Hyperbolicity of minimizers and random Hamilton-Jacobi equations
Qualitative methods in KPZ universality, CRIM, 2017
Joint works with R. Iturriaga and K. Khanin

Ke Zhang
University of Toronto

April 26, 2017
E-Khanin-Mazel-Sinai (2000) studied the following equation:

\[u_t + u_x u = \nu u_{xx} + f^\omega(x, t), \quad x \in \mathbb{T}^1, \nu \geq 0, \]

where \(f^\omega(x, t) = \sum_{k=1}^M F'_k(x) \dot{W}_k(t), \) \(F_k(x) \) are \(C^3 \) functions on \(C^1 \).
E-Khanin-Mazel-Sinai (2000) studied the following equation:

$$u_t + u_x u = \nu u_{xx} + f^\omega(x, t), \quad x \in \mathbb{T}^1, \nu \geq 0,$$

where $f^\omega(x, t) = \sum_{k=1}^M F'_k(x) \dot{W}_k(t)$, $F_k(x)$ are C^3 functions on C^1.

For the invisible case $\nu = 0$, they proved the one force one solution principle, and much more.
E-Khanin-Mazel-Sinai (2000) studied the following equation:

\[u_t + u_x u = \nu u_{xx} + f^\omega(x, t), \quad x \in \mathbb{T}^1, \nu \geq 0, \]

where \(f^\omega(x, t) = \sum_{k=1}^M F'_k(x) \dot{W}_k(t) \), \(F_k(x) \) are \(C^3 \) functions on \(C^1 \).

For the invisid case \(\nu = 0 \), they proved the one force one solution principle, and much more.

Generalizations:
E-Khanin-Mazel-Sinai (2000) studied the following equation:

\[u_t + u_x u = \nu u_{xx} + f^\omega(x, t), \quad x \in \mathbb{T}^1, \nu \geq 0, \]

where \(f^\omega(x, t) = \sum_{k=1}^{M} F'_k(x) \dot{W}_k(t), F_k(x) \) are \(C^3 \) functions on \(C^1 \).

For the **inviscid** case \(\nu = 0 \), they proved the **one force one solution** principle, and much more.

Generalizations:

1. **Non-compact case:** \(x \in \mathbb{R} \). See Bakhtin-Cator-Khanin (2014), Bakhtin (2016), Bakhtin-Li (2017) for one force one solution principle.
E-Khanin-Mazel-Sinai (2000) studied the following equation:

\[u_t + u_x u = \nu u_{xx} + f^\omega(x, t), \quad x \in \mathbb{T}^1, \nu \geq 0, \]

where \(f^\omega(x, t) = \sum_{k=1}^{M} F'_k(x) \dot{W}_k(t), \) \(F_k(x) \) are \(C^3 \) functions on \(C^1 \).

- For the invvisid case \(\nu = 0 \), they proved the one force one solution principle, and much more.

- Generalizations:
 1. Non-compact case: \(x \in \mathbb{R} \). See Bakhtin-Cator-Khanin (2014), Bakhtin (2016), Bakhtin-Li (2017) for one force one solution principle.
 2. Higher dimension: \(x \in \mathbb{T}^d \).
Random Hamilton-Jacobi equations

- For $b \in \mathbb{R}^d$, consider

$$\varphi_t + \frac{1}{2}\|\nabla \varphi + b\|^2 = F^\omega(x, t), \quad x \in \mathbb{T}^d, \omega \in \Omega.$$

Recovers the Burgers equation via $u = \nabla \varphi + b$.

The choice of the random potential:

1. (White noise) $F^\omega p x, t q = \sum_{k} f_{k} p x q \mathbb{M}^\omega k^9 w_{k} p t q$.

2. (Periodically kicked) $F^\omega p x, t q$ are i.i.d. randomly chosen functions.

Focus on "kicked" case.
Random Hamilton-Jacobi equations

- For $b \in \mathbb{R}^d$, consider

$$\varphi_t + \frac{1}{2} \| \nabla \varphi + b \|^2 = F^\omega(x, t), \quad x \in \mathbb{T}^d, \omega \in \Omega.$$

Recovers the Burgers equation via $u = \nabla \varphi + b$.

