The GRAPH MOTIF problem

Guillaume Fertin

LS2N, Université de Nantes, France

March 2017

Some slides in this talk are courtesy:

- C. Komusiewicz, FS U. Jena
- F. Sikora U. Paris Dauphine

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif

Colorful Graph Motif and parameter *k* Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif

Graph Motif and parameter k Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion

Motif Search in Texts

- Goal: search all occurrences of a motif in a text.
 - ightharpoonup T = text, of length n
 - ► *M* = motif, of length *m*
 - M and T built on some alphabet Σ
 - ▶ typical use: m << n</p>

Motif Search in Texts

- Goal: search all occurrences of a motif in a text.
 - ► T = text, of length n
 - ► *M* = motif, of length *m*
 - M and T built on some alphabet Σ
 - ▶ typical use: m << n</p>
- Applications:
 - search for a word in a text editor [ctrl-f] ($|\Sigma| \sim 60 70$)
 - ▶ bioinformatics: DNA ($|\Sigma| = 4$), proteins ($|\Sigma| = 20$)

Motif Search in Texts

- Goal: search all occurrences of a motif in a text.
 - ightharpoonup T = text, of length n
 - ► *M* = motif, of length *m*
 - M and T built on some alphabet Σ
 - ▶ typical use: m << n</p>
- Applications:
 - search for a word in a text editor [ctrl-f] ($|\Sigma| \sim 60 70$)
 - ▶ bioinformatics: DNA ($|\Sigma| = 4$), proteins ($|\Sigma| = 20$)
- Algorithmics:
 - clearly polynomial (naive search w/ sliding window is in O(mn))
 - nice algorithms back from the 70s (KMP, Boyer-Moore, etc.)
 - ▶ see also e.g.

```
http://www-igm.univ-mlv.fr/~lecroq/string/string.pdf
```

Recess 1

Analysis of Algorithms

- Analysis of an algorithm, say A
- Running time of A ≃ number of "elementary operations" executed by A

Recess 1

Analysis of Algorithms

- Analysis of an algorithm, say A
- Running time of A ≃ number of "elementary operations" executed by A
- Elementary operation:
 - ► arithmetic operation (+,-,/,*), memory access, assignment, comparison
 - unit cost assumed for each

Recess 1

Analysis of Algorithms

- Analysis of an algorithm, say A
- Running time of A ≃ number of "elementary operations" executed by A
- Elementary operation:
 - ▶ arithmetic operation (+,-,/,*), memory access, assignment, comparison
 - unit cost assumed for each
- ► Running time = f(n), function of input size n of the instance

O() notation

► Goal: simplify $f(n) \rightarrow g(n)$

O() notation

- ▶ Goal: simplify $f(n) \rightarrow g(n)$
- ► f(n) = O(g(n)) if $\exists c > 0, n_0 \text{ s.t. } f(n) \le c \cdot g(n) \ \forall n \ge n_0$
- ▶ \rightarrow g() is an upper bound for f()

O() notation

- ▶ Goal: simplify $f(n) \rightarrow g(n)$
- ► f(n) = O(g(n)) if $\exists c > 0, n_0 \text{ s.t. } f(n) \le c \cdot g(n) \ \forall n \ge n_0$
- ▶ \rightarrow g() is an upper bound for f()
- ▶ Roughly: take f(n), keep dominant term, remove multiplicative constant
- Example:
 - $f(n) = 7n^2 + 3n \log n + 12\sqrt{n} 7$
 - $f(n) = O(n^2)$

O() notation

- ▶ Goal: simplify $f(n) \rightarrow g(n)$
- ► f(n) = O(g(n)) if $\exists c > 0, n_0 \text{ s.t. } f(n) \le c \cdot g(n) \ \forall n \ge n_0$
- ▶ \rightarrow g() is an upper bound for f()
- ▶ Roughly: take f(n), keep dominant term, remove multiplicative constant
- Example:
 - $f(n) = 7n^2 + 3n \log n + 12\sqrt{n} 7$
 - $f(n) = O(n^2)$
- ► O() used for worst-case analysis robustness of algorithm

Motif search - naive algorithm (sliding window)

Motif search - naive algorithm (sliding window)

- each line (individually): constant number of elementary operations
- ► Lines 3. and 4. most costly: executed at worse m(n-m) times
- f(n) = O(m(n-m)) = O(nm)

- species: yeast
- ▶ vertices ↔ proteins (~ 3 500)
- ▶ edges ↔ interactions (~ 11 000)

- species: yeast
- ▶ vertices ↔ proteins (~ 3 500)
- ▶ edges ↔ interactions (~ 11 000)

Goal: search one/all occurrence/s of a small graph *H* in a big graph *G*.

- ▶ G = target graph
- ► *H* = query graph (motif)
- ▶ typical use: |V(H)| << |V(G)|</p>

Goal: search one/all occurrence/s of a small graph H in a big graph G.

- ▶ G = target graph
- ► *H* = query graph (motif)
- ▶ typical use: |V(H)| << |V(G)|</p>

Remarks

- ► *H* : biologically known pathway or a complex of interest
- ▶ occurrence = induced subgraph of G isomorphic to H
- ▶ → topology-based approach

Towards topology-free motifs

Two views for Motif Search in Graphs

- ▶ Topological view:
 - find a small graph in a big graph
 - ▶ ⇒ subgraph isomorphism problems

Towards topology-free motifs

Two views for Motif Search in Graphs

- Topological view:
 - find a small graph in a big graph
 - ▶ ⇒ subgraph isomorphism problems
- Functional view:
 - ► topology is less important
 - ► functionalities of network vertices → governing principle
 - ► initiated in Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06

Topology-free motifs

Applicable in broader scenarios

- motif (pathway or complex) whose topology is not completely known
- noisy networks (missing connections)
- query between well and poorly annotated species

Functional approach

Model

- ▶ function ↔ color
- ▶ ⇒ graph is vertex-colored (but not properly!)

Functional approach

Model

- ▶ function ↔ color
- → graph is vertex-colored (but not properly!)
- motif (query): multiset of colors

Functional approach

Model

- ▶ function ↔ color
- ▶ ⇒ graph is vertex-colored (but not properly!)
- ► motif (query): multiset of colors
- motif occurs (and thus "accepted") if connected in graph

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06) **Input:** A graph G = (V, E), a set of colors C, a coloring function $\chi: V \to C$, a motif* M over C

^{*} motif = multiset of colors whose underlying set is C.

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06) **Input:** A graph G = (V, E), a set of colors C, a coloring function $\chi: V \to C$, a motif* M over C

Question: Is there an occurrence of *M* in *G*?

