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Introduction to robust statistics

Sensitivity of classical statistical procedures.

Robust Statistics

Foundations of robust statistics:
Tukey (1960): A survey of sampling from contaminated distributions,
Huber (1964): Robust estimation of a location parameter,
Hampel (1968): Contributions to the theory of robust estimation.

Aims of robust statistics:
Identification of possible outliers and decrease of their impact on estimation
and testing,
Ability to fit well to the bulk of the data.

Some textbooks:
Huber (1981), Hampel et al. (1986), Maronna et al. (2006), Huber and
Ronchetti (2009).
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Modeling count time series

Examples of count time series
monthly incidences of some disease,
daily number of transactions of some stock,
yearly number of fatalities in road accidents,
monthly number of claims to an insurance agency etc.

Theory of Generalized Linear Models (GLM)
independent data - McCullagh and Nelder (1989)
time series data - Kedem and Fokianos (2002)

Distribution assumptions
Poisson - Davis et al. (2003), Fokianos et al. (2009), Fokianos and
Tjøstheim (2011), Neumann (2011), Fokianos (2012), Fokianos and
Tjøstheim (2012), Doukhan et al. (2012), Douc et al. (2013),
Negative Binomial - Davis and Wu (2009), Zhu (2011), Davis and Liu
(2014), Christou and Fokianos (2014),
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Poisson autoregressive models

Linear Poisson autoregressive model - INGARCH

Yt ‖ Ft−1 ∼ Poisson(λt), λt = d +

p∑
i=1

aiλt−i +

q∑
j=1

bjYt−j , t ≥ 1. (1)

d , a1, ..., ap , b1, ..., bq take non-negative values,
Rydberg and Shephard (2000), Streett (2000), Heinen (2003), Ferland et
al. (2006), Fokianos et al. (2009), Fokianos (2012),
Finite moments and second order stationarity under condition

0 <
p∑

i=1

ai +

q∑
j=1

bj < 1

(Ferland et al. (2006)),
class of observation driven models (Cox (1981)),
geometric ergodicity - perturbation technique (Fokianos et al. (2009)).

Drawbacks:
Negative correlation cannot be employed.
Covariates can only be implemented if they result in a positive regression
term since otherwise λt becomes negative.
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Poisson autoregressive models

Log-linear Poisson autoregressive model

Yt ‖ Ft−1 ∼ Poisson(λt), νt = d +

p∑
i=1

aiνt−i +

q∑
j=1

bj log(1 + Yt−j), t ≥ 1

(2)

νt ≡ log λt is the canonical link process,
positive and negative correlation,
time dependent covariates.
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Poisson autoregressive models

Log-linear Poisson autoregressive model

First order model:

Yt ‖ Ft−1 ∼ Poisson(λt), νt = d + aνt−1 + b log(1 + Yt−1), t ≥ 1.

more parsimonious than a model which includes higher lags of
log(1 + Yt−1) but does not include the feedback mechanism,
class of observation driven models (Cox (1981)),
geometric ergodicity, finite moments (Fokianos and Tjøstheim (2011))

|a + b| < 1 when |a| < 1 and b > 0,

|a||a + b| < 1 when |a| < 1 and b < 0,

stationarity, consistency and asymptotic normality of the MLE (Fokianos
and Tjøstheim (2011))

|a + b| < 1 when a and b have the same sign,

a2 + b2 < 1 when a and b have different signs.
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Interventions in count time series

Intervention effects

Fokianos and Fried (2010 and 2012) study the problem of estimation and
detection of intervention effects for the first order linear and log-linear model
respectively.

A sequence of covariates

Xt = ξ(B)1(t = τ), t ≥ 1

is introduced to the mean process that indicates an intervention happening at
the time point τ .

Then a contaminated process Zt for the log-linear model is observed:

Zt ‖ Ft−1 ∼ Poisson(λc
t ), νc

t = d+
p∑

i=1

aiν
c
t−i+

q∑
j=1

bj log(Zt−j + 1)+ζXt , t ≥ 1

(3)

ξ(B) = (1− δB)−1, δ ∈ [0, 1),
B is a shift operator such that BiXt = Xt−i ,
It(τ) is an indicator function that is equal to 1 if t = τ and 0 otherwise,
ζ is the size of the intervention.
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Interventions in count time series

Intervention effects

Forms of interventions:

Spiky Outlier (SO): δ = 0,
Transient Shift (TS): δ ∈ {0.7, 0.8, 0.9},
Level Shift (LS): Xt = 1(t ≥ τ).