- The choice of the random potential:

 1. (White noise)

$$F^\omega(x, t) = \sum_{k} F_k(x, t) \delta_{k}, \quad \delta_k = \delta_{k, t}.$$

 2. (Periodically kicked)

$$F^\omega(x, t) = \sum_{j} F_j(x, t) \delta_{j,k}.$$

Focus on "kicked" case.
Random Hamilton-Jacobi equations

- For $b \in \mathbb{R}^d$, consider

$$\varphi_t + \frac{1}{2} \| \nabla \varphi + b \|^2 = F^\omega(x, t), \quad x \in \mathbb{T}^d, \omega \in \Omega.$$

Recovers the Burgers equation via $u = \nabla \varphi + b$.

- The choice of the random potential:

 1. (White noise)

$$F^\omega(x, t) = \sum_{k=1}^{M} F_k(x) \dot{W}_k(t).$$

- Focus on “kicked” case.
Random Hamilton-Jacobi equations

For $b \in \mathbb{R}^d$, consider

$$\varphi_t + \frac{1}{2} \|
abla \varphi + b \|^2 = F^\omega(x, t), \quad x \in \mathbb{T}^d, \omega \in \Omega.$$

Recovers the Burgers equation via $u = \nabla \varphi + b$.

The choice of the random potential:

1. (White noise)

$$F^\omega(x, t) = \sum_{k=1}^{M} F_k(x) \dot{W}_k(t).$$

2. (Periodically kicked) $F_j^\omega(x)$ are i.i.d. randomly chosen functions.

$$F^\omega(x, t) = \sum_{j \in \mathbb{Z}} F_j^\omega(x) \delta(t - j).$$
Random Hamilton-Jacobi equations

- For \(b \in \mathbb{R}^d \), consider

\[
\phi_t + \frac{1}{2} \| \nabla \phi + b \|^2 = F^\omega(x, t), \quad x \in \mathbb{T}^d, \omega \in \Omega.
\]

Recovers the Burgers equation via \(u = \nabla \phi + b \).

- The choice of the random potential:

 1. (White noise)

 \[
 F^\omega(x, t) = \sum_{k=1}^{M} F_k(x) \dot{W}_k(t).
 \]

 2. (Periodically kicked) \(F^\omega_j(x) \) are i.i.d. randomly chosen functions.

\[
F^\omega(x, t) = \sum_{j \in \mathbb{Z}} F^\omega_j(x) \delta(t - j).
\]

- Focus on “kicked” case.
The Lax-Oleinik semi-group

- Lagrangian $L^\omega(x, v, t) = \frac{1}{2}v^2 - b \cdot v + F^\omega(x, t)$, $b \in \mathbb{R}^d$.
The Lax-Oleinik semi-group

- Lagrangian \(L^\omega(x, v, t) = \frac{1}{2}v^2 - b \cdot v + F^\omega(x, t), b \in \mathbb{R}^d \).
- Define (Lax-Oleinik semi-group)

\[
T^\omega_{s,t}g(x) = \min_{\gamma(t) = x} \left\{ g(\gamma(s)) + \int_{s}^{t} L(\gamma, \dot{\gamma}, \tau) d\tau \right\}.
\]
The Lax-Oleinik semi-group

- Lagrangian \(L^\omega(x, v, t) = \frac{1}{2}v^2 - b \cdot v + F^\omega(x, t), \quad b \in \mathbb{R}^d. \)
- Define (Lax-Oleinik semi-group)

\[
T^\omega_{s,t}g(x) = \min_{\gamma(t) = x} \left\{ g(\gamma(s)) + \int_s^t L(\gamma, \dot{\gamma}, \tau) d\tau \right\}.
\]

- Then \(T^\omega_{s,t}g(x) \) solves

\[
\begin{align*}
\varphi_t + \frac{1}{2} \| \nabla \varphi + b \|^2 &= F^\omega(x, t) \\
\varphi(x, 0) &= g(x).
\end{align*}
\]
The Lax-Oleinik semi-group