^{*} motif = multiset of colors whose underlying set is C.

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06) **Input:** A graph G = (V, E), a set of colors C, a coloring function $\chi: V \to C$, a motif* M over C

Question: Is there an occurrence of *M* in *G*?

Occurrence = subset $V' \subseteq V$ s.t.

- ▶ $\chi(V') = M$, and
- ▶ G[V'] is connected

^{*} motif = multiset of colors whose underlying set is C.

Definition (GRAPH MOTIF – LACROIX ET AL., IEEE/ACM TCBB 06) **Input:** A graph G = (V, E), a set of colors C, a coloring function $\chi: V \to C$, a motif* M over C

Question: Is there an occurrence of *M* in *G*?

Occurrence = subset $V' \subseteq V$ s.t.

- $\blacktriangleright \chi(V') = M$, and
- ▶ G[V'] is connected

Note: if $\chi: V \to C'$ with $C \subseteq C'$, pre-process G by deleting vertices $u \in V(G)$ s.t. $\chi(u) \notin C$

^{*} motif = multiset of colors whose underlying set is C.

Example

Example

Example

Applications

- ► metabolic networks analysis [Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06]
- ► PPI networks analysis [BRUCKNER ET AL., J. COMP. BIOL. 10]

Applications

- ► metabolic networks analysis [Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06]
- ► PPI networks analysis [BRUCKNER ET AL., J. COMP. BIOL. 10]
- ► mass spectrometry (identification of metabolites) [BÖCKER & RASCHE, BIOINFORMATICS 08]

Applications

- ► metabolic networks analysis [Lacroix, Fernandes & Sagot, IEEE/ACM TCBB 06]
- ► PPI networks analysis [BRUCKNER ET AL., J. COMP. BIOL. 10]
- ► mass spectrometry (identification of metabolites) [BÖCKER & RASCHE, BIOINFORMATICS 08]
- ► also study of social networks [PINTER-WOLLMAN ET AL., BEHAVIORAL ECOLOGY 14]

A well-studied problem

► GRAPH MOTIF widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)

A well-studied problem

- ▶ GRAPH MOTIF widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)
- Many variants (...too many ?), e.g.:
 - approximate motif
 - connectivity of an occurrence
 - list-colored vertices

GRAPH MOTIF

A well-studied problem

- ▶ GRAPH MOTIF widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)
- Many variants (...too many ?), e.g.:
 - approximate motif
 - connectivity of an occurrence
 - list-colored vertices
- ► Several software (a handful): Motus, Torque, GraMoFoNe, PINQ, etc.

GRAPH MOTIF

A well-studied problem

- ▶ GRAPH MOTIF widely studied: ~150 citations for seminal paper in 11 years (source: Google Scholar)
- Many variants (...too many ?), e.g.:
 - approximate motif
 - connectivity of an occurrence
 - list-colored vertices
- Several software (a handful): Motus, Torque, GraMoFoNe, PINQ, etc.

This talk

- ► Algorithmic results for GRAPH MOTIF: a guided tour
- Multiplicity of proof techniques: classical, ad hoc, imported from other contexts

Some notations

- ► *M** = underlying set of *M*
- ► M is colorful if $M^* = M$

Some notations

- ► M* = underlying set of M
- ► M is colorful if $M^* = M$
- COLORFUL GRAPH MOTIF (or CGM): restriction of GRAPH MOTIF to colorful motifs

Some notations

- ► M* = underlying set of M
- ► M is colorful if $M^* = M$
- ► COLORFUL GRAPH MOTIF (or CGM): restriction of GRAPH MOTIF to colorful motifs
- $\mu(G, c)$ = number of vertices having color c in G
- $\blacktriangleright \ \mu(\textit{\textbf{G}}) = \max\{\mu(\textit{\textbf{G}},\textit{\textbf{c}}): \textit{\textbf{c}} \in \textit{\textbf{C}}\}$

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif

Colorful Graph Motif and parameter k Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif

Graph Motif and parameter *k* Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06)

GRAPH MOTIF is NP-complete even if G is a tree.

Did you say **NP**-complete ?

Algorithmic complexity of Problems

► *Pb*=a problem, *n*=size of the input

Did you say **NP**-complete ?

Algorithmic complexity of Problems

- ► *Pb*=a problem, *n*=size of the input
- ▶ Pb is tractable if solvable in $O(n^c)$ (c=constant) $\Rightarrow Pb \in P$

Did you say **NP**-complete ?

Algorithmic complexity of Problems

- ► *Pb*=a problem, *n*=size of the input
- ▶ *Pb* is tractable if solvable in $O(n^c)$ (*c*=constant) $\Rightarrow Pb \in \mathbf{P}$
- ▶ Pb is intractable if no $O(n^c)$ algo. exists for solving it $\Rightarrow Pb \notin \mathbf{P}$

Did you say **NP**-complete ?

Algorithmic complexity of Problems

- ► *Pb*=a problem, *n*=size of the input
- ▶ *Pb* is tractable if solvable in $O(n^c)$ (*c*=constant) $\Rightarrow Pb \in \mathbf{P}$
- ▶ Pb is intractable if no $O(n^c)$ algo. exists for solving it $\Rightarrow Pb \notin \mathbf{P}$
- very often: we do not know

Very often:

- ▶ cannot prove $Pb \in \mathbf{P}$
- cannot prove Pb ∉ P

Very often:

- cannot prove Pb ∈ P
- cannot prove Pb ∉ P

Meanwhile...

New class: NP-complete

- Idea: identify the most difficult such problems
- ► *Pb* is **NP**-complete if reduction from another **NP**-complete problem applies

Very often:

- cannot prove Pb ∈ P
- cannot prove Pb ∉ P

Meanwhile...