Then Xt is deduced to Xt = δt−τ
1(t = τ).

Another form of outlier is an Additive Outlier (AO) of size ζ ∈ Z at time τ

Zt =

{
Yt + ζ, t = τ

Yt , otherwise.
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Interventions in count time series

Intervention effects
time series without interventions
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Figure 1: Example of a time series with various forms of interventions, based on the log-linear
Poisson model.
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Log-linear Poisson model without feedback

Yt ‖ Ft−1 ∼ Poisson(λt), νt = d +

q∑
j=1

bj log(Yt−j + 1).

Methods of Estimation:
Maximum Likelihood Estimation (MLE)
Conditionally Unbiased Bounded-Influence Estimator (CUBIF) - Künsch et
al. (1989)
Mallows’ Quasi-Likelihood Estimator (MQLE) - Cantoni and Ronchetti
(2001)
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Methods of estimation

Maximum Likelihood Estimator (MLE)

The conditional likelihood function for θ is
n∏

t=1

exp(−λt(θ))λt(θ)
Yt

Yt !
.

The score function is defined by

S(θ) = ∂`(θ)

∂θ
=

n∑
t=1

∂`t(θ)

∂θ
=

n∑
t=1

{Yt − exp(νt(θ))}
∂νt(θ)

∂θ
, (4)

where ∂νt(θ)/∂θ is the q + 1 dimensional vector

∂νt(θ)

∂θ
= (1, log(1 + Yt−1), ... log(1 + Yt−q))

T ≡ Xt−q.
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Methods of estimation

Conditionally Unbiased Bounded-Influence Estimator (CUBIF)

Idea - Künsch et al. (1989): To find a conditionally Fisher-consistent estimator
that has small variance subject to a chosen bound on its influence function.

The score function for the CUBIF estimator is given by

ψ(Y (q)
t ; θ, c,B) = d(Y (q)

t , θ, c,B)

×Wc(|d(Y (q)
t , θ, c,B)|(X T

t−qB−1Xt−q)
−1/2)X T

t−q (5)

with
Y (q)

t = (Yt ,Yt−1, ...,Yt−q)
T

and

d(Y (q)
t , θ, c,B) = Yt − λt(θ)− C

(
νt(θ),

c
(X T

t−qB−1Xt−q)−1/2

)



Introduction Modeling count time series Log-linear Poisson model without feedback Log-linear Poisson model with feedback References

Methods of estimation

Conditionally Unbiased Bounded-Influence Estimator (CUBIF)

Wc(α) = ψc(α)/α where ψc(α) is the Huber function

ψc(α) =

{
α, |α| ≤ c
csign(α), |α| > c

c is the tuning constant of the Huber function.

The scalar function C(·) and the matrix B are chosen so that the sensitivity
function is bounded:

E(ψ(Y (q)
t ; θ, c,B)ψ(Y (q)

t ; θ, c,B)T ) = B

and the estimating function to be unbiased:
n∑

t=1

E(ψ(Y (q)
t ; θ, c,B)||Ft−1) = 0.
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Methods of estimation

Mallows’ Quasi-Likelihood Estimator (MQLE)

Idea: Cantoni and Ronchetti (2001) robustified the quasi-likelihood by
bounding and centering the quasi score function.

The MQLE is given as a solution of the following

Q(θ) =

n∑
t=1

{
ψc

(Yt − λt(θ)√
λt(θ)

)
wt

1√
λt(θ)

∂λt(θ)

∂θ
− α(θ)

}
= 0 (6)

The sequence {wt} are suitable weights:
wt =

√
1− ht where ht is the t-th element of the hat matrix,

the inverse of the robust Mahalanobis distance dM where location and
scatter are robustly estimated to have high breakdown properties using
either

the Minimum Volume Ellipsoid (MVE) estimator or
the Minimum Covariance Determinant (MCD) algorithm.