- Lagrangian $L^\omega(x, v, t) = \frac{1}{2}v^2 - b \cdot v + F^\omega(x, t), \, b \in \mathbb{R}^d$.
- Define (Lax-Oleinik semi-group)

$$T^\omega_{s,t}g(x) = \min_{\gamma(t)=x} \left\{ g(\gamma(s)) + \int_s^t L(\gamma, \dot{\gamma}, \tau) \, d\tau \right\}.$$

- Then $T^\omega_{s,t}g(x)$ solves

$$\begin{cases}
\varphi_t + \frac{1}{2} \| \nabla \varphi + b \|^2 = F^\omega(x, t) \\
\varphi(x, 0) = g(x).
\end{cases}$$

- Dual semi-group:

$$\tilde{T}^\omega_{s,t}g(x) = \max_{\gamma(s)=x} \left\{ g(\gamma(t)) - \int_s^t L(\gamma, \dot{\gamma}, \tau) \, d\tau \right\}.$$
One force, one solution

- Define

\[\| \varphi \| = \frac{1}{2} (\max \varphi - \min \varphi). \]
One force, one solution

- Define

\[\| \varphi \| = \frac{1}{2} (\max \varphi - \min \varphi). \]
One force, one solution

- Define

\[\| \varphi \| = \frac{1}{2} (\max \varphi - \min \varphi). \]

- Theorem (A)

> Almost surely in \(\omega \), there is unique \(\psi^{-}(x, n) \) for \(-\infty < n \leq 0 \) such that

\[\lim_{m \to -\infty} \left\| T_{m,n} g(x) - \psi^{-}(x, n) \right\| = 0, \]

uniformly over all \(g \in C(\mathbb{T}^d) \). \(d = 1 \) (E-Khanin-Mazel-Sinai 2000), \(d \geq 1 \) (Iturriaga-Khanin 2002).
One force, one solution

- Define
 \[\|\varphi\| = \frac{1}{2}(\max \varphi - \min \varphi). \]

- Theorem (A)
 Almost surely in \(\omega\), there is unique \(\psi^-_\omega(x, n)\) for \(-\infty < n \leq 0\) such that
 \[\lim_{m \to -\infty} \|T_{m,n}^\omega g(x) - \psi^-_\omega(x, n)\| = 0, \]
 uniformly over all \(g \in C(\mathbb{T}^d)\). \(d = 1\) (E-Khanin-Mazel-Sinai 2000), \(d \geq 1\) (Iturriaga-Khanin 2002).

 - Exists solution \(\psi^+_\omega(x, n)\) for \(0 \leq n < \infty\) for the dual semi-group.
Minimizers

- A curve $\gamma : I \rightarrow \mathbb{T}^d$ is called a minimizer if it minimizes $\int_a^b L(\gamma, \dot{\gamma}, t) dt$ on each $[a, b] \subset I$. Minimizers solve the Euler-Lagrange equation.

Ke Zhang Random Hamilton-Jacobi
Minimizers

- A curve $\gamma : I \rightarrow \mathbb{T}^d$ is called a minimizer if it minimizes $\int_a^b L(\gamma, \dot{\gamma}, t) dt$ on each $[a, b] \subset I$. Minimizers solve the Euler-Lagrange equation.

- At each point x, there exits a minimizer $\gamma_x^- : (-\infty, 0] \rightarrow \mathbb{T}^d$ and $\gamma_x^+ : [0, \infty) \rightarrow \mathbb{T}^d$ with $\gamma_x^\pm(0) = x$. Called the infinite backward minimizers.
Minimizers

- A curve $\gamma : I \rightarrow \mathbb{T}^d$ is called a minimizer if it minimizes $\int_a^b L(\gamma, \dot{\gamma}, t) dt$ on each $[a, b] \subseteq I$. Minimizers solve the Euler-Lagrange equation.

- At each point x, there exits a minimizer $\gamma_x^- : (-\infty, 0] \rightarrow \mathbb{T}^d$ and $\gamma_x^+ : [0, \infty) \rightarrow \mathbb{T}^d$ with $\gamma_x^{\pm}(0) = x$. Called the infinite backward minimizers.

- One force one solution \simeq Convergence of backward minimizers to each other.
Minimizers

- A curve $\gamma : I \to \mathbb{T}^d$ is called a minimizer if it minimizes $\int_a^b L(\gamma, \dot{\gamma}, t) \, dt$ on each $[a, b] \subset I$. Minimizers solve the Euler-Lagrange equation.

