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Examples of Rigidity and Results

Rigidity Results: Gaps between Multiplicative Functions

We want to determine whether specific classes of multiplicative functions
are completely characterized by a kind of general hypothesis.
Archetypal example:

Theorem (Erdős)

If f : N→ (0,∞) is multiplicative and non-decreasing then f (n) = nr for
r ≥ 0.

Inspired by this and subsequent investigations, Kátai conjectured:

Conjecture (Kátai)

Suppose f : N→ T is multiplicative and |f (n + 1)− f (n)| → 0 as n→∞.
Then f (n) = nit for some t ∈ R.

Partial results by Elliott, Hildebrand, Mauclaire-Murata, Phong...
Proven by Wirsing and independently by Shao and Tang.
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If f : N→ (0,∞) is multiplicative and non-decreasing then f (n) = nr for
r ≥ 0.

Inspired by this and subsequent investigations, Kátai conjectured:
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Suppose f : N→ T is multiplicative and |f (n + 1)− f (n)| → 0 as n→∞.
Then f (n) = nit for some t ∈ R.

Partial results by Elliott, Hildebrand, Mauclaire-Murata, Phong...
Proven by Wirsing and independently by Shao and Tang.

Sacha Mangerel (University of Toronto) Rigidity Theorems May 23, 2017 2 / 27



Examples of Rigidity and Results

Rigidity Results: Gaps between Multiplicative Functions

We want to determine whether specific classes of multiplicative functions
are completely characterized by a kind of general hypothesis.
Archetypal example:

Theorem (Erdős)

If f : N→ (0,∞) is multiplicative and non-decreasing then f (n) = nr for
r ≥ 0.

Inspired by this and subsequent investigations, Kátai conjectured:
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If f : N→ (0,∞) is multiplicative and non-decreasing then f (n) = nr for
r ≥ 0.

Inspired by this and subsequent investigations, Kátai conjectured:
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Examples of Rigidity and Results

A Problem of Kátai-Wirsing Type

Instead of asking when |f (n + 1)− f (n)| is always small for sufficiently
large n, ask when |f (n + 1)− f (n)| is never small for sufficiently large n.
Possible Causes for Behaviour:
a) n(n + 1) is always even, and f may behave badly at powers of two
b) if {f (n)}n does not equidistribute on T then f (n) and f (n + 1) may
conspire with one another so that f (n)f (n + 1) is far from 1
e.g., f (n) := (−1)n−1 is multiplicative, with f (2k) = −1 and f (pk) = 1 for
all k ≥ 1 and p ≥ 3.
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Examples of Rigidity and Results

What is ”Pretentiousness”?

U := {z ∈ C : |z | ≤ 1}, F := {f : N→ U : f is multiplicative}.

Given
f , g ∈ F , x ≥ 2, define

D(f , g ; x) :=

∑
p≤x

1− Re
(
f (p)g(p)

)
p


1
2

.

By Mertens, 0 ≤ D(f , g ; x)2 ≤ 2 log log x + O(1)
f , g , h ∈ F then D(f , h; x) ≤ D(f , g ; x) + D(g , h; x)

Definition

f pretends to be g iff D(f , g ; x)2 = o(log log x).
f is pretentious if there is a Dirichlet character χ and some t ∈ R such
that D(f , n 7→ χ(n)nit ; x)� 1, and non-pretentious otherwise
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Examples of Rigidity and Results

Large Gaps and a Folklore Conjecture

Theorem (Klurman-M., 2017)

Let ε > 0. Suppose |f (n + 1)− f (n)| ≥ ε for all suff. large n. Then there
are positive integers k , q = Oε(1), and t = Oε(1) such that:

there is a χ mod q and a completely multiplicative function g such
that g(n)k = χ(n) for all (n, q) = 1, |g | = 1, and D(f , gnit ; x)�ε 1;

1 is not a limit point of {f ((2q)l)}l .

