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Motif Search in Texts

I Goal: search all occurrences of a motif in a text.
I T = text, of length n
I M = motif, of length m
I M and T built on some alphabet Σ
I typical use: m << n

I Applications:
I search for a word in a text editor [ctrl-f] (|Σ| ∼ 60 − 70)
I bioinformatics: DNA (|Σ| = 4), proteins (|Σ| = 20)

I Algorithmics:
I clearly polynomial (naive search w/ sliding window is in

O(mn))
I nice algorithms back from the 70s (KMP, Boyer-Moore, etc.)
I see also e.g.

http://www-igm.univ-mlv.fr/∼lecroq/string/string.pdf
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Recess 1

Analysis of Algorithms

I Analysis of an algorithm, say A
I Running time of A ' number of “elementary operations”

executed by A

I Elementary operation:
I arithmetic operation (+,-,/,*), memory access, assignment,

comparison
I unit cost assumed for each

I Running time = f (n), function of input size n of the instance
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Recess 1 (Cont’d)

O() notation

I Goal: simplify f (n)→ g(n)

I f (n) = O(g(n)) if
∃c > 0,n0 s.t. f (n) ≤ c · g(n) ∀n ≥ n0

I → g() is an upper bound for f ()

I Roughly: take f (n), keep dominant term, remove
multiplicative constant

I Example:
I f (n) = 7n2 + 3n log n + 12

√
n − 7

I f (n) = O(n2)

I O() used for worst-case analysis – robustness of algorithm
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Recess 1 (Cont’d)
Motif search - naive algorithm (sliding window)

void naive(M[0..m-1], T[0..n-1])
1. for i=0 to n-m do
2. j <-- 0;
3. while M[j]=T[i+j] && j<= m-1 do
4. j <-- j+1;
5. endwhile
6. if j=m then
7. printf(‘‘Motif found at position %d\n’’,i);
8. endif
9. endfor

I each line (individually): constant number of elementary
operations

I Lines 3. and 4. most costly: executed at worse m(n − m)
times

I f (n) = O(m(n − m)) = O(nm)
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Motif Search in Graphs
I species: yeast
I vertices↔ proteins (∼ 3 500)
I edges↔ interactions (∼ 11 000)

Source: http://compbio.pbworks.com/
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Motif Search in Graphs

Goal: search one/all occurrence/s of a small graph H in a big
graph G.

I G = target graph
I H = query graph (motif)
I typical use: |V (H)| << |V (G)|

Remarks

I H : biologically known pathway or a complex of interest
I occurrence = induced subgraph of G isomorphic to H
I → topology-based approach
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Towards topology-free motifs

Two views for Motif Search in Graphs

I Topological view:
I find a small graph in a big graph
I ⇒ subgraph isomorphism problems

I Functional view:
I topology is less important
I functionalities of network vertices→ governing principle
I initiated in LACROIX, FERNANDES & SAGOT, IEEE/ACM TCBB 06
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Topology-free motifs

Applicable in broader scenarios

I motif (pathway or complex) whose topology is not
completely known

I noisy networks (missing connections)
I query between well and poorly annotated species
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Functional approach

Model

I function↔ color
I ⇒ graph is vertex-colored (but not properly!)

I motif (query): multiset of colors

I motif occurs (and thus “accepted”) if connected in graph
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GRAPH MOTIF

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06)
Input: A graph G = (V ,E), a set of colors C, a coloring
function χ : V → C, a motif∗ M over C
∗ motif = multiset of colors whose underlying set is C.

Question: Is there an occurrence of M in G ?