- At each point x, there exits a minimizer $\gamma_x^- : (-\infty, 0] \to \mathbb{T}^d$ and $\gamma_x^+ : [0, \infty) \to \mathbb{T}^d$ with $\gamma_x^\pm (0) = x$. Called the infinite backward minimizers.

- One force one solution \simeq Convergence of backward minimizers to each other.

- $\psi^- (x, t) =$ action of infinite backward minimizer $= \text{Buseman function}$.
Minimizers

- A curve \(\gamma : I \rightarrow \mathbb{T}^d \) is called a minimizer if it minimizes \(\int_a^b L(\gamma, \dot{\gamma}, t) \, dt \) on each \([a, b] \subset I\). Minimizers solve the Euler-Lagrange equation.

- At each point \(x \), there exits a minimizer \(\gamma_x^- : (-\infty, 0] \rightarrow \mathbb{T}^d \) and \(\gamma_x^+ : [0, \infty) \rightarrow \mathbb{T}^d \) with \(\gamma_x^\pm(0) = x \). Called the infinite backward minimizers.

- One force one solution \(\simeq \) Convergence of backward minimizers to each other.

- \(\psi^- (x, t) = \) action of infinite backward minimizer = Buseman function.

- \(-\psi^+ (x, t) = \) action of infinite forward minimizer.
Regularity

- Specific form of kicks:

\[F_j^\omega = \sum_{i=1}^{M} F_i(x) \xi_j^i(\omega), \]

with \(F_i \in C^3(\mathbb{T}^d) \), and \(\xi_j(\omega) = (\xi_j^1, \cdots \xi_j^M)(\omega) \) is i.i.d. random vector with smooth densities.
Regularity

- Specific form of kicks:

\[
F_j^\omega = \sum_{i=1}^{M} F_i(x) \xi_j^i(\omega),
\]

with \(F_i \in C^3(\mathbb{T}^d) \), and \(\xi_j(\omega) = (\xi_j^1, \ldots, \xi_j^M)(\omega) \) is i.i.d. random vector with smooth densities.
Regularity

- Specific form of kicks:

\[F_j^\omega = \sum_{i=1}^{M} F_i(x) \xi_j^i(\omega), \]

with \(F_i \in C^3(\mathbb{T}^d) \), and \(\xi_j(\omega) = (\xi_j^1, \cdots, \xi_j^M)(\omega) \) is i.i.d. random vector with smooth densities.

- Theorem (B)

Under suitable conditions for \(\xi_j(\omega) \) and \(F_1, \cdots, F_M \), there exists \(x_0^\omega \in \mathbb{T}^d, r(\omega) > 0 \) such that

\[\psi_{\omega}^-(x, 0) \text{ is } C^3 \text{ on } \|x - x_0^\omega\| < r(\omega). \]

\(d = 1 \) (E-Khanin-Mazel-Sinai), \(d \geq 1 \) (Khanin-Z)
Theorem (C)

Under the same conditions, there exists (non-random) $\lambda > 0$ and $C > 0$ such that

$\| \psi \|_p < C \| \phi \|_p e^{-\lambda m}$.

For viscous equation $\psi \in C^0(\mathbb{T}, \mathbb{R})$, $\psi \in C^1(\mathbb{T}, \mathbb{R})$,

$\phi_t \sim \frac{1}{2} \nabla \phi \cdot F + \nu \Delta \phi$,

the solution converges exponentially with exponent $\lambda \nu > 0$. (Sinai)
Exponential convergence

- Theorem (C)

Under the same conditions, there exists (non-random) $\lambda > 0$ and $C(\omega) > 0$ such that

$$\| T^\omega_{m,0} g(x) - \psi^-_\omega(x, 0) \| \leq C(\omega) e^{-\lambda|m|}.$$

$d = 1$ (EKMS, Boritchev), $d \geq 1$ (Iturriaga-Khanin-Z)
Exponential convergence

- Theorem (C)

Under the same conditions, there exists (non-random) \(\lambda > 0 \) and \(C(\omega) > 0 \) such that

\[
\| T_{m,0}^{\omega} g(x) - \psi_{\omega}^{-}(x, 0) \| \leq C(\omega) e^{-\lambda|m|}.
\]

\(d = 1 \) (EKMS, Boritchev), \(d \geq 1 \) (Iturriaga-Khanin-Z)

- For viscous equation

\[
\varphi_t + \frac{1}{2} \| \nabla \varphi(x) \|^2 = F^\omega(x, t) + \nu \Delta \varphi,
\]

the solution converges exponentially with exponent \(\lambda(\nu) \).