Rousseeuw and van Zomeren (1990), Rousseeuw and Driessen (1999).
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Methods of estimation

Mallows’ Quasi-Likelihood Estimator (MQLE)

The term α(θ) is a bias correction term which is used to ensure
Fisher-consistency and is given by

α(θ) =
1
n

n∑
t=1

E
{
ψc

(Yt − λt(θ)√
λt(θ)

)
wt

1√
λt(θ)

∂λt(θ)

∂θ

}
,

where

E
(
ψc

(Yt − λt(θ)√
λt(θ)

)
|Ft−1

)
= c{P(Yt ≥ j2 + 1‖Ft−1)− P(Yt ≤ j1‖Ft−1)}

+
√
λt(θ){P(Yt = j1‖Ft−1)− P(Yt = j2‖Ft−1)},

j1 = bλt(θ)− c
√
λt(θ)c and j2 = bλt(θ) + c

√
λt(θ)c.
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Empirical and real data examples

Simulation study

1000 simulations,
time series of length 500,
estimators compared in terms of MSE, MAE and bias,
the intervention occurs in the first quarter of the series.
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Empirical and real data examples

Level Shift (LS) intervention
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Figure 2: MSE of b1, first order model with (a): θ = (d, b) = (0.2, 0.5), ζ = 0.3, (b):
θ = (d, b) = (0.2,−0.5), ζ = 0.3 (c): θ = (d, b) = (0.2, 0.5), ζ = −0.3.
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Empirical and real data examples

Additive Outliers (AO)

The observed contaminated series is of the form

Zt =

{
Yt + ζ, t = τ1, τ2, ..., τk

Yt , otherwise

We examine the following three cases:

Single outlier
Patch of outliers
Isolated outliers
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Empirical and real data examples

Additive Outliers (AO)
Single Additive Outlier (AO)
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Figure 3: MSE of b1: first order model with θ = (d, b1) = (0.2, 0.5) (upper plots) and second
order model with θ = (d, b1, b2) = (0.2, 0.3, 0.4) (bottom plots).
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Empirical and real data examples

Additive Outliers (AO)
Patch of Outliers
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Figure 4: MSE of b1, third order model with θ = (d, b1, b2, b3) = (0.2, 0.2, 0.3, 0.4) and ζ = 30.
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Empirical and real data examples

Additive Outliers (AO)
Isolated outliers
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Figure 5: MSE of b1, third order model with θ = (d, b1, b2, b3) = (0.2, 0.2, 0.3, 0.4) and ζ = 30.
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Empirical and real data examples

Simulation study conclusions

Conclusions:
When a LS or TS exists then there do not exist noteworthy differences
among the estimators.
When AOs are added to the series, either as a patch of consecutive
outliers or isolated, then the robustly weighted MQLE dominates all other
proposed estimation methods.
CUBIF is competitive only in the case of Isolated outliers.
Similar results are obtained for

time series of length 200,
MSE, MAE, bias,
τ = n/4, n/2,
first, second and third order models.
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Empirical and real data examples

Polio data

Polio data
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Figure 6: Monthly number of poliomyelitis cases during the years 1970 to 1983 in USA.
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Empirical and real data examples

Polio data

168 observations,
log-linear Poisson model without feedback of order q = 6,
a long-term decrease of the incidence rate might exist so trend of the form
t/n is included in the model,
sinusoid terms to model annual seasonality,
the last ten observations are excluded for prediction.

νt = d +

q∑
j=1

bj log(1 + Yt−j) + βt/n +

S∑
s=1

{β1;s sin(ωst) + β2;s cos(ωst)}

where S is the number of harmonics and ωs = 2πs/12 are the Fourier
frequencies.
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Empirical and real data examples

Polio data

We fit different models and based on the AIC criterion we resort to the
model

νt = d +

5∑
j=1

bj log(1 + Yt−j) + βt/n + β1;1 sin(w1t) + β2;s cos(w1t)

We fit the model and estimate the parameters using the MLE, CUBIF and
MQLE for various values of the tuning constant c.
Choose c for which the estimated MSE or MAE of the predicted values is
smallest.

MLE CUBIF MQLE MQLE hat MQLE mve MQLE mcd
c – 1.408 1.051 1.102 3.041 1.051

MSE 0.692 1.503 0.572 0.577 0.535 0.522
c – 1.408 1.051 1.051 3.041 1.664

MAE 0.741 1.102 0.663 0.666 0.622 0.629

Table 1: Minimum MSE/MAE of the predicted values of the last ten observations of the polio
data.
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Empirical and real data examples

Polio data
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Figure 7: Estimated MSE (left plot) and MAE (right plot) of the predicted values of the last ten
observations of the Polio data.
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First order log-linear model with feedback

Yt ‖ Ft−1 ∼ Poisson(λt), νt = d + aνt−1 + b log(1 + Yt−1), (7)

Introduce at each time point t a Poisson process Nt(·) of unit intensity

Yt = Nt(λt), νt = d + aνt−1 + b log(1 + Yt−1).