Occurrence = subset V ′ ⊆ V s.t.
I χ(V ′) = M, and
I G[V ′] is connected

Note: if χ : V → C ′ with C ⊆ C ′, pre-process G by deleting
vertices u ∈ V (G) s.t. χ(u) 6∈ C
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GRAPH MOTIF

Example
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GRAPH MOTIF

Applications

I metabolic networks analysis [LACROIX, FERNANDES & SAGOT,

IEEE/ACM TCBB 06]
I PPI networks analysis [BRUCKNER ET AL., J. COMP. BIOL. 10]

I mass spectrometry (identification of metabolites) [BÖCKER &

RASCHE, BIOINFORMATICS 08]
I also study of social networks [PINTER-WOLLMAN ET AL.,

BEHAVIORAL ECOLOGY 14]
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GRAPH MOTIF

A well-studied problem

I GRAPH MOTIF widely studied: ∼150 citations for seminal
paper in 11 years (source: Google Scholar)

I Many variants (...too many ?), e.g.:
I approximate motif
I connectivity of an occurrence
I list-colored vertices

I Several software (a handful): Motus, Torque, GraMoFoNe,
PINQ, etc.

This talk

I Algorithmic results for GRAPH MOTIF: a guided tour
I Multiplicity of proof techniques: classical, ad hoc, imported

from other contexts
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Some notations

I M∗ = underlying set of M
I M is colorful if M∗ = M

I COLORFUL GRAPH MOTIF (or CGM): restriction of GRAPH

MOTIF to colorful motifs

I µ(G, c) = number of vertices having color c in G
I µ(G) = max{µ(G, c) : c ∈ C}
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GRAPH MOTIF: first results

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06)

GRAPH MOTIF is NP-complete even if G is a tree.
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Recess 2

Did you say NP-complete ?

Algorithmic complexity of Problems

I Pb=a problem, n=size of the input

I Pb is tractable if solvable in O(nc) (c=constant)⇒ Pb ∈ P

I Pb is intractable if no O(nc) algo. exists for solving it⇒ Pb 6∈ P

I very often: we do not know
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Recess 2 (Cont’d)

Very often:
I cannot prove Pb ∈ P
I cannot prove Pb 6∈ P

Meanwhile...

New class: NP-complete

I Idea: identify the most difficult such problems
I Pb is NP-complete if reduction from another NP-complete

problem applies

I In this talk I will deliberately not discuss NP-hard vs
NP-complete
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Recess 2 (Cont’d)

Reduction – Principle

I Two problems: Pb and Pb ′

I Pb and Pb ′ are decision problems (answer: YES/NO)
I Pb ′ is known to be NP-complete

I For any instance I ′ of Pb ′

I build in polynomial time a specific instance I of Pb
I YES for I ⇔ YES for I ′

G. Fertin The Graph Motif problem 21/95
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Recess 2 (Cont’d)

Meaning of all this

I If reduction applies, Pb is at least as hard as Pb ′

I Pb ∈ P⇒ Pb ′ ∈ P (using reduction)

I ⇒ NP-complete = class of hardest such problems
I problems in NP-complete thought not to be

polynomial-time solvable
I but remains unknown (cf “P =NP ?”)
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GRAPH MOTIF: first results

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06)

GRAPH MOTIF is NP-complete even if G is a tree.

I Reduction from EXACT COVER BY 3-SETS

I Proof does not hold for COLORFUL GRAPH MOTIF

I Is COLORFUL GRAPH MOTIF any “simpler” ?
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GRAPH MOTIF: bad news

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07)

COLORFUL GRAPH MOTIF is NP-complete even when:
I G is a tree and
I G has maximum degree 3 and
I µ(G) = 3
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COLORFUL GRAPH MOTIF is NP-complete

A detour by SAT

I Boolean formula Φ
I set X = {x1, x2 . . . xn} of boolean variables
I clauses c1, c2 . . . cm, each ci built from X

I Conjunctive Normal Form (CNF):
I each clause ci contains only logical OR (∨)
I Φ contains clauses connected by logical AND only (∧)

I Example:

Φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)
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COLORFUL GRAPH MOTIF is NP-complete

A detour by SAT

I variable: xi

I literal: xi or xi

I Φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)

I Goal: satisfy Φ
I assign TRUE/FALSE to each xi
I s.t. Φ evaluates to TRUE, i.e.

