solution of (1) with Er 2

t <∞.
In the latter case, this solution {rt} is unique and a martingale
difference sequence with
E[rt |ζs , s < t] = 0,E[r 2

t |ζs , s < t] = σ2
t .

Condition (3) coincides with the corresponding stationarity
condition for the LARCH model in Giraitis et al. (2000)

Ieva Grublytė p. 17 of 97



Properties of GQARCH: stationary solution
rt = ζtσt , σ

2
t = ω2 + (a +

∑∞
j=1 bj rt−j)2 + γσ2

t−1 (1)

Theorem 2
Let γ ≥ 0. Then

γ +
∞∑

j=1
b2

j < 1 (3)

is a necessary and sufficient condition for the existence of a
stationary solution of (1) with Er 2

t <∞.
In the latter case, this solution {rt} is unique and a martingale
difference sequence with
E[rt |ζs , s < t] = 0,E[r 2

t |ζs , s < t] = σ2
t .

Condition (3) coincides with the corresponding stationarity
condition for the LARCH model in Giraitis et al. (2000)

Ieva Grublytė p. 18 of 97



Properties of GQARCH: stationary solution
rt = ζtσt , σ

2
t = ω2 + (a +

∑∞
j=1 bj rt−j)2 + γσ2

t−1 (1)

Theorem 2
Let γ ≥ 0. Then

γ +
∞∑

j=1
b2

j < 1 (3)

is a necessary and sufficient condition for the existence of a
stationary solution of (1) with Er 2

t <∞.
In the latter case, this solution {rt} is unique and a martingale
difference sequence with
E[rt |ζs , s < t] = 0,E[r 2

t |ζs , s < t] = σ2
t .

Condition (3) coincides with the corresponding stationarity
condition for the LARCH model in Giraitis et al. (2000)

Ieva Grublytė p. 19 of 97



Properties of GQARCH: higher moments
rt = ζtσt , σ

2
t = ω2 + (a +

∑∞
j=1 bj rt−j)2 + γσ2

t−1 (1)

Let |µ|p := E|ζ0|p, p ≥ 1

Theorem 3
Let p = 2, 4, · · · be even, γ > 0 and

p∑
j=2

(
p
j

)
|µj |

∞∑
k=1
|bk |j < (1− γ)p/2. (4)

Then the stationary solution of (1) satisfies E|rt |p <∞.

Condition (4) coincides with the corresponding pth moment
condition for the LARCH model in Giraitis et al. (2004)
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Properties of GQARCH: long memory

Theorem 4

Let {rt} be stationary solution of (1) with Er 4
t <∞ and

bj ∼ c jd−1, j →∞ (5)

for some 0 < d < 1/2, c > 0. Then

Cov(r 2
0 , r 2

t ) ∼ κ2t2d−1, t →∞ (∃ κ > 0).

Moreover, normalized partial sums
∑[nt]

s=1(r2
s − Er2

s ) tend to a
fractional Brownian motion with Hurst parameter H = d + 1/2.

Thm 4 extends the result for the LARCH model in Giraitis et
al. (2000)
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Properties of GQARCH: leverage

Definition 5 (Giraitis et al., 2004)

We say that {rt} has leverage of order k ≥ 1 if

hj := Cov(σ2
j , r0) < 0, ∀ 1 ≤ j ≤ k .

Theorem 6

Let {rt} be a stationary solution of (1) with Er 4
t <∞.

Assume in addition that ∑∞j=1 b2
j < (1− γ)/5 and Eζ3

0 = 0.
Then:

(i) if abj < 0, j = 1, · · · , k, then {rt} has leverage of order k;
(ii) if abj > 0, j = 1, · · · , k, then hj > 0, j = 1, · · · , k .
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Extension of GQARCH:

Theorems 2 (stationary solution) and 3 (higher moments)
can be extended (see Doukhan et al. (2015), Grublytė
and Škarnulis (2015)) to a more general model:

rt = ζtσt , σ2
t = Q

(
a +

∞∑
j=1

bjrt−j

)
+ γσ2

t−1, (6)

where {ζt}, a, bj , γ are as in (1) and Q(x) is a Lipschitz
function of real variable x ∈ R.