New class: NP-complete

- Idea: identify the most difficult such problems
- ► *Pb* is **NP**-complete if reduction from another **NP**-complete problem applies
- In this talk I will deliberately not discuss NP-hard vs NP-complete

Reduction - Principle

- ► Two problems: Pb and Pb'
- ► Pb and Pb' are decision problems (answer: YES/NO)
- ▶ Pb' is known to be NP-complete

Reduction – Principle

- ► Two problems: Pb and Pb'
- ▶ Pb and Pb' are decision problems (answer: YES/NO)
- ▶ *Pb'* is known to be **NP**-complete
- ► For any instance I' of Pb'

Reduction - Principle

- ► Two problems: Pb and Pb'
- ▶ Pb and Pb' are decision problems (answer: YES/NO)
- ▶ *Pb'* is known to be **NP**-complete
- ► For any instance I' of Pb'
- ▶ build in polynomial time a specific instance I of Pb

Reduction - Principle

- ► Two problems: Pb and Pb'
- ▶ Pb and Pb' are decision problems (answer: YES/NO)
- ▶ *Pb'* is known to be **NP**-complete
- ► For any instance I' of Pb'
- build in polynomial time a specific instance I of Pb
- ▶ YES for $I \Leftrightarrow$ YES for I'

Meaning of all this

► If reduction applies, Pb is at least as hard as Pb'

Meaning of all this

- ▶ If reduction applies, Pb is at least as hard as Pb'
- ▶ $Pb \in \mathbf{P} \Rightarrow Pb' \in \mathbf{P}$ (using reduction)

Meaning of all this

- ▶ If reduction applies, Pb is at least as hard as Pb'
- ▶ $Pb \in \mathbf{P} \Rightarrow Pb' \in \mathbf{P}$ (using reduction)
- ► ⇒ **NP**-complete = class of hardest such problems
- problems in NP-complete thought not to be polynomial-time solvable
- ▶ but remains unknown (cf "P = NP?")

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06)

GRAPH MOTIF is NP-complete even if G is a tree.

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06)

GRAPH MOTIF is NP-complete even if G is a tree.

► Reduction from EXACT COVER BY 3-SETS

Theorem (LACROIX ET AL., IEEE/ACM TCBB 06)

GRAPH MOTIF is NP-complete even if G is a tree.

- ▶ Reduction from EXACT COVER BY 3-SETS
- ► Proof does not hold for COLORFUL GRAPH MOTIF
- ▶ Is Colorful Graph Motif any "simpler" ?

GRAPH MOTIF: bad news

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) COLORFUL GRAPH MOTIF is NP-complete even when:

- G is a tree and
- G has maximum degree 3 and
- ▶ $\mu(G) = 3$

- Boolean formula Φ
 - ▶ set $X = \{x_1, x_2 ... x_n\}$ of boolean variables
 - ightharpoonup clauses $c_1, c_2 \dots c_m$, each c_i built from X

- Boolean formula Φ
 - set $X = \{x_1, x_2 \dots x_n\}$ of boolean variables
 - ▶ clauses $c_1, c_2 ... c_m$, each c_i built from X
- Conjunctive Normal Form (CNF):
 - each clause c_i contains only logical OR (\vee)
 - ▶ Ф contains clauses connected by logical AND only (△)

- Boolean formula Φ
 - set $X = \{x_1, x_2 \dots x_n\}$ of boolean variables
 - ▶ clauses $c_1, c_2 \dots c_m$, each c_i built from X
- Conjunctive Normal Form (CNF):
 - each clause c_i contains only logical OR (\vee)
 - Φ contains clauses connected by logical AND only (\land)
- Example:

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$$

A detour by SAT

▶ variable: x_i

▶ literal: x_i or $\overline{x_i}$

- ▶ variable: x_i
- ▶ literal: x_i or $\overline{x_i}$
- $\bullet \ \Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$

- ▶ variable: x_i
- ▶ literal: x_i or $\overline{x_i}$
- $\bullet \ \Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$
- ► Goal: satisfy Φ
 - assign TRUE/FALSE to each x_i
 - s.t. Φ evaluates to TRUE, i.e.
 - each clause evaluates to TRUE
 - ▶ in each clause, at least one literal evaluates to TRUE

Definition (SAT)

Input: a boolean formula Φ in CNF, built on $X = \{x_1, x_2 \dots x_n\}$. **Question:** Is there an assignment TRUE/FALSE of each x_i s.t.

 Φ is satisfied ?

Definition (SAT)

Input: a boolean formula Φ in CNF, built on $X = \{x_1, x_2 \dots x_n\}$. **Question:** Is there an assignment TRUE/FALSE of each x_i s.t. Φ is satisfied ?

► SAT is **NP**-complete (classical result)

3-SAT-x

Many constrained versions of SAT are NP-complete, e.g.:

- ▶ each clause of Φ contains at most 3 literals, and
- each variable appears in at most 3 clauses, and
- each literal appears in at most 2 clauses

3-SAT-x

Many constrained versions of SAT are NP-complete, e.g.:

- ▶ each clause of Φ contains at most 3 literals, and
- each variable appears in at most 3 clauses, and
- each literal appears in at most 2 clauses

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$$

variable x_3 , literal $\overline{x_3}$

From any instance of 3-SAT-x to an instance of CGM

- from $\Phi = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor \overline{x_3})$
- construct graph G as above
- $M = \{1, 2 ... n, 1', 2 ... n', x_1, x_2 ... x_n, c_1, c_2 ... c_m\}$

Reduction from 3-SAT-x to CGM

From any instance of 3-SAT-x to an instance of CGM

- ► G is a tree of maximum degree 3 (literal appears in ≥ 2 clauses)
- $\mu(G) = 3$ (clause contains ≤ 3 literals)
- ► *M* is colorful

Reduction from 3-SAT-x to CGM

From any instance of 3-SAT-x to an instance of CGM

- ► G is a tree of maximum degree 3 (literal appears in ≥ 2 clauses)
- $\mu(G) = 3$ (clause contains ≤ 3 literals)
- ► M is colorful

Equivalence YES/No answer

- \blacktriangleright (\Rightarrow) Pick color x_i corresponding to assignment
- ▶ (\Leftarrow) Pick vertices x_i and c_j corresponding to occurrence of motif

GRAPH MOTIF: bad news

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) COLORFUL GRAPH MOTIF is NP-complete even when:

- G is a tree and
- G has maximum degree 3 and
- ▶ $\mu(G) = 3$

GRAPH MOTIF: bad news

Theorem (FELLOWS, F., HERMELIN & VIALETTE, J. COMPUT. SYST. SCI. 07)
COLORFUL GRAPH MOTIF is NP-complete even when:

- G is a tree and
- ► G has maximum degree 3 and
- ▶ $\mu(G) = 3$
- ▶ Restrictions on G and $\mu(G) \rightarrow \mathbf{NP}$ -complete
- ▶ What if M uses few colors ?

GRAPH MOTIF: more bad news

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) GRAPH MOTIF is NP-complete even when:

- G is bipartite and
- ► G has maximum degree 4 and
- ► |*M**| = 2
- ► Reduction from EXACT COVER BY 3-SETS

GRAPH MOTIF: any polynomial case... please?

