KPZ wandering exponent for random walk in i.i.d. dynamic Beta random environment

Firas Rassoul-Agha

Department of Mathematics
University of Utah

April 24, 2017

Joint work with Márton Balázs (Bristol)
and Timo Seppäläinen (Wisconsin-Madison)
Coin tosses and random walk

Toss a coin: Heads with probability p, Tails with probability $1 - p$.

Tails=↑, Heads=→
Coin tosses and random walk

Toss a coin: Heads with probability p, Tails with probability $1 - p$.

$\text{Tails}=\uparrow, \text{ Heads}=\rightarrow$

Repeated tosses \longleftrightarrow up-right path (Random Walk on \mathbb{Z}^2):

HHTHTTTTHHTHTT \longleftrightarrow
Classical results: LLN, CLT, LDP

\[X_0 = 0, \quad X_n = \text{position on up-right path after } n \text{ tosses/steps.} \]

\[X_n \cdot e_1 = \# H, \quad X_n \cdot e_2 = n - X_n \cdot e_1 = \# T \text{ (up to toss } n). \]
Classical results: LLN, CLT, LDP

\(X_0 = 0, \quad X_n = \text{position on up-right path after } n \text{ tosses/steps.} \)

\(X_n \cdot e_1 = \# H, \quad X_n \cdot e_2 = n - X_n \cdot e_1 = \# T \text{ (up to toss } n). \)

**Law of Large Numbers (LLN): proportion of } H \rightarrow \text{ probability of } H\)

\(X_n/n \rightarrow \xi = pe_1 + (1 - p)e_2 \quad (\text{almost surely}). \)
Classical results: LLN, CLT, LDP

\(X_0 = 0\), \(X_n\) = position on up-right path after \(n\) tosses/steps.

\(X_n \cdot e_1 = \#H\), \(X_n \cdot e_2 = n - X_n \cdot e_1 = \#T\) (up to toss \(n\)).

Law of Large Numbers (LLN): proportion of \(H\) → probability of \(H\)

\(X_n / n \to \xi = pe_1 + (1 - p)e_2\) (almost surely).

Central Limit Theorem (CLT): fluctuations around the mean are order \(\sqrt{n}\)

\[\frac{X_n - n\xi}{\sqrt{p(1 - p)n}} \to Z e_1 - Z e_2 \text{ (in distribution)}, \ Z \sim \text{Standard Normal.}\]
Classical results: LLN, CLT, LDP

$X_0 = 0, \quad X_n = \text{position on up-right path after } n \text{ tosses/steps.}$

$X_n \cdot e_1 = \#H, \quad X_n \cdot e_2 = n - X_n \cdot e_1 = \#T \text{ (up to toss } n).$

Law of Large Numbers (LLN): proportion of $H \rightarrow$ probability of H

$X_n/n \rightarrow \xi = pe_1 + (1 - p)e_2 \quad \text{(almost surely).}$

Central Limit Theorem (CLT): fluctuations around the mean are order \sqrt{n}

$$
\frac{X_n - n\xi}{\sqrt{p(1 - p)n}} \rightarrow Z e_1 - Z e_2 \text{ (in distribution), } Z \sim \text{Standard Normal.}
$$

Large Deviation Principle (LDP): $P(\text{proportion of } H \geq s > p) \approx e^{-nH(s)}$

$$
n^{-1} \log P\{X_n \cdot e_1 \geq sn\} \rightarrow H(s) = s \log \frac{s}{p} + (1 - s) \log \frac{1 - s}{1 - p}
$$

$H(s) = \text{entropy of coin } s \text{ relative to coin } p.$
Conditioned random walk

Large deviations also tell us that $X_{0,n} = (X_0, \ldots, X_n)$ conditioned on $X_n = n \mu = se_1 + (1 - s)e_2$

converges (in distribution) to a random walk with probability of Heads $= s$.
Conditioned random walk

Large deviations also tell us that $X_{0,n} = (X_0, \ldots, X_n)$ conditioned on $X_n/n \approx \zeta = se_1 + (1 - s)e_2$

converges (in distribution) to a random walk with probability of Heads $= s$.

New random walk still has CLT fluctuations (of size \sqrt{n}).
Random walk in random environment

Take medium inhomogeneity into account.
Random walk in random environment

Take medium inhomogeneity into account.

