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Historical origin of solitary waves

1834 Scott Russel’s first observation of a Translation Wave along
the Union Canal - Gyle.

1895 Korteg and de Vries proposed the equation and explicit
solutions.
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Singularity formation ‘ —= ‘ Dispersive effect

1960 Gardner Integrability
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1968 The Lax formalism

Lo =Xt)o

Let's define two linear problems:
A= ot

where: Lo = —¢u — u(x, t)d, A= duy +4()\(t) —2u(x, t))gb.

\ u(x,t) solves KdV eq. <= L;+[L,A]=0, A =0 \
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» )\ € C Complexitons (real
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where: View = V — 2%22(|n(¢1))
Crum theorem: Consider ¢1, ..., ¢n, ¢, then:
d2
Vaew = V =255 (In(W(61....on)))
¢[N] — W(¢17 ey ¢N7 ¢)

W(é1,...,on)



Construction of (complex) complexiton solution.

Seed solution for KdV: u(x, t) = 0.

The equation for A suggests for k € C:

cosh(ﬁ(x - k,-2t)) if i odd,

2
solves — @y = A.
sinh(%(x - k?t)) if i even, ¢ ¢

so that ¢; = {

Therefore solutions of the KdV are:

2

Si(x, t) = —%('n(W(qbl? i, -,¢>i)))
(: Fi[cosh(+),sinh(-), cos(-),sin(-)] (x, t))



Dynamics for S;(x, t):direction and velocity.

Since the wave numbers k; € C = non travelling solution.

In fact, it is readily seen from the dispersion relation coming from
the equation for operator A that the velocity of the wave generated
by ki is

c(ki) = Re(ki)* =3 1m(k;)?

Therefore, for the values

the solution S;(x, t) is standing (oscillating) wave.



Examples of dynamics for Sy(x, t): blow-up
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Plot: real part of the wave generated by single k = v/3 + i/2.



Examples of dynamics for Sy(x, t): boundedness and localisation
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Plot: Real part of the wave generated by (o +i3,2 + /).



Interaction of two localised complexitons

Plot: Wave generated by (\/§+ i,V3—i, 3+ i3/2, V3 -

i3/2)
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Differences with the real solutions:

The solutions presented share with the real solutions some feature:
» Localization property for certain values of wavenumbers;
» Linear interaction up to a phase shift;

» Can catch the exotic "breathers solutions”.

There are nonetheless differences:
» Real solitons travel only leftwards;

» No blow-up for real solution.



Potential at time t =0

The Darboux method provides a precise description of the

spectrum and eigenfunctions. Set H = —%22 — Si(x,0), then
k2
—2L c a4(H), ekii] associated eigenfunction
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Potential at time t =0

The Darboux method provides a precise description of the

spectrum and eigenfunctions. Set H = —%22 — Si(x,0), then
k2
_Z € o4(H), ekii] associated eigenfunction

For example, for the case i =2 (k € C):

W(e1, ..., b1, ) =(k — ki)(k — ko) (ko — ky)elkrtha)xrhe
+ (k + ki) (k + ko) (kp — ky)e(ktha)xthx
+ (k — k1) (k 4 ko) (ko + ky )elki—he)xthx
+ (k4 k) (k — ko) (ky + ky)e~(a—ke)xthx

W (g1, p2) =(ko — ky)(ellaTho)x 4 g~ llatha)x)
+ (ko o+ k) (el HPx - gk mhed)



The scattering problem at time t =0

d2
—wg —V(x)g =g
Consider now k € R:

U(x, k) ~ ™, P(x, k) ~ e *x as x — +00;

x(x, k) = a(k)p(x, k) 4+ b(k)p(x, k) =~ e** as x — —00.
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The natural candidates for the functions above are of course:

~ W(¢1, ¢, )
\U+(X, k) - W(¢17¢2)

W(¢17 ¢27 eiikt)
W(o1, ¢2)

V_(x, k)=



The scattering problem at time t =0

It turns out that:

> Reflectionless potential

> In general la(k)|~ # 1
unless koj = koj_1

» For high frequencies
la(k)| — 1 as |k| = co.

> a(—k) = a(k)"!
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Question and open problem

There are many open questions regarding complex solutions of the
KdV equation:

» Physical meaning of a complex wavenumber.
> Integrability and conserved quantities.
» Dynamics and interaction.

» Stability and asymptotic stability for these solutions, studied
for real solution by several authors (Martel, Merle, Vega,
Munoz, Alejo...). Very recently breathers stability have been
proved.

> Possibility to extend a soliton's trace formula approach when
the potentials are complex.
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Thanks for you kind patience and attention :D