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) GRAPH MOTIF is in P whenever G is a tree and $\mu(G) = 2$.

$$(x_4 \Rightarrow \overline{x_5})$$

$$(\overline{x_3} \Rightarrow x_1) \land (x_5 \Rightarrow x_1) \land (x_3 \Rightarrow \overline{x_2}) \land (x_2 \Rightarrow \overline{x_1}) \land \dots$$

2-SAT formula as $(A \Rightarrow B) \Leftrightarrow (\overline{B} \lor A)$

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif

Colorful Graph Motif and parameter k Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif

Graph Motif and parameter *k* Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion

Remarks

motifs tend to be small in practice (compared to the target graph)

Remarks

- motifs tend to be small in practice (compared to the target graph)
- ightharpoonup Question 1: algorithm whose running time is
 - ▶ polynomial in n = |V(G)| and
 - exponential in k = |M|?

Remarks

- motifs tend to be small in practice (compared to the target graph)
- ightharpoonup Question 1: algorithm whose running time is
 - ▶ polynomial in n = |V(G)| and
 - exponential in k = |M|?
- ► → Question 2: algorithm whose running time is
 - ▶ polynomial in n = |V(G)| and
 - exponential in $c = |M^*|$?

Remarks

- motifs tend to be small in practice (compared to the target graph)
- ightharpoonup Question 1: algorithm whose running time is
 - ▶ polynomial in n = |V(G)| and
 - exponential in k = |M|?
- ► → Question 2: algorithm whose running time is
 - ▶ polynomial in n = |V(G)| and
 - exponential in $c = |M^*|$?
- ► Fixed Parameterized Tractability (FPT) issues

Definition (Fixed-parameter tractability)

A problem P is fixed-parameter tractable (FPT) w.r.t. parameter k if it can be solved in time

$$O(f(k) \cdot poly(n))$$

- ► f: any computable function depending only on k
- n: size of the input
- ▶ poly(n): any polynomial function of n

Definition (Fixed-parameter tractability)

A problem *P* is fixed-parameter tractable (FPT) w.r.t. parameter *k* if it can be solved in time

$$O(f(k) \cdot poly(n))$$

- ► f: any computable function depending only on k
- n: size of the input
- ▶ poly(n): any polynomial function of n
- ightharpoonup complexity also noted $O^*(f(k))$ (hidden polynomial factor)
- ➤ → corresponding complexity class: FPT

Definition (Parameterized hierarchy)

 $\mathsf{FPT} \subseteq \mathsf{W[1]} \subseteq \mathsf{W[2]} \subseteq \ldots \subseteq \mathsf{XP}$

Definition (Parameterized hierarchy)

$$\mathsf{FPT} \subseteq \mathsf{W[1]} \subseteq \mathsf{W[2]} \subseteq \ldots \subseteq \mathsf{XP}$$

In a nutshell

► FPT problems: (hopefully) efficiently solvable for small values of parameter

Definition (Parameterized hierarchy)

$$\mathsf{FPT} \subseteq \mathsf{W[1]} \subseteq \mathsf{W[2]} \subseteq \ldots \subseteq \mathsf{XP}$$

In a nutshell

- ► FPT problems: (hopefully) efficiently solvable for small values of parameter
- ► W[1]: first class of problems not believed to be in FPT
- ▶ W[1]-complete vs $FPT \leftrightarrow NP$ -complete vs P

FPT: an ever-growing topic

Monographs

- R.G. Downey, M. R. Fellows Parameterized Complexity Springer-Verlag, 1999.
- H. Fernau Parameterized Algorithmics: A Graph-Theoretic Approach. 2005. Free download at
- http://www.informatik.uni-trier.de/~fernau/papers/habil.pdf
- J. Flum and M. Grohe. Parameterized Complexity Theory Springer-Verlag, 2006.
- R. Niedermeier Invitation to Fixed-Parameter Algorithms Oxford University Press, 2006.
- R.G. Downey, M. R. Fellows Fundamentals of Parameterized Complexity – Springer-Verlag, 2013.
- M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
 M. Pilipczuk, S. Saurabh Parameterized Algorithms Springer-Verlag,
 2015.

FPT: an ever-growing topic

Monographs

- R.G. Downey, M. R. Fellows Parameterized Complexity Springer-Verlag, 1999.
- ► H. Fernau Parameterized Algorithmics: A Graph-Theoretic Approach. 2005. Free download at

http://www.informatik.uni-trier.de/~fernau/papers/habil.pdf

- J. Flum and M. Grohe. Parameterized Complexity Theory Springer-Verlag, 2006.
- R. Niedermeier Invitation to Fixed-Parameter Algorithms Oxford University Press, 2006.
- R.G. Downey, M. R. Fellows Fundamentals of Parameterized Complexity – Springer-Verlag, 2013.
- M. Cygan, F. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
 M. Pilipczuk, S. Saurabh Parameterized Algorithms Springer-Verlag,
 2015.
- Dedicated website http://fpt.wikidot.com/

 Dynamic Programming (table size and computation exponential in paramater only)

- Dynamic Programming (table size and computation exponential in paramater only)
- ▶ Bounded Search Tree: test all possible cases, show there are O(f(k)) such cases

- Dynamic Programming (table size and computation exponential in paramater only)
- ► Bounded Search Tree: test all possible cases, show there are *O*(*f*(*k*) such cases
- ► Kernelization: $(I, k) \rightarrow (I', k')$ with same solution, I' solvable in $O(f(k) \cdot poly(n))$
- Iterative Compression

- Dynamic Programming (table size and computation exponential in paramater only)
- ► Bounded Search Tree: test all possible cases, show there are *O*(*f*(*k*) such cases
- ► Kernelization: $(I, k) \rightarrow (I', k')$ with same solution, I' solvable in $O(f(k) \cdot poly(n))$
- Iterative Compression
- Color-Coding
- etc.

GRAPH MOTIF and FPT: which parameters?

The choice is yours

- ► Size of the motif k = |M| = solution size
 - $\rightarrow \text{classical parameter}$

GRAPH MOTIF and FPT: which parameters?

The choice is yours

- ► Size of the motif k = |M| = solution size \rightarrow classical parameter
- Number of colors of the motif $c = |M^*|$ Remark: $c \le k$ (k = c for COLORFUL GRAPH MOTIF) thus "stronger" than k

GRAPH MOTIF and FPT: which parameters?

The choice is yours

- ► Size of the motif k = |M| = solution size \rightarrow classical parameter
- Number of colors of the motif $c = |M^*|$ Remark: $c \le k$ (k = c for COLORFUL GRAPH MOTIF) thus "stronger" than k
- ▶ Dual parameter $\ell = n k$ (with n = |V(G)|)
 Dual = number of vertices *not* in the solution

Did you say dual?