Consider completely multiplicative f , so f ((2q)l) = f (2q)l .
Write f (2q) = e(θ) := e2πiθ: if θ ∈ Q then 1 ∈ {f (2q)l}l ; if θ /∈ Q then
{f (2q)l}l is even dense!

Theorem (Klurman-M., 2017; folklore conjecture)

If f : N→ T is a completely multiplicative function then
lim infn→∞ |f (n + 1)− f (n)| = 0.
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Examples of Rigidity and Results

Erdős-Mirsky Type Corollaries

Conjecture (Erdős-Mirsky)

There are infinitely many integers n such that Ω(n) = Ω(n + 1).

Solved (essentially) by Heath-Brown (using an idea of Spiro).
Approximate version of a general form of Erdős-Mirsky:

Corollary (Klurman-M., 2017)

Let A1, . . . ,Ak be any disjoint sets of primes and let ΩAj
(n) denote the

number of prime factors of n from Aj . Let q1, . . . , qk be coprime integers.
Then there are infinitely many integers n such that

ΩAj
(n + 1) ≡ ΩAj

(n) (mod qj) ∀ 1 ≤ j ≤ k.

Take f comp. mult. with f (p) := e(1/qj) whenever p ∈ Aj for all j , and
f (p) = 1 otherwise.
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There are infinitely many integers n such that Ω(n) = Ω(n + 1).

Solved (essentially) by Heath-Brown (using an idea of Spiro).
Approximate version of a general form of Erdős-Mirsky:
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Examples of Rigidity and Results

Equidistribution and the Weyl Criterion

i) there is a χ mod q and a completely multiplicative function g such that
g(n)k = χ(n) for all (n, q) = 1 and D(f , gnit ; x)�ε 1

Why is i) necessary ?

Definition

A sequence {yn}n ⊂ T is equidistributed if, given any 0 ≤ a < b ≤ 1,

lim
N→∞

∣∣∣∣ 1N |{n ≤ N :
1

2π
arg(yn) ∈ [a, b]}| − (b − a)

∣∣∣∣ = 0.

Theorem (Weyl’s Criterion)

{yn}n is equidistributed iff for each l ∈ N,∑
n≤N

y l
n = o(N).
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Examples of Rigidity and Results

A Consequence of Halász’ Theorem

Theorem (Halász)

If f : N→ U is completely multiplicative and x−1
∣∣∣∑n≤x f (n)

∣∣∣ 6→ 0 then

D(f , nit ; x)� 1 for some t ∈ R.

By the Weyl criterion, {f (n)}n is not equidistributed iff for some l ∈ N,

x−1

∣∣∣∣∣∣
∑
n≤x

f (n)l

∣∣∣∣∣∣ 6→ 0.

So by Halász, D(f l , nit ; x)� 1 for some t ∈ R. In fact:

Lemma

{f (n)}n is not equidistributed iff there is a multiplicative g, and l ∈ N
such that g l = 1 and t ∈ R such that D(f , gnit ; x)� 1.
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Examples of Rigidity and Results

Highly Non-Pretentious Functions

Consider when i) fails instead.

Definition

A multiplicative function f : N→ U is highly non-pretentious if for all
N ∈ N and g : N→ C completely multiplicative such that gN = 1 and any
t, we have D(f , gnit ; x)→∞ as x →∞.

For highly non-pretentious functions we can even consider ”gaps”
f (n + h)− αf (n), for α ∈ T and h ∈ N:

Theorem (Klurman-M., 2017)

Let h ∈ N. Suppose f : N→ T is highly non-pretentious multiplicative
function and α ∈ T. Then lim infn→∞ |f (n + h)− αf (n)| = 0, i.e.,
{f (n)f (n + h)}n is dense in T.

Why is this interesting?
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Examples of Rigidity and Results

van der Corput’s Theorem and a Converse

Theorem (van der Corput-Weyl)

If {yn}n ⊂ T is such that {ynyn+h}n is equidistributed for all h ∈ N then
{yn}n is equidistributed.

The converse is false: take yn := e(nα) for α /∈ Q.

