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The starting point
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The model

Study of simple labelled cubic planar graphs

» Enumeration (exact and asymptotics).

» Parameters in a random cubic planar graph.

Ingredients:

generatingfunctiology, asymptotic analysis and probability.



Enumeration: rooting

In order to get counting formulas we use Tutte’s rooting.

» We distinguish one edge+orientation: R(x)

C(x): EGF for connected cubic planar graphs, then
R(z) = 3zC"'(x) = 3C*

If we get 3C*, then we have C(z) (by integration).



Enumeration: networks
We describe C*® in terms of networks

Connected cubic multigraph with an ordered pair of adjacent
vertices (s,t), such that the graph obtained by removing the
edge st is simple.

» The edge st can be a loop.
» The edge st can belong to a multiple edge.
» The edge st is simple.

t

Strategy: decomposition a la Tutte
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All possible cases for networks
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b-graph d-graph s-graph p-graph h-graph
Fig. 1. The five types of rooted cubic graphs in Lemma 1.

(From Bodirsky et al.)



Using the Symbolic Method Dictionary
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Fig. 1. The five types of rooted cubic graphs in Lemma 1.

D=L+S+P+H

L=%2(I+D-1L)
=4

S =D(D-S)
P:a:2D+a;2D72

What about h-graphs?



Visiting the map reialm
» h-graph: obtained from a 3-con. cubic graph by pasting
a network on each edge, except the root.
» Whitney+ Duality = rooted triangulations

Tutte: triangulations (parameter: vertices minus 2)

T(2) = u(2)(1 = 2u(2)), z = u(2)(1 — u(2))’
Labelled 3-connected cubic graphs, rooted at a directed edge:

S (T) - ay)

M(x,y) =
Properties of T
» Unique dominant singularity at 7 = 27/256, T'(1) = 1/8.
» T'(z) has singular expansion at z = 7
1 3., V6,5 13 35[
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Using the Symbolic Method Dictionary
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Asymptotic enumeration (1)

We have equations, then we can analyze them

P(x) = x’C(x) + x°C(x)7/2. (10)
We can also describe the substitution in Eq. (1) for H (x) algebraically, using Eqs. (4) and (5).

2C) + DH@) = u(l —2u) —u(l —u)’ (11)
X (Cx) + 1P =u(l —w)’. (12)

Using algorithms for computing resultants and factorizations (these are standard proce-
dures in e.g., Maple or Mathematica), we obtain a single algebraic equation Q(C(x).x) =0
from Egs. (6)—(12) that describes the generating function C(x) uniquely, given sufficiently
many initial terms of ¢,. This is in principle also possible for all other generating functions
involved in the above equations; however, the computations turn out to be more tedious,
whereas the computations to compute the algebraic equation for C(x) are manageable.



Asymptotic enumeration (and Il)

Theorem 2.  The asymptotic number of cubic planar graphs, connected cubic planar
graphs, 2-connected cubic planar graphs, and 3-connected cubic planar graphs is given by
the following. For large even n

(0) =72 _—n

g, ~agn "= pT"n!
gV ~ e n7 p™ nl
g’[,Zr ~ a; n—?ﬂ n—n nl
gV ~ayn ol

All constants are analytically given. Also «/aq = e™* where .. = GV (p). The first digits
of p=!, 7!, and 67" are 3.132595 , 3.129684, and 3.079201, respectively.

Q: complete arguments, and free of resultants?
Q: which are the values of ;7 And \?



1.- Asymptotic analysis



Direct analysis

Easy expression for D:

F(z,D):= (1+D)\/a;4 +1-a2(D— 1)_M

Possible sources of singularities for D:

» A branch point from equation F(z, D) = 0.

» A critical composition scheme: T(z%(1 + D)3).

Study the system F'(z,D) =0, Fp(z,D)=0

4

NO branch point



Singularity analysis: networks

We have a critical composition scheme:
p*(1+ D(p))* = 27/256, F(p,D(p)) = 0.
Use that T'(7) = 1/8, we solve the system:

p ~ £0.3192246062, Dy = D(p) = 0.0115259444.

