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Motivation (Class Polynomials)

Genus 1 (Elliptic Curves):
e Two elliptic curves are isomorphic over k if and only if their
j-invariants are equal.
o If an elliptic curve has CM then the j-invariant is an algebraic
integer.
o The class polynomial for elliptic curves with CM by an order O
in an imaginary quadratic field K is

Ho(x) = [1 (z-Jjp).
E has CM by O
It has integer coefficients.

o Two main applications:

e constructing class fields
e comnstructing elliptic curves of prescribed order
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Motivation (Class Polynomials)

Genus 2:
o All genus 2 curves are hyperelliptic hence given by an equation

C:y?=2"+azt +ba® +ca? +dz +e.

The isomorphism classes are given by 3 invariants j1, j2, J3,
called the Igusa invariants.

The class polynomials for genus 2 curves with CM by O in a
non-biquadratic quartic CM field K are

Ho(e) = I1 (z-31), Hp(2)= I1 (z=d2), Hp() = I1 (z-33)
C has CM by O C has CM by O C has CM by O
Remark: The coefficients of H},(x) are in Q.
e Goren-Lauter (2007) gave a bound on the primes dividing the
denominators.

e Lauter-Viray (2012) bounded the exponents of the primes
dividing the denominators.
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Picard Curves

Definition

Let k be a field of characteristic not 2 or 3. A Picard curve of genus 3 is a smooth
plane projective curve given by an equation of the form

3_ 4 )
C:y =z +ax”+bxr+c,

where a, b, c€ k.

@ This model for the Picard curves is unique up to the scaling
(z,y) » (A2, \'y). (Holzapfel.)

@ If k contains a primitive 3rd root of unity (3, then Aut(C') contains
pi(zy) = (z,¢sy).

@ Let C be a Picard curve with CM by an order O in a sextic CM field K.
Then (3 € O. (The converse also holds, Koike-Weng.)
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Invariants of Picard Curves

Yrar?+br+cis

The discriminant of C: 3% =
A = —4a3b? + 16a’*c - 27b* + 144ab®c — 128a% % + 2563
which has weight 12.

Shioda invariants:

ab vt
ATATA
Koike-Weng invariants:
b2
a3’ a2
Our invariants:
a® . ac
J1= b_2’ J2 = b_2
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Main theorem
Let C be a Picard curve of genus 3 over a number field M with simple
Jacobian which has CM by an order O of a number field K of

degree 6. Let K, be the real cubic subfield of K and O, = K. nO. Let
i be a totally real element in Oy such that K = Q(u)((3).

Let j = u/b* be a normalized Picard curve invariant. Let p be a prime
of M lying over a rational prime p.

If ord, (j(C)) <0, then p < trg, jo(1®)*(< 33A0,)P?).

We prove a stronger result:

o We give an algorithm that computes the set of primes dividing
the denominators of j(C).
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Reduction of Picard Curves

Lemma

Let C/M be a Picard curve of genus 3 over a number field and let p + 6 be a
prime of M. Let j = u/b* be a normalized Picard curve invariant. If

ord, (j(C)) <0, then up to extension of M and isomorphism of C, we are in
one of the following cases.

Q C:y¥=2+az?+br+1 withb=0 and a = +2 modulo p, and the
reduction of this equation is the singular curve y> = (2® +1)? of
geometric genus 1;

Q C:y®=2*+2%+bx+c withb=c=0 modulo p, and the reduction of this
equation is the singular curve y> = (z? + 1)2? of geometric genus 2;

Q@ C:yP=a2+ax?+bx+1 withb=0 and a # +2 modulo p, and the
reduction of this equation is the smooth curve y° = x* +@xz? + 1 of
genus 3.
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Let K = K,((3), where K, = Q(y)/(v® - v* — 4y — 1) is the totally real cubic
subfield. The curve

C:y®=2"-2.7-132+2°.5.13 .47z - 5% - 13%-31

has CM by Ok (Koike and Weng).
We compute
7°.13 . 7%-13-31
T@osrar P Tgar
The prime 5 is of case 2, and the prime 47 is of case 3.
For the prime 47, we take an integer r = 15 modulo 47 and take k = Qa7 («) with

a? = r. Then consider the model

Ji=

C:y=a"-a®2.7132°+a”-2°.5.13- 47z - a* - 5> 13- 31,

which modulo 47 is B
C:y®=a"+192° + 1.
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The embedding problem