(Sinai)
The global minimizer

- Recall: $\psi^-(x, t)$ is the action of infinite backward minimizer, $-\psi^+(x, t)$ action of infinite forward minimizer.
The global minimizer

- Recall: $\psi^-(x, t)$ is the action of infinite backward minimizer, $-\psi^+(x, t)$ action of infinite forward minimizer.
- The minimum of

\[Q_\omega(x, t) := \psi_\omega^-(x, t) - \psi_\omega^+(x, t) \]

corresponds global minimizers.
The global minimizer

- Recall: $\psi^-(x, t)$ is the action of infinite backward minimizer, $-\psi^+(x, t)$ action of infinite forward minimizer.
- The minimum of

$$Q^\omega(x, t) := \psi^-_\omega(x, t) - \psi^+_\omega(x, t)$$

corresponds global minimizers.
The global minimizer

- Recall: \(\psi^- (x, t) \) is the action of infinite backward minimizer,
 \(-\psi^+ (x, t)\) action of infinite forward minimizer.

- The minimum of

 \[Q^\omega (x, t) := \psi^-_\omega (x, t) - \psi^+_\omega (x, t) \]

 corresponds global minimizers.

- Proposition (EKMS, Iturriaga-Khanin)

 Almost surely, \(Q^\omega (x, 0) \) has a unique minimum.
The global minimizer

- Recall: $\psi^-(x, t)$ is the action of infinite backward minimizer, $-\psi^+(x, t)$ action of infinite forward minimizer.

- The minimum of

 $$Q^\omega(x, t) := \psi^-_\omega(x, t) - \psi^+_\omega(x, t)$$

corresponds global minimizers.

- Proposition (EKMS, Iturriaga-Khanin)

 Almost surely, $Q^\omega(x, 0)$ has a unique minimum.

 - Proof: convex analysis. Recall $F^\omega_j = \sum_{k=1}^M \xi^k_j(\omega) F_i(x)$. There is $\psi(x)$ such that

 $$Q^\omega(x, 0) = \sum_{k=1}^M \xi^k_0(\omega) F_i(x) + \psi(x).$$
Hyperbolicity of the global minimizer
Hyperbolicity of the global minimizer

- **Proposition**

 Orbit of \((x_0^\omega, v_0^\omega)\) is *nonuniformly hyperbolic* under the dynamics of Euler-Lagrange flow. Namely, the Lyapunov exponent of the orbit \((x_n^\omega, v_n^\omega)\) satisfies

 \[
 \lambda_1 \leq \cdots \leq \lambda_d < 0 < \lambda_{d+1} \leq \cdots \leq \lambda_{2d}.
 \]
Hyperbolicity of the global minimizer

- Proposition

 Orbit of \((x_0^\omega, v_0^\omega)\) is nonuniformly hyperbolic under the dynamics of Euler-Lagrange flow. Namely, the Lyapunov exponent of the orbit \((x_n^\omega, v_n^\omega)\) satisfies

 \[\lambda_1 \leq \cdots \leq \lambda_d < 0 < \lambda_{d+1} \leq \cdots \leq \lambda_{2d}. \]
Hyperbolicity of the global minimizer

- Proposition

Orbit of \((x_0^\omega, v_0^\omega)\) is nonuniformly hyperbolic under the dynamics of Euler-Lagrange flow. Namely, the Lyapunov exponent of the orbit \((x_n^\omega, v_n^\omega)\) satisfies

\[
\lambda_1 \leq \cdots \leq \lambda_d < 0 < \lambda_{d+1} \leq \cdots \leq \lambda_{2d}.
\]

- Proposition

The graph \(\{(x, \nabla \psi^- (x, 0))\}\) contains the local unstable manifold of \((x_0^\omega, v_0^\omega)\).
Proposition