Make \(p \) random and dependent on the number of heads and tails so far

\[#H = i, \quad #T = j: \text{next } H \text{ has (random) probability } p_{i,j}. \]
Random walk in random environment

Take medium inhomogeneity into account.

Make p random and dependent on the number of heads and tails so far

$\#H = i, \quad \#T = j$: next H has (random) probability $p_{i,j}$.

X_n is now a Markov chain with transitions

$P\{X_{n+1} = x + e_1 \mid X_n = x\} = p_x$

$P\{X_{n+1} = x + e_2 \mid X_n = x\} = 1 - p_x, \quad x \in \mathbb{Z}_+^2$.

$x = (i, j)$
Random walk in random environment

Take medium inhomogeneity into account.

Make p random and dependent on the number of heads and tails so far

$\# H = i, \quad \# T = j$: next H has (random) probability $p_{i,j}$.

X_n is now a Markov chain with transitions

\[
P\{X_{n+1} = x + e_1 \mid X_n = x\} = p_x
\]

\[
P\{X_{n+1} = x + e_2 \mid X_n = x\} = 1 - p_x, \quad x \in \mathbb{Z}_+^2.
\]

$HHTHTTT$ has probability

\[
p_{0,0} p_{1,0} (1 - p_{2,0}) p_{2,1} (1 - p_{3,1}) (1 - p_{3,2})
\]
Assume ω = \{p_x : x \in \mathbb{Z}^2\} are independent identically distributed (i.i.d.).
LLN, CLT, LDP

Assume $\omega = \{p_x : x \in \mathbb{Z}^2\}$ are independent identically distributed (i.i.d.).

X_n sees “fresh” environments.
LLN, CLT, LDP

Assume $\omega = \{p_x : x \in \mathbb{Z}^2\}$ are independent identically distributed (i.i.d.).

X_n sees “fresh” environments.

If ω is averaged out, distribution of $X_{0,\infty}$ is the same as that of a random walk with probability of $H = \bar{p} = \mathbb{E}[p_0]$ and probability of $T = 1 - \bar{p}$.
LLN, CLT, LDP

Assume $\omega = \{p_x : x \in \mathbb{Z}^2\}$ are independent identically distributed (i.i.d.).

X_n sees “fresh” environments.

If ω is averaged out, distribution of $X_{0,\infty}$ is the same as that of a random walk with probability of $H = \bar{p} = \mathbb{E}[p_0]$ and probability of $T = 1 - \bar{p}$.

$\text{LLN: } X_n/n \rightarrow \xi = \bar{p}e_1 + (1 - \bar{p})e_2$.
LLN, CLT, LDP

Assume $\omega = \{p_x : x \in \mathbb{Z}^2\}$ are independent identically distributed (i.i.d.).

X_n sees “fresh” environments.

If ω is averaged out, distribution of $X_{0,\infty}$ is the same as that of a random walk with probability of $H = \bar{p} = \mathbb{E}[p_0]$ and probability of $T = 1 - \bar{p}$.

LLN: $X_n/n \rightarrow \xi = \bar{p}e_1 + (1 - \bar{p})e_2$.

Almost every environment $\{p_x : x \in \mathbb{Z}_+^2\}$ and almost every path $X_{0,\infty}$.
LLN, CLT, LDP

Assume $\omega = \{p_x : x \in \mathbb{Z}^2\}$ are independent identically distributed (i.i.d.).

X_n sees “fresh” environments.

If ω is averaged out, distribution of $X_{0,\infty}$ is the same as that of a random walk with probability of $H = \bar{p} = \mathbb{E}[p_0]$ and probability of $T = 1 - \bar{p}$.

LLN: $X_n/n \rightarrow \xi = \bar{p}e_1 + (1 - \bar{p})e_2$.

Almost every environment $\{p_x : x \in \mathbb{Z}^2\}$ and almost every path $X_{0,\infty}$.