Introduce a perturbed chain (Y m
t , ν

m
t )

Y m
t = Nt(λ

m
t ), νm

t = d + aνm
t−1 + b log(1 + Y m

t−1) + εt,m (8)

εt,m = cm1(Y m
t−1 = 1)Ut , cm > 0, cm → 0 as m→∞,

Ut is a sequence of iid uniform random variables on (0, 1) such that Ut is
independent of Nt(·)
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE

Fisher consistent M-estimator,
solution of the quasi-score equation Sn(θ) = 0 where

Sn(θ) =

n∑
t=1

(
mt(θ)− E

(
mt(θ) ‖ Ft−1

))
=

n∑
t=1

st(θ), (9)

with
mt(θ) = ψ

(
rt(θ)

)
wteνt (θ)/2 ∂νt(θ)

∂θ
.

Perturbed score:

Sm
n (θ) =

n∑
t=1

(
mm

t (θ)− E
(

mm
t (θ) ‖ Fm

t−1

))
=

n∑
t=1

sm
t (θ),

with
mm

t (θ) = ψc(rm
t )wteν

m
t /2 ∂ν

m
t

∂θ
.
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE

rt = (Yt − λt)/
√
λt are the Pearson residuals,

ψ is a suitable weight function that depends on a tuning constant chosen
to ensure a desired level of asymptotic efficiency,
∂νt(θ)/∂θ is a three dimensional vector with components

∂νt(θ)

∂d = 1 + a∂νt−1(θ)

∂d ,

∂νt(θ)

∂a = νt−1 + a∂νt−1(θ)

∂a ,

∂νt(θ)

∂b = log(1 + Yt−1) + a∂νt−1(θ)

∂b .

{wt} is an appropriate sequence of weights, 0 < wt < 1.
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE

Maximization problem:

Mt(θ) =

∫ λt (θ)

s̃

(
ψ

(
Yt − z√

z

)
− E

[
ψ

(
Yt − z√

z

)
‖ Ft−1

])
wt

1√
z

dz,

with s̃ such that
(
ψ
(

Yt−s̃√
s̃

)
−E
[
ψ
(

Yt−s̃√
s̃

)
‖ Ft−1

])
wt

1√
s̃ = 0, we obtain that

∂

∂θ
Mt(θ) = mt(θ)− E

(
mt(θ) ‖ Ft−1

)
.

Twice differentiable penalty function Mn(θ) =
n∑

t=1
Mt(θ).

Existence, consistency, asymptotic normality of θ̂MQLE, (Taniguchi and
Kakizawa (2000, Thm 3.2.23).
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE
Taniguchi and Kakizawa (2000, Thm 3.2.23)

Mn(θ) = Mn(θ0) + (θ − θ0)
T ∂

∂θ
Mn(θ0) +

1
2 (θ − θ0)

T ∂2

∂θ∂θT Mn(θ0)(θ − θ0)

+
1
2 (θ − θ0)

T
{

∂2

∂θ∂θT Mn(θ
∗)− ∂2

∂θ∂θT Mn(θ0)

}
(θ − θ0)

= Mn(θ0) + (θ − θ0)
T ∂

∂θ
Mn(θ0) +

1
2 (θ − θ0)

T Vn(θ0)(θ − θ0)

+
1
2 (θ − θ0)

T Tn(θ
∗)(θ − θ0)

Assumptions:
A1 1

n
∂
∂θ

Mn(θ0)
a.s−→ 0,

A2 1
n Vn(θ0)

a.s−→ V , V a positive definite matrix,
A3 for j, k = 1, 2, 3 , limn→∞ supδ→0

1
nδ |Tn(θ

∗)jk | <∞ a.s

Then, there exists a sequence of estimates θ̂n such that θ̂n
a.s−→ θ0,

A4 1√
n
∂
∂θ

Mn(θ0)
d−→ N(0,W )

⇒
√

n(θ̂n − θ0)
d−→ N(0,V−1WV−1)
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE - Asymptotic theory