We get the singular expansion for D from the singular
expansion for 7' + equation F'(x, D) = 0.

D(z) = Do + Dy X? + D3 X + O(X?Y), X = (1 —2/p)'/?,

Dy =0, Dy = —0.1182076128, D3 ~ 0.2542672141



Singularity analysis: graphs

From the singular expansion of D we get the singular expansion
of the rest of the networks.

4
We get the singular expansion for C*
C® =0y + O3 X? + O3 X3 + O(XH), O3 ~ 0.2256967553.
By singularity analysis:

203 52

nCh = nia"JC" ~nlp™ + (=0)™") T 5 )"

dividing by n we get the result for the connected level.



2-connected cubic planar graphs

Similar arguments, different type of networks:

E=S+P+H

S = E(E - S)

P = 2%F + xQ%Q
_ M(z,1+E)
H = 1+E

3B®* = F — 22E.

By a similar analysis we get the asymptotics
pp ~ £0.3195228840; | pp| > 0.3192246062 = |p|

Exponentially less!



2.- Connectivity constant



Asymptotic for general cubic planar

C* =0+ 03 X* + O3 X3+ 0(x%)
J
C(z) = Co+ CoX? + C4 X1+ C5X° 4+ O(X5), ¢y = C(p).
\
G =exp(C) = Gy + G2 X% + G4 X* 4+ G5 X°
=exp(Co)(1+--- 4+ C5X° + O(X9)).
The prob. of connectivity of a random cubic planar graph is
p = exp(—Co) = exp(—C(p)) = exp(—A).

Connectivity Constant



The value for \: connectivity constant

7.1. Connectedness

Theorem 3. Let A = GV (p). As n — 00 with n even, Pr{G}f" is connected) —
e*, whereas each of Pr(GY is 2-connected), Pr(G is 2-connected) and Pr(GP is
3-connected) tends to 0.

Proof. From Theorem 2, we see that as n — 00 with n even

Pr (G is connected) = g\ /gl — a1 fag = €.

Also,

Pr (G;m is 2-connected) = g /8" ~ ws/an(n/p) ™" — 0,

with a similar proof in the other cases. ]

Using the numbers in Table 1 we compute the probability that G is connected. up to
n =20, in Table 2.

TABLE 2. The Probability that a Random Cubic Planar Graph is Connected
n 4 6 8 10 12 14 16 18 20
g/eg!® 1 1 0997403 0997837 0997982 0.998117 0998249 0.998368 0.998472

Random Structures and Algorithms DOI 10.1002/rsa

Q: Which is the value of \?



Some difficulties...

We can try to integrate C*® but...

» The genus of the equation is high.
» For planar graphs is 0 (Giménez, Noy).

4

We use an indirect way to ’'integrate’ the equation:

Dissymmetry theorem



A toy example: trees

ROOTED trees
Y

T(z) = ze’ @)

To forget the root, we just integrate: (zU'(z) = T'(x))

/Oz TiS) s — { T/?;()Sc)ls::udu } _ /T:O(? | du = T(z) - %T(m)z




The Dissymmetry Theorem for trees

That can be explained only by combinatorial means:
TUTese=TeeUTs

where 7, is the family of trees 7 with an extra rooted structure.

U(z) = Us_o(2) + Us() — Ussa(z) = %T(@Q +T(z) - T(2)?

We use an extension of this result to tree-like families



A tree-like family
Based on [Chapuy, Fusy, Kang, Shoilekova

4 types of vertices in the tree:
> Vertex L: cut-vertex
» Vertex R: Ring (Series operation)
» Vertex M: multiedge (Parallel operation)

> Vertex T: edge-substitution on a 3-con. cubic graph

Several combinatorial restrictions...



Putting all together

We get an explicit expression of C'(x) in terms of networks:

C= Cr+CMm+Cr+Ce+Cpmm+Cr—7+Cr_t
+OR-M+CrT7+Cr +CMm-7 +Cr— +C7—
—2(Crom + Cro7 + Crosr + CrtsT + Criss + C11)

—(Cmsm + Cro7 +Cror).