Averaged CLT: if the environment is averaged out, then

$$\frac{X_n - n\xi}{\sqrt{\bar{p}(1 - \bar{p})n}} \rightarrow Z e_1 - Z e_2 \text{ (in distribution), } Z \text{ Standard Normal.}$$
Also, Quenched CLT (R-A, Seppäläinen ’05): for almost every environment \(\{ p_x : x \in \mathbb{Z}_+^2 \} \)

\[
\frac{X_n - n\xi}{\sqrt{\bar{p}(1 - \bar{p})n}} \to Z_{e_1} - Z_{e_2} \text{ (in distribution), } Z \text{ Standard Normal.}
\]
Also, Quenched CLT (R-A, Seppäläinen '05): for almost every environment \(\{p_x : x \in \mathbb{Z}^2_+\} \)

\[
\frac{X_n - n\xi}{\sqrt{\bar{p}(1 - \bar{p})n}} \rightarrow Z_{e_1} - Z_{e_2} \text{ (in distribution), } Z \text{ Standard Normal.}
\]

Note: once environment is fixed, \(X_n \) is no longer a random walk with i.i.d. increments.
LLN, CLT, LDP

Averaged LDP: when environment is averaged out and $s > \bar{p}$

$$-n^{-1} \log P\{X_n \cdot e_1 \geq sn\} \to H_a(s) = s \log \frac{s}{\bar{p}} + (1 - s) \log \frac{1 - s}{1 - \bar{p}}.$$

Also, Quenched LDP (R-A, Seppäläinen, Yilmaz '13):

for almost every environment $p = \{p_x : x \in \mathbb{Z}^2\}$

$$-n^{-1} \log P\{X_n \cdot e_1 \geq sn\} \to H_q(s) = \frac{1}{n} \sum_{i=1}^{n} \log \left(1 - p_{X_i} \right).$$

H_q is deterministic but in general does not have an explicit expression

unless $s = \bar{p}$, in which case both $p = 0$.
LLN, CLT, LDP

Averaged LDP: when environment is averaged out and $s > \bar{p}$

$$- n^{-1} \log P\{ X_n \cdot e_1 \geq s n \} \to H_a(s) = s \log \frac{s}{\bar{p}} + (1 - s) \log \frac{1 - s}{1 - \bar{p}}.$$

Also, **Quenched LDP** (R-A, Seppäläinen, Yilmaz ’13):

for almost every environment $\omega = \{ p_x : x \in \mathbb{Z}_+^2 \}$

$$- n^{-1} \log P^\omega \{ X_n \cdot e_1 \geq s n \} \to H_q(s).$$
LLN, CLT, LDP

Averaged LDP: when environment is averaged out and $s > \bar{p}$

\[-n^{-1} \log P\{X_n \cdot e_1 \geq sn\} \to H_a(s) = s \log \frac{s}{\bar{p}} + (1 - s) \log \frac{1 - s}{1 - \bar{p}}.\]

Also, **Quenched LDP** (R-A, Seppäläinen, Yilmaz '13):

for almost every environment $\omega = \{p_x : x \in \mathbb{Z}_+^2\}$

\[-n^{-1} \log P^\omega\{X_n \cdot e_1 \geq sn\} \to H_q(s).\]

H_q is deterministic but in general does not have an explicit expression (though some variational formulas are available).

$H_q(s) > H_a(s)$ unless $s = \bar{p}$, in which case both $= 0$.
Solvable model

Explicit computations are possible when $p_x \sim \text{Beta}(\alpha, \beta)$, $\alpha, \beta > 0$.

Example: $\text{Beta}(1, 1) = \text{Uniform}(0, 1)$.
Solvable model

Explicit computations are possible when \(p_x \sim \text{Beta}(\alpha, \beta), \alpha, \beta > 0 \).

Example: \(\text{Beta}(1, 1) = \text{Uniform}(0, 1) \).

LLN velocity: \(\bar{p} = \frac{\alpha}{\alpha + \beta} \) and \(\xi = \frac{\alpha e_1 + \beta e_2}{\alpha + \beta} \).
Solvable model

Explicit computations are possible when $p_x \sim \text{Beta}(\alpha, \beta)$, $\alpha, \beta > 0$.

Example: $\text{Beta}(1, 1) = \text{Uniform}(0, 1)$.

LLN velocity: $\bar{p} = \frac{\alpha}{\alpha + \beta}$ and $\xi = \frac{\alpha e_1 + \beta e_2}{\alpha + \beta}$.

Can also compute the quenched rate $H_q(s)$ explicitly (later).
KPZ fluctuation exponent

Barraquand and Corwin ’15 observed a connection to KPZ:

Theorem. For the Beta(α, β) case

\[
\log P^\omega \{ X_n \cdot e_1 \geq s n \} + n H_q(s) \xrightarrow{\sigma(s)n^{1/3}} \text{GUE (in distribution)}
\]

(\(\sigma(s)\) is known explicitly in terms of polygamma functions \(\psi_1\) and \(\psi_2\)).