Conjecture

Suppose {yn}n ⊂ T is equidistributed and for all α ∈ R,∑
n≤x

yne(nα) = o(x).

Then {ynyn+h}n is equidistributed for all h.
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Examples of Rigidity and Results

van der Corput Converse for Multiplicative Functions

Suppose yn = f (n) for all n, with f : N→ T multiplicative. Note:
a) {f (n)}n is equidistributed iff f is highly non-pretentious;
b) Case 1: α /∈ Q

Theorem (Daboussi)

If g : N→ U is multiplicative then for all α /∈ Q,∑
n≤x

g(n)e(nα) = o(x).

Case 2: α = p/q ∈ Q∑
n≤x f (n)e(np/q) = o(x) iff for all χ modulo q,

∑
n≤x f (n)χ(n) = o(x).

By Halász, D(f , χnit ; x)→∞ as x →∞ i.e., f is non-pretentious.
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n≤x

g(n)e(nα) = o(x).

Case 2: α = p/q ∈ Q∑
n≤x f (n)e(np/q) = o(x) iff for all χ modulo q,

∑
n≤x f (n)χ(n) = o(x).

By Halász, D(f , χnit ; x)→∞ as x →∞ i.e., f is non-pretentious.
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Examples of Rigidity and Results

Multiplicative van der Corput Converse

Conjecture (van der Corput converse, multiplicative version)

If f : N→ T is a highly non-pretentious multiplicative function then
{f (n)f (n + h)}n is equidistributed for all h ∈ N.

Theorem (Klurman-M., 2017)

Let h ∈ N. Suppose f : N→ T is highly non-pretentious multiplicative
function. Then {f (n)f (n + h)}n is dense in T.

Denseness is a first approximation of equidistribution. Cf. Elliott:

Conjecture (Elliott; Matomäki-Radziwi l l-Tao)

Let f ∈ F is non-pretentious in the sense that for all χ,
inf|t|≤xD(f , χnit ; x)→∞ as x →∞. Then for any h ∈ N,∑

n≤x
f (n)f (n + h) = o(x).
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Let f ∈ F is non-pretentious in the sense that for all χ,
inf|t|≤xD(f , χnit ; x)→∞ as x →∞. Then for any h ∈ N,∑

n≤x
f (n)f (n + h) = o(x).

Sacha Mangerel (University of Toronto) Rigidity Theorems May 23, 2017 12 / 27



Binary Correlations and Pretentiousness

Pretentious Functions

Is the converse of Elliott true, i.e., if D(f , χnit ; x)� 1 for some χ, t ∈ R,
then f has large correlations? Yes, as in Halász!

Theorem (Klurman,2016)

If f ∈ F and D(f ;χnit ; x)� 1 for some χ and t. Put
F (n) := f (n)χ(n)n−it and Fp(n) = F (pk) if pk ||n. Then for any d ∈ N,

x−1
∑
n≤x

f (n)f (n + h) ∼ G (χ, t) ·
∏
p≤x
p-q

Mp(F )

where Mp(F ) = limX→∞ X−1
∑

p≤X Fp(n)Fp(n + h).

Local-to-Global principle for correlations, as is known for mean values!
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Binary Correlations and Pretentiousness

Log-Averaged Elliott

Even without Elliott, we can detect pretentiousness from the size of
(weighted) binary correlations:

Theorem (Tao,2015)

If g ∈ F , g is non-pretentious then a log-averaged Elliott conjecture for
binary correlations holds, i.e., for any h ∈ N,

∑
n≤x

g(n)g(n + h)

n
= o (log x) .

If log-average of binary correlation is large then g is pretentious, and we
can compute its binary correlations!
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Sketch Proof of Folklore Conjecture

Large Gaps implies large binary correlations

|f (n)f (n + 1)− 1| = |f (n)− f (n + 1)| ≥ ε.
⇒ {f (n)f (n + 1)}n ⊂ T has large log-weighted discrepancy∣∣∣∣∣∣∣∣

∑
n≤x

1
2π arg(f (n)f (n+1))∈[ ε2π ,1]

1

n
− (1− ε/2π) log x

∣∣∣∣∣∣∣∣� ε log x .