Theorem 1

Consider model (7). Let θ ∈ Θ ⊂ R3 which is assumed compact and suppose
that the true value θ0 belongs to the interior of Θ. Assume further that ψ is
two times continuously differentiable bounded function. Introduce lower and
upper values of each component of θ0 = (d0, a0, b0)

T such that dL < d0 < dU ,
−1 < aL < a0 < aU < 1 and bL < b0 < bU and suppose that at the true value
θ0, |a0 + b0| < 1 if a0 and b0 have the same sign, and a2

0 + b2
0 < 1 if a0 and b0

have different sign. Then, there exists a fixed open neighborhood O(θ0) of θ0

O(θ0) = {θ|dL < d < dU ,−1 < aL < a < aU < 1, bL < b < bU}

such that with probability tending to 1 as n→∞, the equation Sn(θ) = 0 has
a unique solution, say θ̂MQLE. Furthermore, θ̂MQLE is strongly consistent and
asymptotically normal,

√
n(θ̂MQLE − θ0)

d−→ N(0,V−1WV−1)

where the matrices W and V are defined in the following Lemmas.
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE - Asymptotic theory

An approximation lemma:

1 E |νm
t − νt | → 0 and |νm

t − νt | < δ1,m almost surely for m large.
2 E(νm

t − νt)
2 ≤ δ2,m,

3 E |λm
t − λt | ≤ δ3,m,

4 E |Y m
t − Yt | ≤ δ4,m,

5 E(λm
t − λt)

2 ≤ δ5,m,
6 E(Y m

t − Yt)
2 ≤ δ6,m,

7 E |rm
t − rt | → 0,

8 E(rm
t − rt)

2 ≤ δ7;m,

where δi,m → 0 as m→∞ for i = 1, ..., 7. Furthermore, almost surely, with m
large enough

|λm
t − λt | ≤ δ, |rm

t − rt | ≤ δ and |Y m
t − Yt | ≤ δ, for any δ > 0.
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE - Asymptotic theory

Lemma 1
Define the matrices

W m(θ) = E
(

sm
t (θ)sm

t (θ)T
)

and W (θ) = E
(

st(θ)st(θ)
T
)
.

Under the assumptions of Theorem 1, the above matrices evaluated at the true
value θ = θ0, satisfy W m →W , as m→∞.

Outline of the proof:
E
(
mm

t (θ) (mm
t (θ))

T)− E
(
mt(θ) (mt(θ))

T)→ 0 and
E (mm

t (θ))E T (mm
t (θ))− E (mt(θ))E T (mt(θ))→ 0 as m→∞.

Consider for each θi = d , a, b the differences

E
∣∣∣∣(Z m

t )2
(
∂νm

t
∂θi

)2
− Z 2

t
(
∂νt
∂θi

)2
∣∣∣∣ and

∣∣∣E 2
(

Z m
t
∂νm

t
∂θi

)
− E 2

(
Zt

∂νt
∂θi

)∣∣∣ with

Zt = ψc(rt)wteνt/2 and Z m
t defined analogously,

|∂νm
t /∂θi − ∂νt/∂θi |, |rm

t − rt |, |λm
t − λt | → 0, as m→∞.
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE - Asymptotic theory

Lemma 2
Under the assumptions of Theorem 1, the score functions for the perturbed (8)
and unperturbed model (7) evaluated at the true value θ = θ0 satisfy the
following:

1 Sm
n /n

a.s−→ 0,
2 Sm

n /
√

n d−→ Sm := N(0,W m),
3 Sm d−→ N(0,W ), as m→∞,
4 limm→∞ lim supn→∞ P(||Sm

n − Sn|| > ε
√

n) = 0, ∀ε > 0.
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE - Asymptotic Theory
Proof of Lemma 2

Outline of the proof:

Strong LLN for martingales (Chow (1967))
Sm

n square integrable martingale sequence
CLT for martingales (Hall and Heyde (1980, Cor. 3.1))

conditional Lindeberg condition and conditional variance condition

Lemma 1 by Prop. 6.4.9 of Brockwell and Davis (1991)

1√
n
(Sm

n − Sn) =
1√
n

n∑
t=1

[
W m

t

(
∂νm

t
∂θ
− ∂νt

∂θ

)
+ (W m

t −Wt)
∂νt

∂θ

]
where Wt = Zt − E [Zt ‖ Ft−1] and W m

t defined analogously

P
(∥∥∥∑n

t=1 W m
t

(
∂νm

t
∂θ
− ∂νt

∂θ

)∥∥∥ > δ
√

n
)
→ 0 and

P
(
‖
∑n

t=1(W
m
t −Wt)

∂νt
∂θ
‖ > δ

√
n
)
→ 0 as m→∞
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE - Asymptotic theory

Lemma 3
Define the matrices

V m(θ) = −E
[
∂

∂θ
sm

t (θ)
]
, V (θ) = −E

[
∂

∂θ
st(θ)

]
.