Proved by Barraquand and Corwin ’15 for \(s\) far enough from \(\bar{p}\) then by Thiery and Le Doussal ’16 for all \(s \neq \bar{p}\).
KPZ fluctuation exponent

Barraquand and Corwin ’15 observed a connection to KPZ:

Theorem. For the Beta(α, β) case

$$\log P^\omega \{ X_n \cdot e_1 \geq sn \} + nH_q(s) \quad \xrightarrow{\sigma(s)n^{1/3}} \quad \text{GUE \ (in distribution)}$$

($\sigma(s)$ is known explicitly in terms of polygamma functions ψ_1 and ψ_2).

Proved by Barraquand and Corwin ’15 for s far enough from \bar{p} then by Thiery and Le Doussal ’16 for all $s \neq \bar{p}$.

Question: Does the path have the KPZ wandering exponent of $2/3$?
KPZ fluctuation exponent

Barraquand and Corwin ’15 observed a connection to KPZ:

Theorem. For the Beta(α, β) case

\[
\log P^\omega \{ X_n \cdot e_1 \geq s n \} + n H_q(s) \\
\frac{\sigma(s)n^{1/3}}{\sigma(s)n^{1/3}} \rightarrow \text{GUE (in distribution)}
\]

(\(\sigma(s)\) is known explicitly in terms of polygamma functions \(\psi_1\) and \(\psi_2\)).

Proved by Barraquand and Corwin ’15 for \(s\) far enough from \(\bar{p}\) then by Thiery and Le Doussal ’16 for all \(s \neq \bar{p}\).

Question: Does the path have the KPZ wandering exponent of 2/3?

But how could it? We know the CLT holds, both quenched and averaged!

What is going on?!
Conditioned RWRE

What happens if we condition on $X_n \approx n\zeta$ for $\zeta \neq \xi$? (i.e. on an atypical fraction of H)

Subtlety: order of conditioning and averaging

Annealed: average environment first (and get a classical random walk) then condition. New process is another (classical) random walk. Nothing new.

Quenched: fix a typical environment and then condition. What is the resulting process? (Not a classical random walk)

Averaged: average out the environment in the above. What is the resulting process? (Again, not a classical random walk)
Conditioned RWRE

What happens if we condition on $X_n \approx n\xi$ for $\xi \neq \xi$? (i.e. on an atypical fraction of H)

Subtlety: order of conditioning and averaging
Conditioned RWRE

What happens if we condition on $X_n \approx n\zeta$ for $\zeta \neq \xi$? (i.e. on an atypical fraction of H)

Subtlety: order of conditioning and averaging

Annealed: average environment first (and get a classical random walk) then condition.
New process is another (classical) random walk. Nothing new.
Conditioned RWRE

What happens if we condition on $X_n \approx n\zeta$ for $\zeta \neq \xi$? (i.e. on an atypical fraction of H)

Subtlety: order of conditioning and averaging

Annealed: average environment first (and get a classical random walk) then condition. New process is another (classical) random walk. Nothing new.

Quenched: fix a typical environment and then condition. What is the resulting process? (Not a classical random walk)
Conditioned RWRE

What happens if we condition on $X_n \approx n\zeta$ for $\zeta \neq \xi$? (i.e. on an atypical fraction of H)

Subtlety: order of conditioning and averaging

Annealed: average environment first (and get a classical random walk) then condition. New process is another (classical) random walk. Nothing new.

Quenched: fix a typical environment and then condition. What is the resulting process? (Not a classical random walk)

Averaged: average out the environment in the above. What is the resulting process? (Again, not a classical random walk)
Busemann function

