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e We start from the isogeny classification (Honda-Tate): pick
AlF4 and let ha(x) be the characteristic polynomial of the
Frob4 acting on T;A. We have

A~p, BB,
where the B;'s are simple and pairwise non-isogenous, and
ha(x) = hg, ()™ -~ hp, ()™,

where the hp. (x)'s are (specific) powers of irreducible g-Weil
polynomials.



Deligne’s equivalence
Theorem (Deligne '69)

Let g =p", with p a prime. There is an equivalence of categories:

{Ordinary abelian varieties over F,} A

! !
pairs (T, F), where T ~7 78 and Tirse
- F®Q is semisimple
- the roots of charpeq(x) have abs. value \/q  (T(A),F(A)
- half of them are p-adic units
-3V :T — T such that FV =VF=q

Remark
e T(A):= Hi(A®.C), where AIW(F,) is the canonical lift;
e /fdim(A) = g then rkz(T(A)) =2g;
e Frob(A) ~ F(A).
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Deligne's equivalence

Fix a square-free characteristic g-Weil polynomial h(x).

Let 6}, be the corresponding isogeny class.

Let K be the étale algebra Q[x]/(h(x)) and put F:=x mod (h(x)).
Deligne's equivalence induces:

{Ordinary abelian varieties over F in <€h}/~

!
{fractional ideals Of Z[E q/P] cK }/: = ICM(Z[Eq/F]))



Centeleghe/Stix's equivalence

Theorem (Centeleghe/Stix 2015)
There is an equivalence of categories:

Abelian varieties over Fj, such that \/p
does not belong to their Weil support
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- /P is not a root of charpeg(x)
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Centeleghe/Stix's equivalence

Theorem (Centeleghe/Stix 2015)
There is an equivalence of categories:

Abelian varieties over Fj, such that \/p
does not belong to their Weil support

pairs (T, F), where T =7 7?8 and Tﬂ T s.t.

- F®Q is semisimple

- the roots of charpeq(x) have abs. value \/p
- /P is not a root of charpeg(x)

-3V:T — T such that FV=VF=p

For a p-Weil square-free characteristic polynomial k& with

h(y/P) #0:



ICM : Ideal Class Monoid

Let R be an order in a étale Q-algebra K and @k the ring of
integers of K.
Recall: for fractional R-ideals I and J

I=p <<= 3IxeK  st.xI=]

Define _ _
ICM(R) := {fractional R—ldeals}/:R



ICM : Ideal Class Monoid

Let R be an order in a étale Q-algebra K and @k the ring of
integers of K.
Recall: for fractional R-ideals I and J

I=p <<= 3IxeK  st.xI=]

Define _ _
ICM(R) := {fractional R—ldeals}/:R

e ICM(R) is a finite monoid: use the Minkowski bound: SLOW!

ICM(R)2 || Pic(9).
RSSOk



Weak equivalence

Theorem (Dade, Taussky, Zassenhaus '62)

Two fractional R-ideals I and ] are weakly equivalent (I~ J) if
one of the following equivalent conditions hold:

(1) I, =R, Jp for every p € mSpec(R);
(2) 1eU: NU:D;
(3) U:D=(:)) and 3 an invertible (I: I)-ideal L s.t. I=L]J.



Weak equivalence

Theorem (Dade, Taussky, Zassenhaus '62)

Two fractional R-ideals I and ] are weakly equivalent (I~ J) if
one of the following equivalent conditions hold:

1) I, =g, J, for every p € mSpec(R);
p =R, Jp p p
(2) le:NHUJ:D;
(3) U:D=(:)) and 3 an invertible (I: I)-ideal L s.t. I=L]J.
Notation: for any order R:
._ {fractional R-ideal }
o ¥R '_{ ractional R-idea s}/ka'
7 ._ {fracti | R-ideals T with (I: ) =R .
e 7(R):= ifractional R-ideals I with (I:1) }/~ka

o ICM(R) := {fractional R-ideals I with (I:1)= R}/:R



Compute # (R) and ICM(R)

Let fg = (R:Ok) be the conductor of R and I a fractional R-ideal.
Without changing the weak eq. class, we can assume that

10k = Ok.