I each clause evaluates to TRUE
I in each clause, at least one literal evaluates to TRUE
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COLORFUL GRAPH MOTIF is NP-complete

Definition (SAT)
Input: a boolean formula Φ in CNF, built on X = {x1, x2 . . . xn}.
Question: Is there an assignment TRUE/FALSE of each xi s.t.
Φ is satisfied ?

I SAT is NP-complete (classical result)
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COLORFUL GRAPH MOTIF is NP-complete

3-SAT-X
Many constrained versions of SAT are NP-complete, e.g.:

I each clause of Φ contains at most 3 literals, and
I each variable appears in at most 3 clauses, and
I each literal appears in at most 2 clauses

Φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)

variable x3, literal x3
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COLORFUL GRAPH MOTIF is NP-complete

From any instance of 3-SAT-X to an instance of CGM

1 2 3

1 ′ 2 ′ 3 ′

x1 x1

c1 c3 c2

x2 x2

c1 c2 c3

x3 x3

c1 c2 c3

I from Φ = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x3)

I construct graph G as above
I M = {1,2 . . . n,1 ′,2 . . . n ′, x1, x2 . . . xn, c1, c2 . . . cm}
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Reduction from 3-SAT-X to CGM

From any instance of 3-SAT-X to an instance of CGM

I G is a tree of maximum degree 3 (literal appears in ≥ 2
clauses)

I µ(G) = 3 (clause contains ≤ 3 literals)
I M is colorful

Equivalence YES/NO answer

I (⇒) Pick color xi corresponding to assignment
I (⇐) Pick vertices xi and cj corresponding to occurrence of

motif
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GRAPH MOTIF: bad news

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07)

COLORFUL GRAPH MOTIF is NP-complete even when:
I G is a tree and
I G has maximum degree 3 and
I µ(G) = 3

I Restrictions on G and µ(G)→ NP-complete
I What if M uses few colors ?
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GRAPH MOTIF: more bad news

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07)

GRAPH MOTIF is NP-complete even when:

I G is bipartite and
I G has maximum degree 4 and
I |M∗| = 2

I Reduction from EXACT COVER BY 3-SETS
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GRAPH MOTIF: any polynomial case... please ?

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07)

GRAPH MOTIF is in P whenever G is a tree and µ(G) = 2.
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GRAPH MOTIF: a polynomial case

Equivalence with 2-SAT

r

x1 x1x2

x2x3 x3 x4 x4x5

x5
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GRAPH MOTIF: a polynomial case

Equivalence with 2-SAT

r

x1 x1x2

x2x3 x3 x4 x4x5

x5

(x4 ⇒ x5)
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GRAPH MOTIF: a polynomial case

Equivalence with 2-SAT

r

x1 x1x2

x2x3 x3 x4 x4x5

x5

(x3 ⇒ x1)∧ (x5 ⇒ x1)∧ (x3 ⇒ x2)∧ (x2 ⇒ x1)∧ . . .

2-SAT formula as (A⇒ B)⇔ (B ∨ A)
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GRAPH MOTIF: Coping with hardness

Remarks

I motifs tend to be small in practice (compared to the target
graph)

I → Question 1: algorithm whose running time is
I polynomial in n = |V (G)| and
I exponential in k = |M | ?

I → Question 2: algorithm whose running time is
I polynomial in n = |V (G)| and
I exponential in c = |M∗| ?