Orbit of \((x_0^\omega, v_0^\omega)\) is nonuniformly hyperbolic under the dynamics of Euler-Lagrange flow. Namely, the Lyapunov exponent of the orbit \((x_n^\omega, v_n^\omega)\) satisfies

\[
\lambda_1 \leq \ldots \leq \lambda_d < 0 < \lambda_{d+1} \leq \ldots \leq \lambda_{2d}.
\]

Proposition

The graph \(\{(x, \nabla \psi^-_{\omega}(x, 0))\}\) contains the local unstable manifold of \((x_0^\omega, v_0^\omega)\).

- The above two propositions implies Theorem B.
Green bundles

- An orbit \((x_n, \nu_n)\) is disconjugate if

\[
D\Phi_{m,n}^\omega(x_m, \nu_m) \left(\{0\} \times \mathbb{R}^d \right) \cap \left(\{0\} \times \mathbb{R}^d \right).
\]
Green bundles

- An orbit \((x_n, v_n)\) is disconjugate if

\[
D\Phi_{m,n}^{\omega}(x_m, v_m) \left(\{0\} \times \mathbb{R}^d \right) \cap \left(\{0\} \times \mathbb{R}^d \right).
\]

- Then the following limits exist:

\[
G^u(x_n, v_n) = \lim_{m \to -\infty} D\Phi_{m,n}^{\omega}(x_m, v_m) \left(\{0\} \times \mathbb{R}^d \right),
\]

\[
G^s(x_n, v_n) = \lim_{k \to \infty} (D\Phi_{n,k}^{\omega})^{-1}(x_n, v_n) \left(\{0\} \times \mathbb{R}^d \right),
\]

If \(G^u(x_n, v_n)\) & \(G^s(x_n, v_n)\), then \((x_n, v_n)\) is hyperbolic.
Green bundles

- An orbit \((x_n, v_n)\) is disconjugate if
 \[D\Phi^\omega_{m,n}(x_m, v_m) \left(\{0\} \times \mathbb{R}^d\right) \cap \left(\{0\} \times \mathbb{R}^d\right).

- Then the following limits exist:
 \[\mathcal{G}^u(x_n, v_n) = \lim_{m \to -\infty} D\Phi^\omega_{m,n}(x_m, v_m) \left(\{0\} \times \mathbb{R}^d\right),\]
 \[\mathcal{G}^s(x_n, v_n) = \lim_{k \to \infty} (D\Phi^\omega_{n,k})^{-1}(x_n, v_n) \left(\{0\} \times \mathbb{R}^d\right),\]
- If \(\mathcal{G}^u(x_n, v_n) \cap \mathcal{G}^s(x_n, v_n)\), then \((x_n, v_n)\) is hyperbolic.
Green bundles

- An orbit \((x_n, v_n)\) is disconjugate if

\[
D \Phi^\omega_{m,n}(x_m, v_m) \left(\{0\} \times \mathbb{R}^d \right) \cap \left(\{0\} \times \mathbb{R}^d \right).
\]

- Then the following limits exist:

\[
\mathcal{G}^u(x_n, v_n) = \lim_{m \to -\infty} D \Phi^\omega_{m,n}(x_m, v_m) \left(\{0\} \times \mathbb{R}^d \right),
\]

\[
\mathcal{G}^s(x_n, v_n) = \lim_{k \to \infty} (D \Phi^\omega_{n,k})^{-1}(x_n, v_n) \left(\{0\} \times \mathbb{R}^d \right),
\]

- If \(\mathcal{G}^u(x_n, v_n) \cap \mathcal{G}^s(x_n, v_n)\), then \((x_n, v_n)\) is hyperbolic.