GQARCH in (1) corresponds to Q(x) = ω2 + x2 in (6)
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QMLE of 5-parametric long memory GQARCH
Aim: quasi-maximum likelihood estimation (QMLE) of
5-parametric GQARCH model:

σ2
t (θ) =

∞∑
`=0

γ`
{
ω2 +

(
a + c

∞∑
j=1

jd−1rt−`−j
)2}

, (7)

depending on unknown θ = (γ, ω, a, d , c) ∈ R5

c 6= 0 and d ∈ (0, 1/2): long memory parameters

a 6= 0: asymmetry

ω > 0: lower volatility ‘threshold’ (σt(θ) ≥ ω > 0)

QMLE minimizes the QML function over θ ∈ Θ0:

Ln(θ) := 1
n

n∑
t=1

( r 2
t

σ2
t (θ) + log σ2

t (θ)
)
. (8)
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Modified QMLE of 3-parametric long memory LARCH

Related work (Beran and Schützner, 2009):

‘Modified QMLE’ of the 3-parametric LARCH model:

σt(θ) = a + c
∞∑

j=1
jd−1rt−j , (9)

depending on unknown θ = (a, d , c) ∈ R3

The parametric form bj = c jd−1 of moving-average
coefficients in (7) and (9) are the same

Because of the degeneracy of σ−2
t in the LARCH case, Beran

and Schützner (2009) minimize the modified QML
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Modified QMLE of 3-parametric long memory LARCH

The modified QML of Beran and Schützner (2009):

Ln,ε(θ) := 1
n

n∑
t=1

( r 2
t + ε

σ2
t (θ) + ε

+ log(σ2
t (θ) + ε)

)
,

where ε > 0 is small but fixed

Numeric simulations of Beran and Schützner (2009) show
that Ln,ε(θ) exhibits many local minima as ε→ 0

Optimal choice of ε > 0 is unknown and seems very
difficult
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QMLE of 5-parametric GQARCH: assumptions

Assumption (A) {ζt} is a standardized i.i.d. sequence with
Eζt = 0,Eζ2

t = 1.

Assumption (B) Θ ⊂ R5 is a compact set of parameters
θ = (γ, ω, a, d , c) defined by:

(i) γ ∈ [γ1, γ2], 0 < γ1 < γ2 < 1;

(ii) ω ∈ [ω1, ω2], 0 < ω1 < ω2 <∞;

(iii) a ∈ [a1, a2], −∞ < a1 < a2 <∞;

(iv) d ∈ [d1, d2], 0 < d1 < d2 < 1/2;

(v) c ∈ [c1, c2] with 0 < ci = ci (d , γ) <∞, c1 < c2 such that∑∞
j=1 b2

j = c2∑∞
j=1 j2(d−1) < 1− γ

holds for any c ∈ [c1, c2], γ ∈ [γ1, γ2], d ∈ [d1, d2]
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5-parametric GQARCH: QML functions

We assume that the observations {rt , 1 ≤ t ≤ n} follow the model in (1)
with the true parameter θ0 = (γ0, ω0, a0, d0, c0) belonging to the interior
Θ0 of Θ in Assumption (B).

Similarly to Beran and Schützner (2009), we discuss two QML estimates:
a ‘theoretical QMLE’ given infinite past rs ,−∞ ≤ s < n, and a ‘realistic
QMLE’ depending only on rs , 1 ≤ s < n

QMLE given infinite past: The estimator of θ ∈ Θ is defined as

θ̂n := arg min
θ∈Θ

Ln(θ) = arg min
θ∈Θ

n−1
n∑

t=1
`t(θ),

where
`n(θ) = r2

t
σ2

t (θ) + log σ2
t (θ),

and σ2
t (θ) is defined in (7), viz.,
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5-parametric GQARCH: QML functions

σ2
t (θ) =

∞∑
`=0

γ`
{
ω2 +

(
a + cYt−`(d)

)2}
, where

Yt(d) :=
∞∑

j=1
jd−1rt−j .

σt(θ) and Yt(d) depend on infinite past rs ,−∞ < s < t

QMLE given finite past: Let

θ̃n := arg min
θ∈Θ

L̃n(θ) = arg min
θ∈Θ

n−1
n∑

t=1

˜̀t(θ), ˜̀n(θ) := r2
t

σ̃2
t (θ) + log σ̃2

t (θ).

where

σ̃2
t (θ) :=

t−1∑
`=0

γ`
{
ω2 +

(
a + cỸt−`(d)

)2}
, Ỹt(d) :=

t−1∑
j=1

jd−1rt−j

depend on ‘finite past’ rs , 1 ≤ s < t
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σ2
t (θ) =

∞∑
`=0

γ`
{
ω2 +

(
a + cYt−`(d)

)2}
, where

Yt(d) :=
∞∑

j=1
jd−1rt−j .