I Fixed Parameterized Tractability (FPT) issues
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Parameterized complexity

Definition (Fixed-parameter tractability)
A problem P is fixed-parameter tractable (FPT) w.r.t. parameter
k if it can be solved in time

O(f (k) · poly(n))

I f : any computable function depending only on k
I n: size of the input
I poly(n): any polynomial function of n

I complexity also noted O∗(f (k)) (hidden polynomial factor)
I → corresponding complexity class: FPT
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Parameterized complexity

Definition (Parameterized hierarchy)
FPT ⊆W[1] ⊆W[2] ⊆ . . . ⊆ XP

In a nutshell

I FPT problems: (hopefully) efficiently solvable for small
values of parameter

I W[1]: first class of problems not believed to be in FPT
I W[1]-complete vs FPT↔ NP-complete vs P
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FPT: an ever-growing topic
Monographs

I R.G. Downey, M. R. Fellows – Parameterized Complexity –
Springer-Verlag, 1999.

I H. Fernau – Parameterized Algorithmics: A Graph-Theoretic Approach.
2005. Free download at
http://www.informatik.uni-trier.de/∼fernau/papers/habil.pdf

I J. Flum and M. Grohe. Parameterized Complexity Theory –
Springer-Verlag, 2006.

I R. Niedermeier – Invitation to Fixed-Parameter Algorithms – Oxford
University Press, 2006.

I R.G. Downey, M. R. Fellows – Fundamentals of Parameterized
Complexity – Springer-Verlag, 2013.

I M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh – Parameterized Algorithms – Springer-Verlag,
2015.

I Dedicated website http://fpt.wikidot.com/
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FPT: main techniques

I Dynamic Programming (table size and computation
exponential in paramater only)

I Bounded Search Tree: test all possible cases, show there
are O(f (k) such cases

I Kernelization: (I, k)→ (I ′, k ′) with same solution, I ′

solvable in O(f (k) · poly(n))
I Iterative Compression

I Color-Coding
I etc.
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GRAPH MOTIF and FPT: which parameters ?

The choice is yours

I Size of the motif k = |M | = solution size→ classical parameter

I Number of colors of the motif c = |M∗|
Remark: c ≤ k (k = c for COLORFUL GRAPH MOTIF) thus
“stronger” than k

I Dual parameter ` = n − k (with n = |V (G)|)
Dual = number of vertices not in the solution
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Did you say dual ?

Dual parameter ` = n − k is probably large... but:

I Reduction rules→ smaller components in which ` ∼ k
I Worst case running time vs experimental running time
I Current-best algorithms for some subgraph mining

problems use ` (HARTUNG ET AL., JGAA 15)
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GRAPH MOTIF: parameter c

Reminder: c = |M∗|=#colors in M

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07)

GRAPH MOTIF is W[1]-complete when parameterized by c,
even in trees.

I Reduction from CLIQUE

I ⇒ c can be discarded for GRAPH MOTIF

I In proof of theorem, motif M is not colorful
I ... but in COLORFUL GRAPH MOTIF: c = k
I → c useless for COLORFUL GRAPH MOTIF
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GRAPH MOTIF and CGM: FPT issues

Rest of the talk

I We are left with k and `
I First COLORFUL GRAPH MOTIF (or CGM)
I Then GRAPH MOTIF
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COLORFUL GRAPH MOTIF is FPT in k = |M |

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07)

COLORFUL GRAPH MOTIF is solvable in O∗(64k ) time.

Remarks

I Deterministic (Dynamic Programming)
I Exponential space
I Proof of concept!
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COLORFUL GRAPH MOTIF is FPT in k

Theorem (BETZLER ET AL., CPM 08)

COLORFUL GRAPH MOTIF is solvable in O∗(3k ) time.