Hence fgr < I < Ok, and therefore:
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Compute # (R) and ICM(R)

Let fg = (R:Ok) be the conductor of R and I a fractional R-ideal.
Without changing the weak eq. class, we can assume that

10k = Ok.
Hence fgr < I < Ok, and therefore:
W (R) N«ik{ fractional R-ideals I : 10k =0k }

N
{sub—R—moduIes of @K/fR}

Theorem
The action of Pic(R) on # (R) is free and transitive and the orbit is
precise/y ICM(R). In particular, we can compute:

ICM(R) = || ICM(S).
RcS<Ok



Dual variety/Polarization
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the category of Deligne modules (ordinary case).
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Dual variety/Polarization

Howe defined a notion of dual module and of polarization in
the category of Deligne modules (ordinary case).

In the isogeny class 6}, with h square-free and ordinary

Aol— AV T

a polarization of A corresponds to a A € K* such that
- AICT (isogeny);
- A is totally imaginary (A =-A1);
- A is ®-positive, where @ is a specific CM-type of K.

if A< I admits a principal polarization and S:= (I:I) then

{non—isomorphic {totally positive ue S*}
princ. pol.’s of A {vi:ve s}

and Aut(A, 1) = {torsion units of S}



Example : Elliptic curves

For elliptic curves the number of isomorphism classes can be
expressed as a closed formula (Deuring, Waterhouse).

Let h(x) = x*+ Bx+q, with g= p” and B an integer coprime with p
such that B2 <4gq.

Put F:=x mod (h(x)) in K:=Q[x]/(h).

Then Z[F] =Z[F,q/F] and

ICM(Z[F)) = | | Pic(Z + nOk)
nlf

where f:=#(Ok : Z[F]), which implies that

{iso. classes of ell. curves} #Pic(Ok) Z H (1 Ak 1)
=———Vn
pp

with g—1+ B Fg-points | #0} 7 pin



Example : higher dimension

Let
h(x) = x® —5x" +13x5 —25x° + 44x* - 75x% + 117x%> — 135x + 81;

~ isogeny class of an simple ordinary abelian varieties over F3
of dimension 4;

Let a be a root of h(x) and put R:=Z[a,3/a] c Q(a);

8 over-orders of R: two of them are not Gorenstein;
#ICM(R) = 18 ~ 18 isom. classes of AV in the isogeny class;
5 are not invertible in their multiplicator ring;

8 classes admit principal polarizations;

10 isomorphism classes of princ. polarized AV.



Example
Concretely:

I =2645633792595191Z & (a + 836920075614551)Z & (a® +1474295643839839) Z6
® (a3 +1372829830503387)Z & (a* + 1072904687510) Z&

4+ a® +2a2 +2a +6704806986143610)Z®

1
eaf(a5+a
3
1 6, 5. 4 3 2
@9(& +a’+a” +8a” +2a” +2991665243621169)Z®

6

1
® E(vﬂ +ab+a®+17a* +20a° + 902 + 68015312518722201)Z

principal polarizations:

1
x,1= 5= 121922a” +588604a® — 1422437a°+
+1464239a* +1196576a° — 75707220 + 15316479 — 12821193)
1 7 6 5
x1,2 = - (3015467a’ ~ 176898160° + 35965592a° -

—64660346a* +121230619a° — 191117052a + 315021546a —300025458)
End(l1) =R
#Aut(I, x1,1) = #Aut(ly,x1,2) =2



Example

L =2Ze(@+1)Zo @ +1)Zo @ +1)Ze(@* +1)Ze1/3(@® +a*+a® +2a% +2a +3)Ze

1
® £(a6 +a®+10a* +26a% +20? +27a +45)Z0
1
® e (@’ +4a® +49a® + 200a* + 1164 + 10502 + 198a + 351)Z
principal polarization:
7 a6 5 4 3 2 a
x7,1 = (200" ~43¢° +155a° ~308a” +580a° ~ 1116a” + 22050 ~ 1809)
1
End(I;)=ZeaZea’Zea’Zea'Ze g(oc5 +at+ad+20® +2a)Z0
1
® E(a6+a5 +10a* +8a> +2a® +9a +9)Zo
1
® s (@’ +4a® +13a® + 56a* + 80a® + 3302 + 18a +27)Z

#Aut(l7,x7,1) =2

I is invertible in R, but I7 is not invertible in End(I7).