Under the assumptions of Theorem 1, the above matrices evaluated at the true
value θ = θ0, satisfy V m → V , as m→∞.

Outline of the proof:

Vn(θ) = − 1
n

n∑
t=1

E
(
∂
∂θ

st(θ)||Ft−1
)

and

V m
n (θ) = − 1

n

n∑
t=1

E
(
∂
∂θ

sm
t (θ)||Ft−1

)
are consistent estimators of the

matrices V and V m respectively
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE - Asymptotic Theory
Proof of Lemma 3

Because Sn(θ) = 0 is an unbiased estimating function, it holds that

−E
(
∂

∂θ
st(θ)||Ft−1

)
= E

(
st(θ)

∂`t(θ)

∂θ
||Ft−1

)
(10)

where `t(θ) = (Ytνt(θ)− exp(νt(θ))), is the logarithm of the conditional
probability of Yt ||Ft−1 under the Poisson assumption.

Examine the difference sm
t (∂`m

t /∂θi)− st(∂`t/∂θi) for θi = d , a, b

|[ψ(rm
t )− E (ψ(rm

t )||Fm
t−1)]− [ψ(rt)− E (ψ(rt)||Ft−1)]|,∣∣∣∣( ∂νm

t
∂θi

)2
−
(
∂νt
∂θi

)2
∣∣∣∣, |rm

t − rt |, |λm
t − λt | → 0, as m→∞.
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE - Asymptotic theory

Lemma 4
Denote by

Hn(θ) =
1
n

n∑
t=1

st(θ)
∂`t(θ)

∂θ
,

where `t(θ) = Ytνt(θ)− exp(νt(θ)), is the t’th component of the Poisson
log-likelihood function. Define analogously Hm

n (θ). Then, under the
assumptions of Theorem 1,

1 Hm
n

p−→ V m as n→∞
2 limm→∞ lim supn→∞ P(||Hm

n − Hn|| > εn) = 0, ∀ε > 0.
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE - Asymptotic Theory
Proof of Lemma 4

Outline of the proof:
LLN,

Hn =
1
n

n∑
t=1

{
wteνt rt [ψ(rt)− E (ψ(rt)||Ft−1)]

(
∂νt

∂θ

)(
∂νt

∂θ

)T
}

and Hm
n is defined analogously.

Examine the difference Hm
n − Hn

E
∥∥(∂νt/∂θ) (∂νt/∂θ)T∥∥ <∞
|[ψ(rm

t )− E (ψ(rm
t )||Fm

t−1)]− [ψ(rt)− E (ψ(rt)||Ft−1)]|,

|λm
t − λt |,

∥∥∥∥( ∂νm
t

∂θ

)(
∂νm

t
∂θ

)T
−
(
∂νt
∂θ

) (
∂νt
∂θ

)T
∥∥∥∥→ 0, as m→∞.
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Mallows’ Quasi Likelihood Estimation (MQLE)

MQLE - Asymptotic theory

Lemma 5
Under the assumptions of Theorem 1,

max
i,j,k=1,2,3

sup
θ∈O(θ0)

∣∣∣∣∣1n
n∑

t=1

∂2sti(θ)

∂θk∂θj

∣∣∣∣∣ ≤ M̃n :=
1
n

n∑
t=1

m̃t

where θi for i = 1, 2, 3 refers to θi = d , a, b respectively. Define analogously
M̃m

n . Then
1 M̃m

n
p−→ M̃m, as n→∞ for each m = 1, 2, ...,

2 M̃m → M̃, as m→∞, where M̃ is a finite constant,
3 limm→∞ lim supn→∞ P(|M̃m

n − M̃n| > εn) = 0, ∀ε > 0.
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Empirical results

In our calculations:
1000 simulations,
generate 800 and discard the first 300 observations,
initialize ν0 = 1, ∂ν0/∂θ = 1, interventions occur at n/4,
Huber function