Remarks

I Simpler (and faster) version of previous result
I Deterministic (Dynamic Programming)
I Exponential space O∗(2k )

I Adapted from [SCOTT ET AL., J. COMP. BIOL. 06]
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COLORFUL GRAPH MOTIF is FPT in k

Key elements of Dynamic programming algorithm

I Boolean table B(v ,S) with
I v a vertex of G
I S a subset of M

I B(v ,S)=TRUE if there is in G a colorful subtree T
I v is the root of T
I colors of T “agree” with S
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COLORFUL GRAPH MOTIF is FPT in k

Key elements of Dynamic programming algorithm

For any S s.t. |S| = 1

B(v ,S) =

{
TRUE if S = {χ(v)}
FALSE otherwise

B(v ,S) =
∨

u∈N(v)
S1]S2=S

χ(v)∈S1,χ(u)∈S2

B(v ,S1)∧ B(u,S2)

O∗(3k )→ all 3-partitions of a set of size k

G. Fertin The Graph Motif problem 49/95



COLORFUL GRAPH MOTIF is FPT in k

Theorem (GUILLEMOT & SIKORA, ALGORITHMICA 13)

COLORFUL GRAPH MOTIF is solvable in O∗(2k ) time.

Remarks

I Randomized
I Polynomial space
I Uses the “Multilinear Detection” technique (2010)
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A detour by polynomials

P(X ) = a polynomial built on a set X = {x1, x2 . . . xp} of variables

I a monomial m in P(X ) is multilinear if each variable in m
occurs at most once

I degree of a multilinear monomial = number of its variables
I example:

P(X ) = x2
1 x3x5 + x1x2x4x6

I x1x2x4x6: multilinear monomial of degree 4
I x2

1 x3x5: not a multilinear monomial
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A detour by arithmetic circuits

I arithmetic circuit C over a set X of variables = DAG s.t.
I internal nodes are the operations × or +,
I leaves are variables from X

I polynomial P(X )→ arithmetic circuit C over X

I Example: P(X ) = (x1 + x2 + x3)(x3 + x4 + x5)

+

×

+

x1
x2

x3
x4

x5
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Multilinear Detection problem

Problem ISML-k : given an arithmetic circuit C, determine
whether P(X ) contains a multilinear monomial of degree k

Theorem (KOUTIS & WILLIAMS,ICALP 09)

ISML-k is solvable in O∗(2k ) time using polynomial space.

Remarks

I Randomized algorithm
I If C is an arithmetic circuit representing P:

I Running time: poly. factor depends on #arcs of C
I Space: depends on #internal nodes of C
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O∗(2k) algorithm for CGM

Build polynomial as follows:

I variables↔ colors in M
I monomial↔ colors in a k -node subtree of G⇒ multilinear monomial of degree k ↔ colorful k -node subtree

in G

I if circuit size polynomial in k and input size
I then algorithm in O∗(2k ) for CGM
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Polynomial P built from G

P1,u = xχ(u)

Pi ,u =

i−1∑
i ′=1

∑
v∈N(u)

Pi ′,uPi−i ′,v

P =
∑

u∈V (G)

Pk ,u

M

v

u

w

t

(Partial) computation of P3,u (k = 3)
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CGM w.r.t. k : a tight lower bound

Can we do better than O∗(2k ) ?

Theorem (BJÖRKLUND ET AL., ALGORITHMICA 15)

Under SeCoCo∗, COLORFUL GRAPH MOTIF cannot be solved
in O∗((2 − ε)k ) time, ε > 0.

∗SeCoCo = SET COVER Conjecture [CYGAN ET AL., CCC 12]:

if P 6=NP, for any ε > 0, SET COVER cannot be solved in O∗((2 − ε)p) where
p = |U | is the size of the universe

G. Fertin The Graph Motif problem 56/95



CGM w.r.t. k : a tight lower bound

Can we do better than O∗(2k ) ?
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CGM w.r.t. k : a tight lower bound

Reduction
I SET COVER:

I U = {x1, x2 . . . xn}
I S = {S1,S2 . . .Sm}
I integer t

I CGM:
I Graph G

I V (G) = {r } ∪ U ∪ {sj
i : i ∈ [m], j ∈ [t ]}

I r connected to every si
j , xp connected to all si

j s.t. xp ∈ Si

I colors: xi → ci , r → cn+1, sj
i = cn+1+j (i ∈ [m], j ∈ [t ])

I Motif M = {c1, c2 . . . cn+t+1} (thus k = n + t + 1)