Dual parameter $\ell = n - k$ is probably large... but:

- ▶ Reduction rules \rightarrow smaller components in which $\ell \sim k$
- Worst case running time vs experimental running time
- ► Current-best algorithms for some subgraph mining problems use ℓ (HARTUNG ET AL., JGAA 15)

Reminder: $c = |M^*|$ =#colors in M

Reminder: $c = |M^*| = \# colors in M$

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) GRAPH MOTIF is **W[1]**-complete when parameterized by c, even in trees.

Reminder: $c = |M^*| = \# colors in M$

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) GRAPH MOTIF is **W[1]**-complete when parameterized by c, even in trees.

► Reduction from CLIQUE

Reminder: $c = |M^*|$ =#colors in M

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) GRAPH MOTIF is **W[1]**-complete when parameterized by c, even in trees.

- ► Reduction from CLIQUE
- ightharpoonup \Rightarrow c can be discarded for GRAPH MOTIF
- ▶ In proof of theorem, motif *M* is not colorful
- ▶ ... but in Colorful Graph Motif: c = k
- ightharpoonup
 ightharpoonup c useless for Colorful Graph Motif

GRAPH MOTIF and CGM: FPT issues

Rest of the talk

- ▶ We are left with k and ℓ
- ► First Colorful Graph Motif (or CGM)
- ▶ Then GRAPH MOTIF

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif
Colorful Graph Motif and parameter kColorful Graph Motif and parameter ℓ

FPT issues for Graph Motif
Graph Motif and parameter k
Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) COLORFUL GRAPH MOTIF is solvable in $O^*(64^k)$ time.

Colorful Graph Motif is FPT in k = |M|

Theorem (Fellows, F., Hermelin & Vialette, J. Comput. Syst. Sci. 07) COLORFUL GRAPH MOTIF is solvable in $O^*(64^k)$ time.

Remarks

- Deterministic (Dynamic Programming)
- Exponential space
- Proof of concept!

Theorem (Betzler et al., CPM 08)

COLORFUL GRAPH MOTIF is solvable in O*(3^k) time.

Remarks

- Simpler (and faster) version of previous result
- Deterministic (Dynamic Programming)
- ► Exponential space $O^*(2^k)$
- ► Adapted from [SCOTT ET AL., J. COMP. BIOL. 06]

Key elements of Dynamic programming algorithm

- ▶ Boolean table B(v, S) with
 - ▶ v a vertex of G
 - ► S a subset of M
- ▶ B(v, S)=TRUE if there is in G a colorful subtree T
 - ▶ v is the root of T
 - colors of T "agree" with S

Key elements of Dynamic programming algorithm

For any
$$S$$
 s.t. $|S|=1$
$$B(v,S) = \begin{cases} \mathsf{TRUE} & \text{if } S = \{\chi(v)\} \\ \mathsf{FALSE} & \text{otherwise} \end{cases}$$

$$B(v,S) = \bigvee_{\substack{u \in N(v) \\ S_1 \uplus S_2 = S \\ \chi(v) \in S_1, \chi(u) \in S_2}} B(v,S_1) \wedge B(u,S_2)$$

 $O^*(3^k) \rightarrow \text{all } 3\text{-partitions of a set of size } k$

Theorem (Guillemot & Sikora, Algorithmica 13)

COLORFUL GRAPH MOTIF is solvable in $O^*(2^k)$ time.

Remarks

- Randomized
- Polynomial space
- ▶ Uses the "Multilinear Detection" technique (2010)

A detour by polynomials

P(X) = a polynomial built on a set $X = \{x_1, x_2 \dots x_p\}$ of variables

- a monomial m in P(X) is multilinear if each variable in m occurs at most once
- degree of a multilinear monomial = number of its variables
- example:

$$P(X) = x_1^2 x_3 x_5 + x_1 x_2 x_4 x_6$$

- ► X₁ X₂ X₄ X₆: multilinear monomial of degree 4
- $\rightarrow x_1^2 x_3 x_5$: not a multilinear monomial

A detour by arithmetic circuits

- ▶ arithmetic circuit C over a set X of variables = DAG s.t.
 - ▶ internal nodes are the operations × or +,
 - ▶ leaves are variables from X
- ▶ polynomial P(X) → arithmetic circuit C over X

A detour by arithmetic circuits

- ▶ arithmetic circuit C over a set X of variables = DAG s.t.
 - ▶ internal nodes are the operations × or +,
 - leaves are variables from X
- ▶ polynomial P(X) → arithmetic circuit C over X
- ► Example: $P(X) = (x_1 + x_2 + x_3)(x_3 + x_4 + x_5)$

Multilinear Detection problem

<u>Problem IsML-k</u>: given an arithmetic circuit C, determine whether P(X) contains a multilinear monomial of degree k

Theorem (Koutis & Williams, ICALP 09)

ISML-k is solvable in $O^*(2^k)$ time using polynomial space.

Multilinear Detection problem

<u>Problem IsML-k</u>: given an arithmetic circuit C, determine whether P(X) contains a multilinear monomial of degree k

Theorem (Koutis & Williams, ICALP 09)
ISML-k is solvable in $O^*(2^k)$ time using polynomial space.

Remarks

- Randomized algorithm
- ▶ If C is an arithmetic circuit representing P:
 - ▶ Running time: poly. factor depends on #arcs of C
 - ► Space: depends on #internal nodes of C

$O^*(2^k)$ algorithm for CGM

Build polynomial as follows:

- ▶ variables ↔ colors in M
- ▶ monomial \leftrightarrow colors in a k-node subtree of G

 \Rightarrow multilinear monomial of degree $k \leftrightarrow$ colorful k-node subtree in G

$O^*(2^k)$ algorithm for CGM

Build polynomial as follows:

- ▶ variables ↔ colors in M
- ▶ monomial \leftrightarrow colors in a k-node subtree of G
- \Rightarrow multilinear monomial of degree $k \leftrightarrow$ colorful k-node subtree in G
 - ▶ if circuit size polynomial in k and input size
 - ▶ then algorithm in O*(2^k) for CGM

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of $P_{3,u}$ (k=3)

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of $P_{3,u}$ (k = 3) $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of $P_{3,u}$ (k = 3) $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$ $= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of $P_{3,u}$ (k = 3) $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$ $= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$ $= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \dots$

$$P_{1,u} = x_{\chi(u)}$$
 $P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$
 $P = \sum_{u \in V(G)} P_{k,u}$

(Partial) computation of $P_{3,u}$ (k = 3) $P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$ $= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$ $= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \dots$ $= x_R \cdot (x_Y \cdot (x_R + x_R + x_R) + P_{2,w}) + \dots$