ψc(x) =
{

x , |x | ≤ c
csign(x), |x | > c

For this choice of ψ(·), the bias term can be calculated (Cantoni and
Ronchetti (2001)):

E
(

mt(θ) ‖ Ft−1

)
= E

(
ψc(rt(θ) ‖ Ft−1

)
wteνt (θ)/2 ∂νt(θ)

∂θ

where

E
(
ψc

(Yt − λt(θ)√
λt(θ)

)
‖ Ft−1

)
= c {P(Yt ≥ j2 + 1‖Ft−1)− P(Yt ≤ j1‖Ft−1)}

+
√
λt(θ) {P(Yt = j1‖Ft−1)− P(Yt = j2‖Ft−1)} ,

with j1 = bλt(θ)− c
√
λt(θ)c and j2 = bλt(θ) + c

√
λt(θ)c.
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Robust weights

Implementation of robustly weighted methods:
Method A:
Approximate νt by

ν̂t = d + aν̂t−1 + b1 log(1 + Yt−1),

where ν̂t is computed by employing θ̂MQLE calculated without weights.
Method B:
Approximate νt by

ν̂t = d∗ +
M∑

i=1

a∗i log(1 + Yt−i),

for some truncation point M and some regression parameters
{d∗, a∗1 , . . . , a∗M}. This choice is motivated by the fact that repeated
substitution in the log intensity process νt shows that

νt = d 1− at

1− a + atν0 + b
t−1∑
i=0

ai log(1 + Yt−i−1)
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Mallows’ Quasi Likelihood Estimation (MQLE)

Empirical results - Patch of outliers
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Figure 8: MSE of âMQLE, θ = (d, a, b) = (0.2, 0.3, 0.5), patch of outliers of size ζ = 20.
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Empirical results - Patch of outliers
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Figure 9: MSE of âMQLE, θ = (d, a, b) = (0.2, 0.3, 0.65), patch of outliers of size ζ = 20.
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Empirical results - Level Shift (LS) and Transient Shift (TS)

1.0 1.5 2.0 2.5 3.0

0.
04

0
0.

04
4

0.
04

8
0.

05
2

MSE of a, LS

tuning constant c

M
S

E

1.0 1.5 2.0 2.5 3.0

0.
03

2
0.

03
6

0.
04

0
0.

04
4

MSE of b, LS

tuning constant c

M
S

E

1.0 1.5 2.0 2.5 3.0

0.
04

0
0.

04
4

0.
04

8
0.

05
2

MSE of a, TS

tuning constant c

M
S

E

1.0 1.5 2.0 2.5 3.0
0.

03
2

0.
03

6
0.

04
0

0.
04

4

MSE of b, TS

tuning constant c

M
S

E

MLE MQLEnone MQLEhatA MQLEhatB MQLEmveA MQLEmveB MQLEmcdA MQLEmcdB

Figure 10: MSE of âMQLE (left plots) and b̂MQLE (right plots), θ = (d, a, b) = (0.2, 0.3, 0.5)
with LS of size ζ = 0.2 or TS of size ζ = 1.
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Mallows’ Quasi Likelihood Estimation (MQLE)

Simulation study conclusions

Conclusions:

In all cases, the robustly weighted MQLE outperforms the non-robustly
weighted MQLE and MLE,
Method A is superior to method B,
Similar results in terms of MSE, MAE, bias,
Similar results when the intervention/outliers occur in the first quarter,
middle and end of the series (τ = [n · 85%]).
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Testing

Robust score test

H0 : a = 0 vs. H1 : a 6= 0

Consider the partition θ = (θ(1), θ(2)) where θ(1) = (d , b) and θ(2) = a.
Then, the score test is defined by

STn = [S(2)
n (θ̃MQLE)]

2/σ̃2, (11)

where Sn = (S(1)
n , S(2)

n ) and θ̃MQLE is the constrained MQLE under the null
hypothesis (49), given by θ̃n = (θ̃

(1)
n , 0),

Breslow (1990), Harvey (1990), Francq and Zaköıan (2010), Christou and
Fokianos (2015),
σ̃2 is a consistent estimator of

σ2 = W22 − V21V11
−1W12 −W21V11

−1V12 + V21V11
−1W11V11

−1V12

where Vij , Wij , i , j = 1, 2 correspond to partitions of the matrices V and
W .
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Testing

Robust score test

Theorem 2
Consider model (7) and assume the conditions of Theorem 1. Then, under the
null hypothesis (49) we have the following:

1 Define the score test for the perturbed model (8) by ST m
n . Then

ST m
n

d−→ χ2
1

where χ2
d denotes the chi–square distribution with d degrees of freedom.