σt(θ) and Yt(d) depend on infinite past rs ,−∞ < s < t

QMLE given finite past: Let

θ̃n := arg min
θ∈Θ

L̃n(θ) = arg min
θ∈Θ

n−1
n∑

t=1

˜̀t(θ), ˜̀n(θ) := r2
t

σ̃2
t (θ) + log σ̃2

t (θ).

where

σ̃2
t (θ) :=

t−1∑
`=0

γ`
{
ω2 +

(
a + cỸt−`(d)
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5-parametric GQARCH: QML functions

Following Beran and Schützner (2009) we define ‘finite past’
QMLE:

θ̃(β)
n := arg min

θ∈Θ
L̃(β)

n (θ) = arg min
θ∈Θ

1
[nβ]

∑
n−[nβ ]<t≤n

˜̀
t(θ)

involving the last O(nβ) = o(n) quasi-likelihoods˜̀
t(θ), n − [nβ] < t ≤ n

0 < β < 1 is a ‘bandwidth parameter’

β determines the convergence rate of θ̃(β)
n

β < 1− 2d0 needed to ensure asymptotic normality
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QMLE of 5-parametric GQARCH: main results

Everywhere below we assume the stationary 5-parametric GQARCH
model rt = ζtσt with σt in (7) satisfying Assumptions (A) and (B)

Theorem 7 (‘Infinite past QMLE’)

(i) Let E|rt |3 <∞. Then θ̂n is a strongly consistent estimator
of θ0, i.e.

θ̂n
a.s.→ θ0.

(ii) Let E|rt |5 <∞. Then θ̂n is asymptotically normal:

n1/2
(
θ̂n − θ0

) law→ N(0,Σ(θ0)),

where Σ(θ0) := B−1(θ0)A(θ0)B−1(θ0) = κ4B−1(θ0).

• A(θ) := E
[
∇T `t(θ)∇`t(θ)

]
, B(θ) := E

[
∇T∇`t(θ)

]
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QMLE of 5-parametric GQARCH: main results
Theorem 8 (‘Finite past QMLE’)

(i) Let E|rt |3 <∞ and 0 < β < 1. Then

E|θ̃n − θ0| → 0 and E|θ̃(β)
n − θ0| → 0.

(ii) Let E|rt |5 <∞ and 0 < β < 1− 2d0. Then

nβ/2(θ̃(β)
n − θ0) law→ N(0,Σ(θ0)), (10)

where Σ(θ0) is the same as in Theorem 7.

Thms 7 and 8 are similar to (Beran and Schützner, 2009,
Thms 1-4) for the LARCH model and the modified QLME

Proofs of Theorems 7 and 8 are generally different from
Beran and Schützner (2009)
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Simulation study
Goal: finite-sample accuracy (RootMSE) of QML estimates
θ̂n = (γ̂n, ω̂n, ân, ĉn, d̂n)

Two sample sizes: n = 1000 (medium) and n = 5000 (large), with
N = 100 independent replications each

GQARCH data was generated for −n ≤ t ≤ n using the recurrent
equation

rt = ζtσt , σ2
t = ω2+

(
a+c

n∧(t+n)∑
j=1

jd−1rt−j
)2+γσ2

t−1, −n ≤ t ≤ n

with i.i.d. ζt ∼ N(0, 1) and zero initial condition σ−n−1 = 0

The numerical optimization using MATLAB software minimized the
QML function:

Ln = 1
n

n∑
t=1

(
r2
t
σ2

t
+ log σ2

t

)
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Simulation study

Optimization constraints (the set Θ):

0.001 ≤ γ ≤ 0.9, 0 ≤ ω ≤ 2, −2 ≤ a ≤ 2, 0 ≤ d ≤ 0.5,
(0.05− γ) ∨ (γ/999) ≤ c2ζ(2(1− d)) ≤ (0.99− γ) ∧ (99γ),

where ζ(z) =
∑∞

j=1 j−z is the Riemann zeta function.