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of $P_{3,u}$ (k=3)

$$P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$$

$$= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$$

$$= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \dots$$

$$= x_R \cdot (x_Y \cdot (x_R + x_R + x_B) + P_{2,w}) + \dots$$

$$= x_R \cdot (x_Y \cdot x_R + x_Y \cdot x_R + x_Y \cdot x_B + P_{2,w}) + \dots$$

$$P_{1,u} = x_{\chi(u)}$$

$$P_{i,u} = \sum_{i'=1}^{i-1} \sum_{v \in N(u)} P_{i',u} P_{i-i',v}$$

$$P = \sum_{i'=1}^{i} P_{i',u} P_{i-i',v}$$

$$P = \sum_{u \in V(G)} P_{k,u}$$

(Partial) computation of $P_{3,u}$ (k=3)

$$P_{3,u} = P_{1,u} \cdot (P_{2,v} + P_{2,w}) + \dots$$

$$= x_R \cdot (P_{2,v} + P_{2,w}) + \dots$$

$$= x_R \cdot (x_Y \cdot (P_{1,u} + P_{1,w} + P_{1,t}) + P_{2,w}) + \dots$$

$$= x_R \cdot (x_Y \cdot (x_R + x_R + x_B) + P_{2,w}) + \dots$$

$$= x_R \cdot (x_Y \cdot x_R + x_Y \cdot x_R + x_Y \cdot x_B + P_{2,w}) + \dots$$

$$= X_B X_Y X_B + X_B X_Y X_B + X_B X_Y X_B + \dots$$

Can we do better than $O^*(2^k)$?

Can we do better than $O^*(2^k)$?

Theorem (Björklund et al., Algorithmica 15)

Under SeCoCo*, Colorful Graph Motif cannot be solved in $O^*((2-\epsilon)^k)$ time, $\epsilon>0$.

if $\mathbf{P} \neq \mathbf{NP}$, for any $\epsilon > 0$, SET COVER cannot be solved in $O^*((2-\epsilon)^p)$ where p = |U| is the size of the universe

^{*}SeCoCo = SET COVER Conjecture [CYGAN ET AL., CCC 12]:

Reduction

- SET COVER:
 - $V = \{x_1, x_2 \dots x_n\}$
 - ▶ $S = \{S_1, S_2 ... S_m\}$
 - ▶ integer *t*

Reduction

- SET COVER:
 - $V = \{x_1, x_2 \dots x_n\}$
 - $\blacktriangleright \ \mathcal{S} = \{S_1, S_2 \dots S_m\}$
 - ▶ integer t
- ► CGM:
 - Graph G
 - ► $V(G) = \{r\} \cup U \cup \{s_i^j : i \in [m], j \in [t]\}$
 - ▶ r connected to every s_i^i , x_p connected to all s_i^i s.t. $x_p \in S_i$
 - ▶ colors: $x_i \to c_i, r \to c_{n+1}, s_i^j = c_{n+1+j} (i \in [m], j \in [t])$
 - ► Motif $M = \{c_1, c_2 \dots c_{n+t+1}\}$ (thus k = n + t + 1)

 $O^*((2-\epsilon)^k)$ for CGM $\Rightarrow O^*((2-\epsilon)^{n+t})$ for SET COVER [CYGAN ET AL., CCC 12]:

 $O^*((2-\epsilon)^{n+t})$ for Set Cover $\Rightarrow O^*((2-\epsilon')^n)$ for Set Cover

Summary: Colorful Graph Motif w.r.t. k

Complexity	Technique	Algorithm	Space
$O^*(64^k)$	Dyn. Prog.	Det.	Ехр.
$O^*(3^k)$	Dyn. Prog.	Det.	Ехр.
$O^*(2^k)$	Multilinear Det.	Random	Poly.
no $O^*((2-\epsilon)^k)$			

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif Colorful Graph Motif and parameter *k* Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif
Graph Motif and parameter k
Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion

Reminder: $\ell = n - k$ (=#nodes not kept in solution)

Theorem (BETZLER ET AL., IEEE/ACM TCBB 11)

CGM is solvable in $O^*(2^{\ell})$ time.

Bounded Search Tree

Algorithm Analysis

- at least 1 vertex removed at each step
- ightharpoonup height of tree at most ℓ
- 2 choices per step
- ▶ → 2^ℓ possibilities
- each leaf: colorful graph
- if one such graph is of order k and connected, return YES, otherwise No

Algorithm Analysis

- at least 1 vertex removed at each step
- ightharpoonup height of tree at most ℓ
- 2 choices per step
- ightharpoonup possibilities
- each leaf: colorful graph
- if one such graph is of order k and connected, return YES, otherwise No

Can we do better?

FPT lower bound for CGM and ℓ

p=number of variables of CNF formula

Theorem (F. & KOMUSIEWICZ, CPM'16) Under SETH*, CGM cannot be solved in $O^*((2-\epsilon)^{\ell})$ time, $\epsilon>0$.

* SETH = Strong Exponential Time Hypothesis [IMPAGLIAZZO ET AL., JCSS 01]: if $\mathbf{P} \neq \mathbf{NP}$, for any $\epsilon > 0$, CNF-SAT cannot be solved in $O^*((2-\epsilon)^p)$, with

$$F = (x \vee \overline{y} \vee z) \wedge (y \vee \overline{z})$$

$$F = (x \vee \overline{y} \vee z) \wedge (y \vee \overline{z})$$

$$F = (x \vee \overline{y} \vee z) \wedge (y \vee \overline{z})$$

$$F = (x \vee \overline{y} \vee z) \wedge (y \vee \overline{z})$$

CGM and ℓ for trees

Theorem (F. & KOMUSIEWICZ, CPM'16) CGM in trees is solvable in $O^*(\sqrt{2}^{\ell})$ time.

Kernelization

- Use reduction rules
- ▶ Instance $(T, M) \rightarrow (T', M')$ with same answer YES/NO
- ► Reduced instance (T', M') called kernel
- ▶ If size of kernel = $O(f(\ell))$ then FPT in ℓ

Kernelization

- Use reduction rules
- ▶ Instance $(T, M) \rightarrow (T', M')$ with same answer YES/NO
- ► Reduced instance (*T'*, *M'*) called kernel
- ▶ If size of kernel = $O(f(\ell))$ then FPT in ℓ

Theorem (F. & KOMUSIEWICZ, CPM'16)

CGM in trees admits a kernel of size $2\ell + 1$.