C(z) is equal to (M = 3 f LM (z,y)dy)

2(%2+%3>+M(;L’.1+D)
(1og(1 = D+ )+ (D - 5) + @ )+P<S+H)+HS)

(P24§H2 n Lj) .

_1
2
1
2 x2

We get A ~ 0.0006035047 — exp(—A) =~ 0.9993966774.



An extension: random cubic multigraphs

We cannot get a C*-type equation for multigraphs:

» If we want, then we need to distinguish the edge type.

» No way to do it with a single variable.

After getting a similar system for networks + dissymmetry
theorem we get

2 2 3 _— 3
%(1+D+%+%)+A~[(:1:,1+D)+E{J?

4 (log(1 = D+ 8)+ D - 5+ 5% 1 P(S + H))
-1 HS+%+§—§+L2).

and the probability of connectivity is ~ 0.9029052067.



3.- Subgraphs. Triangles



Some results in subgraphs

7.3. Triangles and Other Subgraphs

In order to discuss coloring later we also need to know about triangles. in particular the
unsurprising result that G usually contains at least one triangle. In fact, far more is true.

Lemma 5. Let YV be the number of triangles in G®'. Then there exists § > 0 such that

for even n
Pr(Y® =8n)=1—¢®

Theorem 5.  Let H be a fixed connected planar graph with one vertex of degree 1 and
each other vertex of degree 3. Let k be 0 or 1. Then there exists § > 0 such that for even n

Pr (G® contains < 8n copies of H) = e %™,

Note that each copy of H contributes at least one cut-edge to the graph, and each such

edge is counted at most twice, so we see that G and G are very far from being 2-edge-
connected; see Theorem 3 above.

Q: Precise distribution for these r.v.?



Some normal distributions
By refining the equations for networks we can encode:

» Cut-vertices, bridges, blocks.

» Cherries and bricks.

S

Normal distributions with linear expectation and variance
(Quasi Powers).

Parameter | L o?

Cut-vertices | 0.0018774448 0.0037934519
Bridges 0.0009389848 0.0009496835
Blocks 0.0018777072 0.0037958302

For cherries and bricks these depend on the object.



Triangles (1)

Except for Ky, triangles in cubic graphs are disjoint

We can refine the previous equations in order to encode the
number of triangles:

» Encode networks whose root is adjacent with triangles.

» When forgetting about the parameter for triangles, we get
the initial system.

‘We need to encode triangles in the 3-conn. level



Triangles (I1)
KEY observation: in a 3-con. triangulation, vertices of
degree 3 transform (duality) in triangles.

We start from 4-con. triangulations: no separating triangle
(Tutte)

Ty(2) = z4+v(2)(v(z) = 1)(v(2) +1) 72 = 2%, 2 = v(2)(1 — v(2))?

» We create vertices of degree 3 when pasting copies of Ky

We can get T'(z,u), where u encodes triangles



The result

Combining everything:
» 4-connected triangulations

> Refined grammar for networks to encode triangles

By Hwang’s Quasi-Powers Theorem we get normal distribution
for triangles:

E[Y, (V] ~ 0.1219742813n, V[V, )] ~ 0.0649847862n

By putting the parameter to 0, we encode triangle-free cubic
planar graphs, and we get :

tn ~t-n" 240l 4y ~ 2.6466859711.



Other random variables

1. Number of components: 1+ Po(\).

2. Size of the largest 3-connected component: K,
P(K, = |an +zn?3]) ~ n72B8cA(cx),

where a ~ 0.42543 and A is the Airy function [Banderier,
Flajolet, Schaeffer, Sorial

4

Planar-like family: picture similar to maps



Things to do



Things to do

Q: Counting 4-cycles: 5-con. triangulations [Gao, Wanless,
Wormald].

» [Chapuy, Fusy, Giménez, Noy| Diameter for planar
graphs is n!/4to)

» [Panagiotou, Stufler, Weller] Diameter for subcritical
graphs is y/n, and scaling limit converge to the Brownian
Continuum Random Tree

Q: can one get diameter n'/4? Scaling limits on this setting?



Thank you
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