O∗((2 − ε)k ) for CGM ⇒ O∗((2 − ε)n+t) for SET COVER
[CYGAN ET AL., CCC 12]:
O∗((2 − ε)n+t) for SET COVER ⇒ O∗((2 − ε ′)n) for SET COVER
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Summary: COLORFUL GRAPH MOTIF w.r.t. k

Complexity Technique Algorithm Space
O∗(64k ) Dyn. Prog. Det. Exp.
O∗(3k ) Dyn. Prog. Det. Exp.
O∗(2k ) Multilinear Det. Random Poly.

no O∗((2 − ε)k )
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CGM is FPT in `

Reminder: ` = n − k (=#nodes not kept in solution)

Theorem (BETZLER ET AL., IEEE/ACM TCBB 11)

CGM is solvable in O∗(2`) time.

Bounded Search Tree
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CGM is FPT in `

Branching Rule: if there exists two vertices u, v s.t.
χ(u) = χ(v), remove either u or v from the graph

u

v
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CGM is FPT in `

Algorithm Analysis

I at least 1 vertex removed at each step
I → height of tree at most `
I 2 choices per step
I → 2` possibilities
I each leaf: colorful graph
I if one such graph is of order k and connected, return YES,

otherwise NO

Can we do better ?
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FPT lower bound for CGM and `

Theorem (F. & KOMUSIEWICZ, CPM’16)

Under SETH∗, CGM cannot be solved in O∗((2 − ε)`) time,
ε > 0.

∗ SETH = Strong Exponential Time Hypothesis [IMPAGLIAZZO ET AL., JCSS 01]:

if P 6=NP, for any ε > 0, CNF-SAT cannot be solved in O∗((2 − ε)p), with
p=number of variables of CNF formula
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FPT lower bound for CGM and `

Reduction from CNF-SAT with ` = p

F = (x ∨ y ∨ z)∧ (y ∨ z)

(x ∨ y ∨ z) (y ∨ z)

x zx zyy
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F = (x ∨ y ∨ z)∧ (y ∨ z)

(x ∨ y ∨ z) (y ∨ z)
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CGM and ` for trees

Theorem (F. & KOMUSIEWICZ, CPM’16)

CGM in trees is solvable in O∗(
√

2
`
) time.
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A kernel for CGM in trees

Kernelization

I Use reduction rules
I Instance (T ,M)→ (T ′,M ′) with same answer YES/NO

I Reduced instance (T ′,M ′) called kernel
I If size of kernel = O(f (`)) then FPT in `

Theorem (F. & KOMUSIEWICZ, CPM’16)

CGM in trees admits a kernel of size 2`+ 1.
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A kernel for CGM in trees

T = the input tree

Definition
A vertex is unique if no other vertex has the same color in T

Observation: at most 2` vertices are not unique in T .

I C+= set of colors occuring more than once in C ; |C+| = c+

I n+ =
∑

c∈C+ µ(T , c) ; n−= # non-unique vertices
I n = n+ + n−

I |M | = c+ + n−

I ` = n − |M |⇒ ` = n+ − c+

I n+ ≥ 2c+ ⇒ ` ≥ n+

2
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A kernel for CGM in trees

I root T at arbitray unique vertex r
I if all vertices non-unique→ ` ≥ n

2 and kernel already exists

Definition

I pendant subtree of root v : contains all descendants of v .
I pendant non-unique subtrees: maximal pendant subtrees

in which no vertex is unique
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A kernel for CGM in trees

r

u v

r r

I Left: input instance w/ pendant non-unique subtrees
I Middle: after Phase I, all vertices on paths between unique

vertices are contracted into r .
I Right: after Phase II, all vertices with a color that was

removed in Phase I are removed together with their
descendants.
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CGM and ` for trees

I Phases I and II: reduction rules
I After application: root r + non-unique vertices only