On the other hand:

Theorem (Weighted Erdős-Turán)

Let {yn}n ⊂ T and let x ,N ≥ 3, N ≤ log x. Then

max
0≤a<b≤1

∣∣∣∣∣∣∣∣
∑
n≤x

1
2π arg(yn)∈[a,b]

1

n
− (b − a) log x

∣∣∣∣∣∣∣∣�
log x

N
+ (logN) max

1≤k≤N

∣∣∣∣∣∣
∑
n≤x

y ln
n

∣∣∣∣∣∣.
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Sketch Proof of Folklore Conjecture

Large correlations implies Condition 1

Choose N = Oε(1). Then for some k = Oε(1) minimal,

∑
n≤x

(f (n)f (n + 1))k

n
�ε log x .

Tao ⇒ there is a χ mod q with exponent m, t ∈ R such that
D(f k , χnit ; x)�ε 1 which in turn means that D(f , gnit/k ; x)�ε 1, where
g can be taken such that gk = χ wherever χ 6= 0, and g = 1 otherwise.
(Choose g(p) to be the nearest mkth root of unity to f (p)p−it/k .)
Since nit/k varies slowly, can assume that t = 0 for the rest of the proof.
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Sketch Proof of Folklore Conjecture

Main Ideas and Condition 2

Let a ∈ N even and S ⊂ [1, x ] a long arithmetic progression, both to be
chosen; suppose (a, n) = 1 on S

ε2
∑
n∈S

1

n
≤
∑
n∈S

1

n
|f (an + 1)− f (an)|2 = 2

(∑
n∈S

1

n
− Re

(
f (a)

∑
n∈S

f (n)f (an + 1)

n

))
.

Klurman ⇒ if D(f , 1; x)� 1 and f (p) = 0 for p ≤ N then
1

log x

∑
n≤x

f (bn+c)f (dn+e)
n = 1 + oN→∞(1) ; f g is 1-pretentious here

Upshot: if i) (a, n) = 1, ii) g(n) = g(an + 1) and iii) n(an + 1) has no
small prime factors on S then correlation sum with f will be too large as
long as iv) f (a) is close to 1! This is what forces f to satisfy Condition 2.

Theorem (Szemerédi,Gowers)

If A ⊂ [1, x ] has size |A| = δx then A contains an arithmetic progression S
of length log2 (log3 x/ log(1/δ)).
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If A ⊂ [1, x ] has size |A| = δx then A contains an arithmetic progression S
of length log2 (log3 x/ log(1/δ)).

Sacha Mangerel (University of Toronto) Rigidity Theorems May 23, 2017 17 / 27



Sketch Proof of Folklore Conjecture

Main Ideas and Condition 2

Let a ∈ N even and S ⊂ [1, x ] a long arithmetic progression, both to be
chosen; suppose (a, n) = 1 on S

ε2
∑
n∈S

1

n
≤
∑
n∈S

1

n
|f (an + 1)− f (an)|2 = 2

(∑
n∈S

1

n
− Re

(
f (a)

∑
n∈S

f (n)f (an + 1)

n

))
.

Klurman ⇒ if D(f , 1; x)� 1 and f (p) = 0 for p ≤ N then
1

log x

∑
n≤x

f (bn+c)f (dn+e)
n = 1 + oN→∞(1)

; f g is 1-pretentious here
Upshot: if i) (a, n) = 1, ii) g(n) = g(an + 1) and iii) n(an + 1) has no
small prime factors on S then correlation sum with f will be too large as
long as iv) f (a) is close to 1! This is what forces f to satisfy Condition 2.

Theorem (Szemerédi,Gowers)
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Sketch Proof of Folklore Conjecture

The Logarithmic Density Result

Proposition

The set A = A(N,T ) of integers n ≤ x such that P−(n((2q)Tn + 1)) > N
and g(n) = g((2q)Tn + 1) has positive logarithmic density.