T= the input tree

Definition

A vertex is unique if no other vertex has the same color in T

T= the input tree

Definition

A vertex is unique if no other vertex has the same color in T

- ▶ C^+ = set of colors occurring more than once in C ; $|C^+| = c^+$
- $n^+ = \sum_{c \in C^+} \mu(T, c)$; $n^- = \#$ non-unique vertices

T= the input tree

Definition

A vertex is unique if no other vertex has the same color in T

- ▶ C^+ = set of colors occurring more than once in C; $|C^+| = c^+$
- ► $n^+ = \sum_{c \in C^+} \mu(T, c)$; n^- = # non-unique vertices
 - ▶ $n = n^+ + n^-$
 - $|M| = c^+ + n^-$

T= the input tree

Definition

A vertex is unique if no other vertex has the same color in T

- ▶ C^+ = set of colors occurring more than once in C; $|C^+| = c^+$
- ► $n^+ = \sum_{c \in C^+} \mu(T, c)$; n^- = # non-unique vertices
 - ▶ $n = n^+ + n^-$
 - $|M| = c^+ + n^-$
- ▶ $n^+ \ge 2c^+ \Rightarrow \ell \ge \frac{n^+}{2}$

- ▶ root T at arbitray unique vertex r
- ▶ if all vertices non-unique $\rightarrow \ell \geq \frac{n}{2}$ and kernel already exists

- ▶ root T at arbitray unique vertex r
- if all vertices non-unique $\to \ell \ge \frac{n}{2}$ and kernel already exists

Definition

- pendant subtree of root v: contains all descendants of v.
- pendant non-unique subtrees: maximal pendant subtrees in which no vertex is unique

- ► Left: input instance w/ pendant non-unique subtrees
- ▶ Middle: after Phase I, all vertices on paths between unique vertices are contracted into *r*.
- Right: after Phase II, all vertices with a color that was removed in Phase I are removed together with their descendants.

CGM and ℓ for trees

- Phases I and II: reduction rules
- ► After application: root *r* + non-unique vertices only

CGM and ℓ for trees

- Phases I and II: reduction rules
- ► After application: root *r* + non-unique vertices only
- by Observation, # non-unique vertices ≤ 2ℓ
- ▶ \Rightarrow new tree with $\leq 2\ell + 1$ vertices

Summary: Colorful Graph Motif w.r.t. ℓ

General graphs	Trees	
$O^*(2^\ell)$	$O^*(\sqrt{2}^\ell)$	
no $O^*((2-\epsilon)^\ell)$		
no poly. kernel	$(2\ell+1)$ -vertex kernel	

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif
Colorful Graph Motif and parameter kColorful Graph Motif and parameter ℓ

FPT issues for Graph Motif Graph Motif and parameter kGraph Motif and parameter ℓ

Graph Motif IRL

Conclusion

From Colorful Graph Motif to Graph Motif

- ▶ 2 results can be transferred from CGM to GRAPH MOTIF
- Price to pay:
 - ► Increased time complexity (but still exp. in *k* only)
 - Randomized algorithm
- ► Secret ingredient: the Color-Coding technique

For a color c in M, $occ_M(c)$ =#occurrences of c in M

Color Coding: General Idea

- ▶ for each color $c \in C$ s.t. $occ_M(c) \ge 2$
 - ▶ create occ_M(c) new colors
 - replace c in M by these colors → new motif is colorful
 - randomly recolor vertices of G with color c with one of new colors
- ▶ colorful motif → use your favorite CGM algorithm!

Running-time increase

- ► random coloring: a "good" solution may not be colorful
 - may lead to false negatives
- ▶ repeat process until probability of success is 1ϵ ($\epsilon > 0$)
- ▶ probability of a good coloring of $G: \frac{k!}{k^k} \ge e^{-k}$
- ▶ needs $|\ln(\epsilon)|e^k$ iterations (i.e., random colorings of G)

From Colorful Graph Motif to Graph Motif

In a nutshell:

- ► Fellows et al. 2007: $O^*(64^k) \rightarrow O^*(87^k)$
- ▶ Betzler et al. 2008: $O^*(3^k) \to O^*(4.32^k)$

Adapting MLD to GRAPH MOTIF

$O^*(2^k)$ algorithm by Guillemot & Sikora 2013

- works only for CGM
- if $M \neq M^*$, solution is not a multilinear monomial
- previous construction needs to be adapted
- ▶ introduction of variables for each vertex of G

Adapting MLD to GRAPH MOTIF

- ▶ One variable x_u per vertex u of G
- ► Each color c that appears m times in $M \rightarrow$ variables $y_{c,1}, y_{c,2}, \dots, y_{c,m}$
- ► Circuit is modified: $P_{u,1} = x_u \cdot (y_{c,1} + y_{c,2} + \ldots + y_{c,m})$
 - ▶ Variables $x_u \rightarrow$ a node of G is used only once
 - Variables y_i → right #colors required by M
- Solution: multilinear monomial of degree k' = 2k (k nodes + k colors)
- ▶ Complexity $O^*(2^{k'}) \rightarrow O^*(4^k)$

Adapting MLD to GRAPH MOTIF – Example

 $x_{u}(y_{R,1}+y_{R,2})\cdot x_{v}y_{Y,1}\cdot x_{w}(y_{R,1}+y_{R,2})\cdot x_{t}y_{B,1}+\ldots$

Adapting MLD to GRAPH MOTIF - Example

$$x_{u}(y_{R,1}+y_{R,2}) \cdot x_{v}y_{Y,1} \cdot x_{w}(y_{R,1}+y_{R,2}) \cdot x_{t}y_{B,1} + \dots$$

= $x_{u}y_{R,1} \cdot x_{v}y_{Y,1} \cdot x_{w}y_{R,1} \cdot x_{t}y_{B,1} + \dots$

Adapting MLD to GRAPH MOTIF – Example

$$X_{u}(y_{R,1}+y_{R,2}) \cdot X_{v}y_{Y,1} \cdot X_{w}(y_{R,1}+y_{R,2}) \cdot X_{t}y_{B,1} + \dots$$

$$= X_{u}y_{R,1} \cdot X_{v}y_{Y,1} \cdot X_{w}y_{R,1} \cdot X_{t}y_{B,1} + \dots$$

$$X_{u}y_{R,1} \cdot X_{v}y_{Y,1} \cdot X_{w}y_{R,2} \cdot X_{t}y_{B,1} + \dots$$

Adapting MLD to GRAPH MOTIF – Example

$$\begin{aligned} & x_{u}(y_{R,1} + y_{R,2}) \cdot x_{v} y_{Y,1} \cdot x_{w}(y_{R,1} + y_{R,2}) \cdot x_{t} y_{B,1} + \dots \\ & = x_{u} y_{R,1} \cdot x_{v} y_{Y,1} \cdot x_{w} y_{R,1} \cdot x_{t} y_{B,1} + \dots \\ & x_{u} y_{R,1} \cdot x_{v} y_{Y,1} \cdot x_{w} y_{R,2} \cdot x_{t} y_{B,1} + \dots \end{aligned}$$

▶ solution: a multilinear monomial of degree 2k = 8

GRAPH MOTIF is FPT in k

Previous results superseded by following theorem

Theorem (BJÖRKLUND, KASKI & KOWALIK, ALGORITHMICA 15) GRAPH MOTIF is solvable in $O^*(2^k)$ time using polynomial space.