RMSE’s reported for fixed γ0 = 0.7, a0 = −0.2, c0 = 0.2 and several
different values of ω0 and d0:

ω0 = 0.1, 0.01, 0.001, d0 = 0.1, 0.2, 0.3, 0.4

The above choices of θ0 = (γ0, ω0, a0, c0, d0) in the numerical
experiment can be explained by the observation that the QML
estimation of γ0, a0, c0 is more accurate and stable compared to the
estimation of ω0 and d0
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Observations from simulations

• All RMSEs decrease as n increases. The convergence rate of estimates
seems quite good overall.

• Parameter γ0 is estimated rather accurately. E.g., for n = 5000
RMSE(γ̂n) is very stable for all values of ω0 and d0.

• The previous conclusion generally applies also to the QML estimates
ân, ĉn and d̂n except that their RMSE markedly increases when d0 = 0.4.

• The QML estimate of ω0 ≤ 0.01 seems to have a ‘constant’ bias
≈ 0.02÷ 0.03 for all values of d0 with n = 5000.
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Parameter estimates from real data
For estimation we used daily stock returns from slightly
different time window. Three examples: 

 Estimates 

Airbus Group SE 𝜸̂ 𝝎̂ 𝒂̂ 𝒅̂ 𝒄̂ 

2004.01.01-2006.12.29 0,172 0,012 -0,009 0,251 0,496 

2003.10.01-2006.12.29 0,168 0,013 -0,013 0,320 0,464 

2004.01.01-2007.03.30 0,163 0,013 -0,010 0,268 0,472 
 

 Estimates 

Nordea Bank AB 𝜸̂ 𝝎̂ 𝒂̂ 𝒅̂ 𝒄̂ 

2004.01.01-2006.12.29 0,7314 0.0048 -0.0044 0.1313 0.2563 

2003.10.01-2006.12.29 0.6466 0.0058 -0.0073 0.3112 0.2800 

2004.01.01-2007.03.30 0.6203 0.0061 -0.0051 0.1543 0.2751 
 

 Estimates 

Ford Motor Co 𝜸̂ 𝝎̂ 𝒂̂ 𝒅̂ 𝒄̂ 

2004.01.01-2006.12.29 0,7856 0,0069 0,0023 0,2591 0,2117 

2003.10.01-2006.12.29 0,6053 0,0100 0,0015 0,1424 0,2740 

2004.01.01-2007.03.30 0,8049 0,0066 0,0023 0,3124 0,1880 
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Some proofs. Notation

• L(θ) := ELn(θ) = E`t(θ)

• A(θ) := E
[
∇T `t(θ)∇`t(θ)

]
, B(θ) := E

[
∇T∇`t(θ)

]
• ∇ = (∂/∂θ1, · · · , ∂/∂θ5)
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Some proofs

Lemma 9

The function L(θ), θ ∈ Θ is bounded and continuous.
Moreover, it attains its unique minimum at θ = θ0.

L(θ)− L(θ0) = E
[σ2

t (θ0)
σ2

t (θ) − log σ2
t (θ0)
σ2

t (θ) − 1
]
.

the function f (x) := x − 1− log x > 0 for x > 0, x 6= 1 and
f (x) = 0 if and only if x = 1

therefore L(θ) ≥ L(θ0),∀ θ ∈ Θ while L(θ) = L(θ0) is equivalent to

σ2
t (θ) = σ2

t (θ0) (Pθ0 − a.s.) (11)

it remains to show that (11) implies θ = θ0 = (γ0, ω0, a0, d0, c0).
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Some proofs
using the ’projection’

Psξ = E[ξ|Fs ]− E[ξ|Fs−1]

of r.v. ξ,E|ξ| <∞, where Fs = σ(ζu, u ≤ s),
take projection on (11)

Psσ
2
t (θ) = Psσ

2
t (θ0) (Pθ0 − a.s.)

with s = t − 1 we obtain

C1(θ, θ0)ζ2
t−1 + 2C2(θ, θ0)ζt−1 − C1(θ, θ0) = 0.

with

C1(θ, θ0) := (c2 − c2
0 )σt−1(θ0),

C2(θ, θ0) := (ac − a0c0) +
∑

u<t−1
(c2(t − u)d−1 − c2

0 (t − u)d0−1)ru.
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Some proofs

C1(θ, θ0) := (c2 − c2
0 )σt−1(θ0),

C2(θ, θ0) := (ac − a0c0) +
∑

u<t−1
(c2(t − u)d−1 − c2

0 (t − u)d0−1)ru.