- Uses the works of M.-C. Arnaud. (also Green, Bialy-McKay, Contreras-Iturriaga)
(Non-degeneracy of minimum) There exists $a(\omega) > 0$ and $R > 0$ such that

$$Q_\omega^\infty(x, 0) - Q_\omega^\infty(x_0^\omega, 0) \geq a(\omega)\|x - x_0^\omega\|^2, \quad \|x - x_0^\omega\| < R.$$

Proof (convex analysis)
Non-degeneracy of minimum implies hyperbolicity

- (Non-degeneracy of minimum) There exists $a(\omega) > 0$ and $R > 0$ such that

\[Q_\omega^\infty(x, 0) - Q_\omega^\infty(x_0^\omega, 0) \geq a(\omega)\|x - x_0^\omega\|^2, \quad \|x - x_0^\omega\| < R. \]

Proof (convex analysis)

- (M.-C. Arnaud) the above implies $\mathcal{G}^u \pitchfork \mathcal{G}^s$, and hence implies hyperbolicity of (x_n^ω, v_n^ω).
Unstable manifolds

- Orbit of $(y_0, \eta_0) := (y_0, \nabla \psi_\omega(y_0, 0))$, denoted $\{(y_n, \eta_n)\}$, is a minimizer on $(-\infty, 0]$.
Unstable manifolds

- Orbit of \((y_0, \eta_0) := (y_0, \nabla \psi_\omega(y_0, 0))\), denoted \(\{(y_n, \eta_n)\}\), is a minimizer on \((-\infty, 0]\).
- Want to show \((y_0, \eta_0)\) is on the unstable manifold of \((x_0^\omega, v_0^\omega)\).
Unstable manifolds

- Orbit of \((y_0, \eta_0) := (y_0, \nabla \psi_\omega(y_0, 0))\), denoted \(\{(y_n, \eta_n)\}\), is a minimizer on \((-\infty, 0]\).

- Want to show \((y_0, \eta_0)\) is on the unstable manifold of \((x_0^\omega, v_0^\omega)\).

- Near a hyperbolic orbit, backward non-expanding orbit must be exponentially stable.
Unstable manifolds

- Orbit of \((y_0, \eta_0) := (y_0, \nabla \psi_\omega(y_0, 0))\), denoted \(\{(y_n, \eta_n)\}\), is a minimizer on \((-\infty, 0]\).
- Want to show \((y_0, \eta_0)\) is on the unstable manifold of \((x_0^\omega, \nu_0^\omega)\).
- Near a hyperbolic orbit, backward non-expanding orbit must be exponentially stable.
- To prove \((y_n, \eta_n)\) is stable, note that \(Q^\omega_\omega(\cdot, n)\) is a Lyapunov function in the sense

\[
0 \leq Q^\omega_\omega(y_i, i) - Q^\omega_\omega(x_i^\omega, i) \leq Q^\omega_\omega(y_j, j) - Q^\omega_\omega(x_j^\omega, j)
\]

if \(i < j\).
Unstable manifolds

- Orbit of \((y_0, \eta_0) \coloneqq (y_0, \nabla \psi_{\omega}^{-}(y_0, 0))\), denoted \(\{(y_n, \eta_n)\}\), is a minimizer on \((-\infty, 0]\).
- Want to show \((y_0, \eta_0)\) is on the unstable manifold of \((x^\omega_0, v^\omega_0)\).
- Near a hyperbolic orbit, backward non-expanding orbit must be exponentially stable.
- To prove \((y_n, \eta_n)\) is stable, note that \(Q^\infty_\omega (\cdot, n)\) is a Lyapunov function in the sense

\[
0 \leq Q^\infty_\omega (y_i, i) - Q^\infty_\omega (x^\omega_i, i) \leq Q^\infty_\omega (y_j, j) - Q^\infty_\omega (x^\omega_j, j)
\]

if \(i < j\).
- \(Q^\infty_\omega\) is non-degenerate in the sense that

\[
a(\omega)\|x - x^\omega_0\|^2 \leq Q^\infty_\omega (x, i) - Q^\infty_\omega (x^\omega_i, i) \leq K(\omega)\|x - x^\omega_0\|^2.
\]
Unstable manifolds