So, choose a = (2q)T , where T ≥ 1 is such that f ((2q)T ) is close to 1, if
possible.
Positive log density ⇒ positive upper density, so for suitable x , get a long
AP S in [1, x ] by Szemerédi-Gowers.
Proof Idea: Recall gmk = χ̃m = 1. For ζ a primitive mkth root of unity,

∑
n≤x
n∈A

1

n
=

∑
n≤x

P−(n((2q)T n+1))>N

1

n

∏
1≤j≤mk

1− ζ jg(n)g((2q)Tn + 1)

1− ζ j
.

For some resulting binary correlations of g1P−>N use Tao’s theorem; for
others use χ((2q)Tn + 1) = 1 and orthogonality to get small contributions.
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Proof Idea: Recall gmk = χ̃m = 1. For ζ a primitive mkth root of unity,

∑
n≤x
n∈A

1

n
=

∑
n≤x

P−(n((2q)T n+1))>N

1

n

∏
1≤j≤mk

1− ζ jg(n)g((2q)Tn + 1)

1− ζ j
.

For some resulting binary correlations of g1P−>N use Tao’s theorem; for
others use χ((2q)Tn + 1) = 1 and orthogonality to get small contributions.

Sacha Mangerel (University of Toronto) Rigidity Theorems May 23, 2017 18 / 27



Chudakov’s Conjecture

Dirichlet Characters and Rigidity

Recall that a Dirichlet character χ : N→ C is defined by the following
properties:
i) χ is completely multiplicative;
ii) there is q ∈ N such that χ is q-periodic, i.e., χ(n + q) = χ(n) for all n;
iii) χ(n) = 0 whenever (n, q) > 1.
Actually, iii) is superfluous:

Theorem (Sarkőzy)

If f : N→ C is a completely multiplicative function that satisfies a linear
recurrence relation then f is a Dirichlet character.

This means that only i) and ii) are required.
Strong pointwise algebraic condition!
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recurrence relation then f is a Dirichlet character.

This means that only i) and ii) are required.
Strong pointwise algebraic condition!
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Chudakov’s Conjecture

A Different Characterization of Dirichlet Characters

Let f : N→ C be completely multiplicative. If f = χ, where χ is a
Dirichlet character mod q then:
i) f (n) assumes values inside the finite set of φ(q)th roots of unity;
ii) Among all primes, f vanishes precisely on the finite set of prime divisors
of q;
iii)
∑

n≤x f (n) = αx + O(1), as x →∞(where α = φ(q)/q if χ is
principal, and α = 0 otherwise)

Conjecture (N.G. Chudakov, 1956)

If f : N→ C is completely multiplicative, has finite range, vanishes at only
finitely many primes and satisfies iii) with some α ∈ C then f must be a
Dirichlet character.

The α 6= 0 case is due to Glazkov in the ’60’s using Delange’s theorem.
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Chudakov’s Conjecture

Resolution of α = 0 case

For α = 0 this conjecture remained open.

Theorem (Klurman-M., 2017)

Let f : N→ C be completely multiplicative such that:
i) f (n) assumes only finitely many values;
ii) f vanishes at only finitely many primes;
iii)
∑

n≤x f (n) = O(1). Then f is a Dirichlet character.

i) implies that f takes non-zero values in roots of unity (if f (p)N 6= 1 for
all N then {f (pk)}k is an infinite set).
The Erdős discrepancy problem for completely multiplicative unimodular
functions follows from this; f must otherwise vanish at at least one prime.
The modulus of f , assuming the conjecture is true, must be the product of
the primes in this non-empty set.
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Chudakov’s Conjecture

Bounded Partial Sums implies Pretentiousness

Proposition (Klurman-M., 2017)

If f : N→ U multiplicative and
∑

n≤x f (n) = O(1) then there are χ mod

q an t ∈ R such that D(f , χnit ; x)� 1.