Let K be a sextic CM field, and let C' be a Picard curve of genus 3
with simple Jacobian J that has CM by an order O in K.
In [BCLLMNO15] and [KLLNOS16], it is proven that if p is a prime
of bad reduction, then

J~E?

and hence there exist an embedding
12 K =End(J) = End’(J) = M3(By.o),

such that complex conjugation on the LHS corresponds to the Rosati
involution on the RHS.
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However, if a prime p divides the denominators of the invariants, we
do not necessarily have bad reduction.

o If p is a prime of good reduction and divides the denominator of
one of the invariants, then we have C: y3 = 2% + @2% + 1 which is a
2-cover of an elliptic curve. The cover is explicitly given by

¢:6—> FE
(z,y) » (y,2°),

e We prove that J ~ Aj x Ay of degree 2 where A; is an elliptic
curve and A, is an abelian surface.

o Moreover, there exists an isogeny Ao ~ A%, hence J ~ Ai)’.

So there exist an embedding
v: K =End’(J) < End®(J) = M3(By.0),

such that complex conjugation on the LHS corresponds to the Rosati
involution on the RHS.
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Computations

Let us write K = Q(¢3) K™ with K* =Q(u) with p a totally positive element
in Z +20. Let n be the degree of the isogeny J ~ A3.

Following [KLLNOS16] (+ a few observations), we get

x a b r 0 0
()= 1 0 ¢ |,and t(23+1)=] 0 s ¢ [,
0 1 d 0 uw v

where z, a, b, nc,nd, r,ns, nt,nu,nv € R.
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Computations

Let us write K = Q(¢3) K™ with K* =Q(u) with p a totally positive element
in Z +20. Let n be the degree of the isogeny J ~ A3.
Following [KLLNOS16] (+ a few observations), we get

x a b r 0 0
()= 1 0 ¢ |,and t(23+1)=] 0 s ¢ [,
0 1 d 0 uw v

where z, a, b, nc,nd, r,ns, nt,nu,nv € R.
o Commutativity of p and 2¢5 + 1,

@ considering the polarization on A?, and the fact that complex
conjugation is the Rosati involution on End®(A43)

we prove that all the entries are contained in Q((3).
In [KLLNOS16] we proved that this implies that p | n.

On the other hand, we also proved that all the entries of «(¢) and n can be
written in terms of z and a.

— So bound z and a!
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As 1(p?) satisfies the (cubic) minimal polynomial of p over Q, we find

to = trK+/Q(u2) = 2%+ 2a+2¢/n + d*n*

T +2a+l+(2x)2 (———)2

22 + 2a.

v

So, we get

|z| <v/ta and
1
0<ac< §(t2—$2).

A simple calculation = n < 3.
We have shown p | n, hence we get p < 3.
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Primes dividing the denominator of the normalized invariants

We have
L Z+20 > Msy3(Q[¢3])
T a b
n - 1 0 C/n
0 1 d/n
Algorithm:

1 Take any real n € Z + 20 and list all (a,x) satisfying

|z| <Vt and

1
0O<acx< §(t2—;r2),

2 For each compute n(n,z,a).
3 Let N, be the least common multiple of the numbers n(n, a, ).

4 List primes p dividing N,,.
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Comparisons of invariants

Shioda invariants:
[KLLNOS16]:

1
p< 5t o ()™,

Koike-Weng Invariants:
No bounds.

Our invariants:
Main Theorem: p < try jq(p*)?

+ we give an algorithm to compute all the solutions.
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How can we bound the exponents of the primes?
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How can we bound the exponents of the primes?

e An idea: For a prime p appearing in the denominator of the
invariants ji, jo of Picard curves, count the number of solutions to
the embedding problem.

@ i.e., count the pairs (a,z) satisfying
|z| < Vt2 and

1
O<acx< §(t2—$2),

such that pln(z,a).
The number of solutions bounds the exponent of p.
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