- Orbit of \((y_0, \eta_0) := (y_0, \nabla \psi_{\omega}(y_0, 0))\), denoted \(\{(y_n, \eta_n)\}\), is a minimizer on \((-\infty, 0]\).
- Want to show \((y_0, \eta_0)\) is on the unstable manifold of \((x_0^\omega, v_0^\omega)\).
- Near a hyperbolic orbit, backward non-expanding orbit must be exponentially stable.
- To prove \((y_n, \eta_n)\) is stable, note that \(Q^\infty(\cdot, n)\) is a Lyapunov function in the sense

\[
0 \leq Q^\infty(y_i, i) - Q^\infty(x_i^\omega, i) \leq Q^\infty(y_j, j) - Q^\infty(x_j^\omega, j)
\]

if \(i < j\).
- \(Q^\infty\) is non-degenerate in the sense that

\[
a(\omega)\|x - x_0^\omega\|^2 \leq Q^\infty(x, i) - Q^\infty(x_i^\omega, i) \leq K(\omega)\|x - x_0^\omega\|^2.
\]
- Use the above observations to prove Theorem B.
To prove Theorem C, denote $\psi_N^-(x, 0) = T_{-N,0} g(x)$, and $(y_0, \eta_0) = (y_0, \nabla \psi_N^-(x, 0))$.
Exponential convergence

- To prove Theorem C, denote $\psi_{-N}^{-}(x, 0) = T_{-N, 0} g(x)$, and $(y_0, \eta_0) = (y_0, \nabla \psi_{-N}^{-}(x, 0))$.
- Want to show for some $-N \leq n < 0$,

$$
\| (y_n, \eta_n) - (x_n^\omega, v_n^\omega) \| \leq C(\omega) e^{-\lambda N}.
$$
To prove Theorem C, denote $\psi_N^-(x, 0) = T_{-N,0}g(x)$, and $(y_0, \eta_0) = (y_0, \nabla \psi_N^-(x, 0))$.

Want to show for some $-N \leq n < 0$,

$$\|(y_n, \eta_n) - (x_n^\omega, v_n^\omega)\| \leq C(\omega)e^{-\lambda N}.$$

$Q_\omega^\infty(\cdot, 0)$ is not a Lyapunov function for finite minimizers.
Exponential convergence

- To prove Theorem C, denote $\psi_N^-(x, 0) = T_{-N, 0}g(x)$, and $(y_0, \eta_0) = (y_0, \nabla \psi_N^-(x, 0))$.
- Want to show for some $-N \leq n < 0$,

$$\| (y_n, \eta_n) - (x_n^\omega, v_n^\omega) \| \leq C(\omega) e^{-\lambda N}.$$

- $Q_0^\infty(\cdot, 0)$ is not a Lyapunov function for finite minimizers.
- But if $\| \psi_N^-(x, 0) - \psi_0^\omega(x, 0) \| = O(\delta)$, then $Q_0^\infty(\cdot, 0)$ is an δ—approximate Lyapunov function in the sense that

$$Q_0^\infty(y_i, i) - Q_0^\infty(x_i^\omega, i) \leq Q_0^\infty(y_j, j) - Q_0^\infty(x_j^\omega, j) + \delta.$$
Upgrade argument

1. Use a priori convergence (Theorem A), to get
\[\| \psi_N(x, 0) - \psi_\omega(x, 0) \| = O(\delta). \]

This proves Theorem C.
Upgrade argument

1. Use a priori convergence (Theorem A), to get
\[\| \psi_N^{-1}(x, 0) - \psi_\omega^{-1}(x, 0) \| = O(\delta). \]

2. Use the fact that \(Q_\omega^\infty(\cdot, 0) \) is an \(\delta \)–approximate Lyapunov function, and hyperbolic theory to prove for some \(n \)
\[\| (y_n, \eta_n) - (x_n^\omega, v_n^\omega) \| \leq \delta^{100}. \]

This proves Theorem C.
Upgrade argument

1. Use a priori convergence (Theorem A), to get
\[\| \psi_N^-(x, 0) - \psi_\omega^-(x, 0) \| = O(\delta). \]

2. Use the fact that \(Q_\omega^\infty(\cdot, 0) \) is an \(\delta \)-approximate Lyapunov function, and hyperbolic theory to prove for some \(n \)
\[
\| (y_n, \eta_n) - (x_n^\omega, v_n^\omega) \| \leq \delta^{100}.
\]

3. Use step 2 to get \(\| \psi_N^-(x, 0) - \psi_\omega^-(x, 0) \| = O(\delta^{100}) \) and repeat from step 1.

This proves Theorem C.
Thank you!