I by Observation, # non-unique vertices ≤ 2`
I ⇒ new tree with ≤ 2`+ 1 vertices
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Summary: COLORFUL GRAPH MOTIF w.r.t. `

General graphs Trees

O∗(2`) O∗(
√

2
`
)

no O∗((2 − ε)`)

no poly. kernel (2`+ 1)-vertex kernel
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From COLORFUL GRAPH MOTIF to GRAPH MOTIF

I 2 results can be transfered from CGM to GRAPH MOTIF

I Price to pay:
I Increased time complexity (but still exp. in k only)
I Randomized algorithm

I Secret ingredient: the Color-Coding technique
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Color-Coding for GRAPH MOTIF

For a color c in M, occM(c)=#occurrences of c in M

Color Coding: General Idea

I for each color c ∈ C s.t. occM(c) ≥ 2
I create occM(c) new colors
I replace c in M by these colors→ new motif is colorful
I randomly recolor vertices of G with color c with one of new

colors
I colorful motif→ use your favorite CGM algorithm!
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Color-Coding for GRAPH MOTIF

M G
1

2

3

4

5
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Color-Coding for GRAPH MOTIF

Running-time increase

I random coloring: a “good” solution may not be colorful
I may lead to false negatives

I repeat process until probability of success is 1 − ε (ε > 0)
I probability of a good coloring of G: k !

kk ≥ e−k

I needs | ln(ε)|ek iterations (i.e., random colorings of G)

G. Fertin The Graph Motif problem 76/95



From COLORFUL GRAPH MOTIF to GRAPH MOTIF

In a nutshell:

I Fellows et al. 2007: O∗(64k )→ O∗(87k )

I Betzler et al. 2008: O∗(3k )→ O∗(4.32k )
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Adapting MLD to GRAPH MOTIF

O∗(2k ) algorithm by Guillemot & Sikora 2013

I works only for CGM
I if M 6= M∗, solution is not a multilinear monomial
I previous construction needs to be adapted
I introduction of variables for each vertex of G
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Adapting MLD to GRAPH MOTIF

I One variable xu per vertex u of G
I Each color c that appears m times in M → variables

yc,1, yc,2, . . . , yc,m
I Circuit is modified: Pu,1 = xu · (yc,1 + yc,2 + . . .+ yc,m)

I Variables xu → a node of G is used only once
I Variables yj → right #colors required by M

I Solution: multilinear monomial of degree k ′ = 2k (k nodes
+ k colors)

I Complexity O∗(2k ′)→ O∗(4k )
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Adapting MLD to GRAPH MOTIF – Example

M

v

u

w

t

xu(yR,1+yR,2)·xv yY ,1 ·xw (yR,1+yR,2)·xtyB,1+. . .
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Adapting MLD to GRAPH MOTIF – Example

M

v

u

w

t

xu(yR,1+yR,2)·xv yY ,1 ·xw (yR,1+yR,2)·xtyB,1+. . .
= xuyR,1.xv yY ,1.xwyR,1.xtyB,1+
xuyR,1.xv yY ,1.xwyR,2.xtyB,1 + . . .

I solution: a multilinear monomial of degree
2k = 8
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GRAPH MOTIF is FPT in k

Previous results superseded by following theorem

Theorem (BJÖRKLUND, KASKI & KOWALIK, ALGORITHMICA 15)

GRAPH MOTIF is solvable in O∗(2k ) time using polynomial
space.

Remarks

I Randomized
I Constrained Multilinear Detection
I Result independently published in [Pinter, Zehavi - 2016]

G. Fertin The Graph Motif problem 81/95



Summary: GRAPH MOTIF w.r.t. k

Complexity Technique Algorithm Space

O∗(87k ) Dyn. Prog. + Color-Coding Random Exp.
O∗(4.32k ) Dyn. Prog. + Color-Coding Random Exp.
O∗(4k ) Multilinear Det. Random Poly.
O∗(2.54k ) Constrained Multilinear Det. Random Exp.
O∗(2k ) Björklund et al. Constrained Multilinear Det. Random Poly.
no O∗((2 − ε)k )

Note: best deterministic algorithm in O∗(5.22k ) [PINTER ET AL., DAM 16]
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GRAPH MOTIF w.r.t. `: bad news

Theorem (BETZLER ET AL., IEEE/ACM TCBB 11)

GRAPH MOTIF is W[1]-complete when parameterized by `.