Proposition (Klurman-M., 2017)

For all H sufficiently large,∑
|h|≤H

(H − |h|) lim
x→∞

x−1
∑
n≤x

f (n)f (n + h) = OH→∞(1),

and we have

lim
x→∞

x−1
∑
n≤x

f (n)f (n + h) =
1

q

∑
rad(R)|q

|f (R)|2

R

∑
a(q)

χ(a)χ(a+ h/R)
∑
e|h/R

G(e)

e
,

with G is a constant times a strongly multiplicative function G̃ .
Moreover, f is a character iff G̃ (d) = 0 for all d > 1.
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Chudakov’s Conjecture

Why is G̃ (d) = 0 for d 6= 1?

G̃ (d) = 0 for (d , 2q) > 1, G̃ (d) ≥ 0 for d odd (G̃ (2) is fiddly).
Assume p|q iff f (p) = 0 and q odd for convenience (general case is fiddly).

Lemma

For any H sufficiently large,∑
(d ,2q)=1

G̃ (d)
∑

g |rad(q)

µ(g) ‖Hg/d‖ = O(1),

where ‖t‖ := min{{t}, 1− {t}}.

Show that inner sum is non-negative (proof uses trick with fourier
series of ‖t‖);
If G̃ (p) > 0 for infinitely many primes ⇒ Contradiction!
Otherwise, if G̃ (d) > 0 infinitely often, each G̃ (d)� 1 by strong
multiplicativity ⇒ Contradiction!
If G̃ (p) 6= 0 then G̃ (pk) = G̃ (p) 6= 0 ⇒ Contradiction!
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If G̃ (p) > 0 for infinitely many primes ⇒ Contradiction!
Otherwise, if G̃ (d) > 0 infinitely often, each G̃ (d)� 1 by strong
multiplicativity ⇒ Contradiction!

If G̃ (p) 6= 0 then G̃ (pk) = G̃ (p) 6= 0 ⇒ Contradiction!
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Inverse Binary Correlation Problem

Inverse Binary Correlation Problem

Problem: Suppose f , g : N→ U are multiplicative, and there is a set
S ⊂ N such that for all h ∈ S ,

x−1
∑
n≤x

f (n)f (n + h) ∼ x−1
∑
n≤x

g(n)g(n + h).

For what choices of S can we deduce that f ≈ g?
This problem is difficult! We do not even know the order of magnitude of
binary correlations for general 1-bounded multiplicative functions.

Conjecture (Chowla)

Let h ∈ N. Then ∑
n≤x

µ(n)µ(n + h) = o(x).
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Inverse Binary Correlation Problem

Motivation: Cohn’s conjecture in Finite Fields

Assume we can estimate binary correlations of g .
e.g., take g = χ some Dirichlet character, where binary correlations are
easy to estimate.
Analogous question exists in char. p

Conjecture (H. Cohn, 1994)

Let p ≥ 3 be prime. Let f : Fp → C satisfy f (0) = 0, f (1) = 1 and
|f (a)| = 1 on F×p . If, for all h ∈ Fp,

∑
a∈Fp

f (a)f (a + h) =

{
−1 if h 6= 0

p − 1 if h = 0,

then f is a multiplicative character on Fp.
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Inverse Binary Correlation Problem

Theorem (Klurman-M., 2017)

Let 1 ≤ H ≤ x with H →∞ as x →∞. Let q be odd. If there is a
primitive Dirichlet character χ modulo q such that for all 1 ≤ h ≤ H,∑

n≤x
f (n)f (n + h) = (1 + o(1))

∑
n≤x

χ(n)χ(n + h),

then there is a t ∈ R and a Dirichlet character χ′ modulo q such that
f (n) = χ′(n)nit for all n.

Remarks: a) the perturbation by o(1) corresponds to the smooth and
slowly-varying perturbation nit . If o(1) is deleted then t = 0;
b) all primitive Dirichlet characters modulo q have the same binary
correlations, up to O(1), so χ′ 6= χ in general.
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Inverse Binary Correlation Problem

Thank you for listening!
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