2 The score statistic for the perturbed model (8) and unperturbed model (7)
satisfy

lim
m→∞

lim sup
n→∞

P(|ST m
n (θ̃n)− STn(θ̃n)| > εn) = 0, ∀ε > 0.

Outline of the proof:
Francq and Zaköıan (2010, Prop. 8.3)
Show that the following differences tend to 0: ST m

n (θ̃n)− STn(θ̃n),
W m

22 −W22, W m
12 −W12, W m

21 −W21, W m
11 −W11, V m

11
−1V m

12 − V11
−1V12,

V m
21V m

11
−1 − V21V−1

11 and V m
11
−1V m

12 − V−1
11 V12
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Empirical and real data examples

Robust score test
Empirical results - Size of the test

Patch of Outliers Isolated Outliers

Number of Weights Significance level Significance level
outliers α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

none 0.003 0.047 0.082 0.009 0.055 0.113
hat 0.003 0.046 0.084 0.006 0.055 0.114no outliers
mve 0.008 0.049 0.102 0.012 0.056 0.104
mcd 0.007 0.036 0.090 0.007 0.054 0.102
none 0.281 0.528 0.683 0.018 0.072 0.127
hat 0.250 0.497 0.649 0.014 0.069 0.13310 outliers
mve 0.006 0.048 0.103 0.011 0.049 0.095
mcd 0.008 0.056 0.108 0.009 0.045 0.084
none 0.825 0.947 0.977 0.021 0.106 0.165
hat 0.825 0.945 0.978 0.023 0.103 0.16820 outliers
mve 0.015 0.061 0.119 0.012 0.054 0.101
mcd 0.026 0.084 0.155 0.013 0.053 0.106

Table 2: Empirical size of the test for the case of a patch of outliers and the case of isolated
outliers based on 1000 samples, c = 1.571.
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Empirical and real data examples

Robust score test
Empirical results - Power of the test
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Figure 11: Power of the test statistic, c = 1.571 and α = 0.05.
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Empirical and real data examples

Measles data

Measles Infections Time Series

Time

W
ee

kl
y 

nu
m

be
r 

of
 in

ci
de

nt
s

0 50 100 150

0
20

40
60

80
10

0

Figure 12: Weekly number of measles infections reported in North Rhine-Westphalia, Germany
from January 2001 to November 2003.
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Empirical and real data examples

Measles data

150 observations,
For method B we choose M=10,
intervention and outlier detection:

Chen and Liu (1993): 27 interventions including 7 AOs, 2 consecutive,
Fokianos and Fried (2012): 3 TSs and 5 SOs.

log-linear model without feedback of order q = 13,
we choose c ≥ 3.
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Empirical and real data examples

Measles data

Estimation procedure d a b
MLE 0.242(0.001) 0.435(0.010) 0.500(0.009)

MQLE no weights 0.077(0.002) 0.379(0.001) 0.587(0.001)
MQLE hat (A) 0.076(0.002) 0.378(0.001) 0.588(0.001)
MQLE hat (B) 0.024(0.002) 0.309(0.001) 0.665(0.001)
MQLE mve (A) -0.005(0.003) 0.359(0.001) 0.628(0.001)
MQLE mcd (A) -0.035(0.003) 0.358(0.001) 0.636(0.001)
MQLE mve (B) 0.049(0.002) 0.268(0.001) 0.697(0.001)
MQLE mcd (B) 0.067(0.002) 0.255(0.001) 0.706(0.001)

Table 3: Estimates (standard errors) of the parameters of model (7) when applied to the measles
infection time series. Fitting is done by employing (43) with c = 3.

MQLE gives estimates with smaller standard deviation than MLE,
method A and method B give similar results,
the sum a + b is close to 1.
All test procedures reject the null hypothesis of non-existence of the
feedback term (p-value < 0.001).
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Empirical and real data examples

Further research

Make our R code on the MQLE procedure for the log-linear model with
feedback available through an R package.
Investigation of MQLE for a higher order log-linear Poisson model.
Alternative distributional assumptions.
Other options for the ψ function in the calculations of MQLE than the
Huber function.
Study of MQLE for a linear Poisson model.
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