Remarks

I reduction from INDEPENDENT SET

I M has only 2 colors
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GRAPH MOTIF is W[1]-complete w.r.t. `

Example

u1 u2

u3 u4
u5

n = 5,m = 5,p = 3
u1

u4

u2

u3
u5

v∗

u1

u4

u2

u3
u5

v∗

M = { n−p ; m+1}
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GRAPH MOTIF w.r.t. ` in trees ?

Theorem (F. & KOMUSIEWICZ, CPM 16)

GRAPH MOTIF is solvable in O∗(4`) time when G is a tree.

→ Dynamic Programming
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Summary: GRAPH MOTIF w.r.t. `

General graphs Trees
W[1]-complete O∗(4`)

no poly. kernel
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GRAPH MOTIF and variants: practical issues

I Motus [LACROIX ET AL., BIOINFORMATICS 06]
I Torque [BRUCKNER, HÜFFNER, KARP, SHAMIR & SHARAN, BRUCKNER ET

AL., J. COMP. BIOL. 10]
I GraMoFoNe [BLIN, SIKORA & VIALETTE, BICOB 10]
I RANGI [RUDI ET AL., IEEE ACM/TCBB 13].
I SIMBio [RUBERT ET AL., BIBE 15]
I CeFunMo [KOUHSAR ET AL., COMPUTERS IN BIOLOGY AND MEDICINE 16]
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A focus on GraMoFoNe

I cytoscape plugin (open-source java platform, popular in
bioinfo)

I supports queries up to 20–25 proteins
I colorful and multiset motifs
I can report all solutions
I deals with approx. solutions (insertions, deletions)
I also deals list-coloring
I technique: Pseudo-Boolean programming
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Querying biological networks

Example

I Query: Mouse DNA synthesome complex (13 proteins)
I Target: Yeast network (∼ 5 300 proteins, ∼ 40 000

interactions)
I Output: match consists of 12 proteins with 2 insertions

and 3 deletions
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About GRAPH MOTIF

Quick Summary

I Biologically motivated problem (also applies in other
contexts)

I Very large literature (∼140 citations in 10 years)
I Survey ? Work in progress! (with J. Fradin, G. Jean and F.

Sikora)
I Multiple improvements over the time (see parameter k )
I Recent, sometimes involved techniques

I SeCoCo (2012)
I MLD (2010) and constrained versions
I mixed techniques

I Many variants
I Several software
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Open Questions ?

I Yes and no!
I Yes: many questions, many variants
I No(t so much) if (COLORFUL) GRAPH MOTIF general case

and parameter k ...
I ...unless you require deterministic algorithms! → beat

current-best solutions
I Yes:

I further study parameter `
I specific case of trees + inquire about treewidth
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A larger view 1/2

From Biology to Computer Science

I Biologically motivated problems become more “interesting”
I discrete data structures
I more and more “complicated” graphs (e.g. metagenomics)
I more and more complicated structures (e.g. sequences

with intergene sizes)
I → more and more intricate (thus interesting) problems

I FPT well-adapted
I together with data reduction rules (complexity often

collapses on real data)
I allows to “advertise”new FPT techniques
I sometimes initiate new techniques
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A larger view 2/2

From Computer Science to Bioinfo

I FPT + data reduction rules should be advertised and used
I see the different GRAPH MOTIF software
I how can we convince potential users?
I e.g. why relatively fast exact rather than very fast heuristic?

Thank you for your attention
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