C1(θ, θ0) = 0⇒ c = c0

C2(θ, θ0) = 0 and Er0 = 0⇒ a = a0

Er2
0
∑

j≥2(jd−1 − jd0−1)2 = 0⇒ d = d0

0 = Ps(Q2
t (θ)− Q2

t (θ0)) + (γ − γ0)Psσ
2
t−1(θ0)⇒ γ = γ0,

where Q2
t (θ) = ω2 +

(
a +

∑
u<t bt−u(θ)ru

)2
Eσ2

t (θ) = Eσ2
t (θ0) and ω, ω0 > 0⇒ ω = ω0
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Some proofs

Lemma 10

(i) Let E|rt |3 <∞. Then

sup
θ∈Θ
|Ln(θ)− L(θ)| a.s.→ 0 and E sup

θ∈Θ
|Ln(θ)− L̃n(θ)| → 0.

(ii) Let Er4
t <∞. Then ∇L(θ) = E∇`t(θ) and

sup
θ∈Θ
|∇Ln(θ)−∇L(θ)| a.s.→ 0 and E sup

θ∈Θ
|∇Ln(θ)−∇L̃n(θ)| → 0.

(iii) Let E|rt |5 <∞. Then ∇T∇L(θ) = E∇T∇`t(θ) = B(θ) and

supθ∈Θ |∇T∇Ln(θ)−∇T∇L(θ)| a.s.→ 0,
E supθ∈Θ |∇T∇Ln(θ)−∇T∇L̃n(θ)| → 0.
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Some proofs
For multi-index

i = (i1, · · · , i5) ∈ N5, i 6= 0 = (0, · · · , 0),
|i | := i1 + · · ·+ i5,

denote partial derivative ∂i := ∂|i |/
∏5

j=1 ∂
ij θj .

Lemma 11

Let E|rt |2+p <∞, for some integer p ≥ 1. Then for any
i ∈ N5, 0 < |i | ≤ p,

E sup
θ∈Θ
|∂i `t(θ)| <∞.

Moreover, if E|rt |2+p+ε <∞ for some ε > 0 and p ∈ N then for any
i ∈ N5, 0 ≤ |i | ≤ p

E sup
θ∈Θ
|∂i (`t(θ)− ˜̀t(θ))| → 0, t →∞.
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Some proofs

using Faà di Bruno differentiation rule, Holders inequality and
E|rt |2+p ≤ C , the statement of the lemma follows from

E sup
θ∈Θ

(
|∂jσ2

t (θ)|/σt(θ)
)(2+p)/|j |

< ∞

for any multi-index j ∈ N5, 1 ≤ |j | ≤ p.
there exist C > 0, 0 < γ̄ < 1 such that

sup
θ∈Θ

∣∣∂iσ2
t (θ)

σt (θ)

∣∣ ≤ C(1 + Jt,0 + Jt,1), i = 1, · · · , 5, where

Jt,0 :=
∞∑
`=0

γ̄` sup
d∈[d1,d2]

|Yt−`(d)|, Jt,1 :=
∞∑
`=0

γ̄` sup
d∈[d1,d2]

|∂d Yt−`(d)|.

E supd∈[d1,d2] |Yt−`(d)|m is bounded by a linear combination
involving supd∈[d1,d2] E|Yt−`(d)|m and supd∈[d1,d2] E|∂dYt−`(d)|m
(we use Lemma from Beran and Schützner (2009)).
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Some proofs

Lemma 12

Let Er4
0 <∞. Then matrices A(θ) and B(θ) are well-defined and strictly

positive definite for any θ ∈ Θ.

∇σ2
t (θ)λT = 0 for some θ ∈ Θ and λ ∈ R5, λ 6= 0 leads to a

contradiction

use projections to obtain

D1(λ)ζ2
t−1 + 2D2(λ)ζt−1 − D1(λ) = 0 (12)

D1(λ) := 2λ5σt−1(θ)

D2(λ) := λ3c + λ5a + 2λ5c
∑

u<t−1(t − u)d−1ru +
λ4c2∑

u<t−1(t − u)d−2 log(t − u)ru
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Thank you!
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