Remarks

- Randomized
- Constrained Multilinear Detection
- Result independently published in [Pinter, Zehavi 2016]

Summary: GRAPH MOTIF w.r.t. k

Complexity	Technique	Algorithm	Space
$O^*(87^k)$	Dyn. Prog. + Color-Coding	Random	Exp.
$O^*(4.32^k)$	Dyn. Prog. + Color-Coding	Random	Exp.
$O^*(4^k)$	Multilinear Det.	Random	Poly.
$O^*(2.54^k)$	Constrained Multilinear Det.	Random	Exp.
$O^*(2^k)$ Björklund et al.	Constrained Multilinear Det.	Random	Poly.
no $O^*((2-\epsilon)^k)$			

Note: best deterministic algorithm in $O^*(5.22^k)$ [PINTER ET AL., DAM 16]

GRAPH MOTIF w.r.t. ℓ : bad news

Theorem (BETZLER ET AL., IEEE/ACM TCBB 11) GRAPH MOTIF is W[1]-complete when parameterized by ℓ .

GRAPH MOTIF w.r.t. ℓ: bad news

Theorem (BETZLER ET AL., IEEE/ACM TCBB 11)

GRAPH MOTIF is W[1]-complete when parameterized by \(\ell \).

Remarks

- ▶ reduction from INDEPENDENT SET
- ► *M* has only 2 colors

$$n = 5, m = 5, p = 3$$

$$n = 5, m = 5, p = 3$$

$$n = 5, m = 5, p = 3$$

Graph Motif is W[1]-complete w.r.t. ℓ

$$n = 5, m = 5, p = 3$$

Graph Motif is W[1]-complete w.r.t. ℓ

$$n = 5, m = 5, p = 3$$

$$n = 5, m = 5, p = 3$$

$$n = 5, m = 5, p = 3$$

$$M = \{ \bullet \ ^{n-p};$$

$$n = 5, m = 5, p = 3$$

$$M = \{ \bullet \ ^{n-p}; \bullet \}$$

Graph Motif is W[1]-complete w.r.t. ℓ

$$n = 5, m = 5, p = 3$$

$$n = 5, m = 5, p = 3$$

$$M = \{ \bullet \ ^{n-p}; \bullet \}$$

GRAPH MOTIF w.r.t. ℓ in trees ?

Theorem (F. & KOMUSIEWICZ, CPM 16) GRAPH MOTIF is solvable in $O^*(4^{\ell})$ time when G is a tree.

ightarrow Dynamic Programming

Summary: GRAPH MOTIF w.r.t. ℓ

General graphs	Trees
W[1]-complete	$O^*(4^\ell)$
	no poly. kernel
	no pory. Kerne

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif

Colorful Graph Motif and parameter k Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif

Graph Motif and parameter k Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion

GRAPH MOTIF and variants: practical issues

- ► Motus [Lacroix et al., Bioinformatics 06]
- ► Torque [Bruckner, Hüffner, Karp, Shamir & Sharan, Bruckner et al., J. Comp. Biol. 10]
- ► GraMoFoNe [BLIN, SIKORA & VIALETTE, BICOB 10]
- ► RANGI [RUDI ET AL., IEEE ACM/TCBB 13].
- ► SIMBio [RUBERT ET AL., BIBE 15]
- ► CeFunMo [Kouhsar et al., Computers in Biology and Medicine 16]

A focus on GraMoFoNe

- cytoscape plugin (open-source java platform, popular in bioinfo)
- supports queries up to 20–25 proteins
- colorful and multiset motifs
- can report all solutions
- deals with approx. solutions (insertions, deletions)
- also deals list-coloring
- technique: Pseudo-Boolean programming

Querying biological networks

- Query: Mouse DNA synthesome complex (13 proteins)
- ► Target: Yeast network (~ 5 300 proteins, ~ 40 000 interactions)
- Output: match consists of 12 proteins with 2 insertions and 3 deletions

Outline

Introduction

First Results

FPT issues

FPT issues for Colorful Graph Motif

Colorful Graph Motif and parameter k Colorful Graph Motif and parameter ℓ

FPT issues for Graph Motif

Graph Motif and parameter k Graph Motif and parameter ℓ

Graph Motif IRL

Conclusion

About GRAPH MOTIF

Quick Summary

- Biologically motivated problem (also applies in other contexts)
- ▶ Very large literature (~140 citations in 10 years)
- Survey ? Work in progress! (with J. Fradin, G. Jean and F. Sikora)
- ► Multiple improvements over the time (see parameter *k*)
- Recent, sometimes involved techniques
 - ► SeCoCo (2012)
 - MLD (2010) and constrained versions
 - mixed techniques
- Many variants
- Several software

Open Questions?

- Yes and no!
- Yes: many questions, many variants
- ► No(t so much) if (COLORFUL) GRAPH MOTIF general case and parameter k...
- ...unless you require deterministic algorithms! → beat current-best solutions
- Yes:
 - ▶ further study parameter ℓ
 - specific case of trees + inquire about treewidth

A larger view 1/2

From Biology to Computer Science

- Biologically motivated problems become more "interesting"
 - discrete data structures
 - more and more "complicated" graphs (e.g. metagenomics)
 - more and more complicated structures (e.g. sequences with intergene sizes)
 - ► → more and more intricate (thus interesting) problems

A larger view 1/2

From Biology to Computer Science

- Biologically motivated problems become more "interesting"
 - discrete data structures
 - more and more "complicated" graphs (e.g. metagenomics)
 - more and more complicated structures (e.g. sequences with intergene sizes)
 - ➤ more and more intricate (thus interesting) problems
- FPT well-adapted
 - together with data reduction rules (complexity often collapses on real data)
 - allows to "advertise" new FPT techniques
 - sometimes initiate new techniques

A larger view 2/2

From Computer Science to Bioinfo

- ► FPT + data reduction rules should be advertised and used
- ▶ see the different GRAPH MOTIF software
- how can we convince potential users?
- e.g. why relatively fast exact rather than very fast heuristic?

A larger view 2/2

From Computer Science to Bioinfo

- FPT + data reduction rules should be advertised and used
- ▶ see the different GRAPH MOTIF software
- how can we convince potential users?
- e.g. why relatively fast exact rather than very fast heuristic?

Thank you for your attention