Theorem (Balázs, R-A, Seppäläinen ’16). For almost every choice of the environment \(\omega = \{ p_x : x \in \mathbb{Z}_+ \} \), limit

\[
B^\zeta(x, y) = \lim_{n \to \infty} \left[\log P^\omega(X_n \approx n\zeta \mid X_0 = x) - \log P^\omega(X_n \approx n\zeta \mid X_0 = y) \right]
\]

exists
Busemann function

Theorem (Balázs, R-A, Seppäläinen ’16). For almost every choice of the environment \(\omega = \{p_x : x \in \mathbb{Z}_+\} \), limit

\[
B^\zeta(x, y) = \lim_{n \to \infty} \left[\log P^\omega(X_n \approx n\zeta | X_0 = x) - \log P^\omega(X_n \approx n\zeta | X_0 = y) \right]
\]

exists and \(H_q(s) = -s \mathbb{E}[B^\zeta(0, e_1)] - (1 - s) \mathbb{E}[B^\zeta(0, e_2)] \)

where \(\zeta = se_1 + (1 - s)e_2 \).
Busemann function

Theorem (Balázs, R-A, Seppäläinen ’16). For almost every choice of the environment $ω = \{ p_x : x ∈ \mathbb{Z}_+ \}$, limit

$$B_ω(x, y) = \lim_{n→∞} \left[\log P_ω(X_n ≈ nζ | X_0 = x) − \log P_ω(X_n ≈ nζ | X_0 = y) \right]$$

exists and $H_q(s) = −sE[B_ω(0, e_1)] − (1 − s)E[B_ω(0, e_2)]$

where $ζ = se_1 + (1 − s)e_2$.

$e^{-B_ω(0, x)}$ is a harmonic function:

$$e^{-B_ω(0, x)} = p_x e^{-B_ω(0, x+e_1)} + (1 − p_x) e^{-B_ω(0, x+e_2)}.$$
Busemann function

Theorem (Balázs, R-A, Seppäläinen ’16). For almost every choice of the environment $\omega = \{p_x : x \in \mathbb{Z}_+\}$, limit

$$B^\zeta(x, y) = \lim_{n \to \infty} \left[\log P^\omega(X_n \approx n\zeta \mid X_0 = x) - \log P^\omega(X_n \approx n\zeta \mid X_0 = y) \right]$$

exists and $H_q(s) = -s\mathbb{E}[B^\zeta(0, e_1)] - (1 - s)\mathbb{E}[B^\zeta(0, e_2)]$

where $\zeta = se_1 + (1 - s)e_2$.

$e^{-B^\zeta(0, x)}$ is a harmonic function:

$$e^{-B^\zeta(0, x)} = p_x e^{-B^\zeta(0, x+e_1)} + (1 - p_x) e^{-B^\zeta(0, x+e_2)}.$$

This comes from the Markov property

$$P^\omega(X_n \approx n\zeta \mid X_0 = x) = p_x P^\omega(X_n \approx n\zeta \mid X_0 = x+e_1) + (1-p_x) P^\omega(X_n \approx n\zeta \mid X_0 = x+e_2)$$

(then divide by $P^\omega(X_n \approx n\zeta \mid X_0 = 0)$ and take $n \to \infty$).
Quenched conditioned RWRE

Define π^ζ as a Doob transform of p by the harmonic function $e^{-B^\zeta(0,x)}$:

$$
\pi^\zeta_{x,x+e_1} = p_x \frac{e^{-B^\zeta(0,x+e_1)}}{e^{-B^\zeta(0,x)}} \quad \text{and} \quad \pi^\zeta_{x,x+e_2} = (1 - p_x) \frac{e^{-B^\zeta(0,x+e_2)}}{e^{-B^\zeta(0,x)}}.
$$

(They do add up to 1.)
Quenched conditioned RWRE

Define π^ζ as a Doob transform of p by the harmonic function $e^{-B^\zeta(0,x)}$:

$\pi^\zeta_{x,x+e_1} = p_x \frac{e^{-B^\zeta(0,x+e_1)}}{e^{-B^\zeta(0,x)}}$ and $\pi^\zeta_{x,x+e_2} = (1 - p_x) \frac{e^{-B^\zeta(0,x+e_2)}}{e^{-B^\zeta(0,x)}}$.

(They do add up to 1.)

Theorem (Balázs, R-A, Seppäläinen '16). For almost every choice of the environment $\omega = \{p_x : x \in \mathbb{Z}_+\}$, the quenched distribution of $X_{0,m}$, conditional on $X_n \approx n\zeta$, converges as $n \to \infty$ to that of a Markov chain with transitions π^ζ.

Note: $\zeta = \xi$ gives $B^\xi \equiv 0$ and $\pi^\xi \equiv p$.
Quenched conditioned RWRE

Define π^ζ as a Doob transform of p by the harmonic function $e^{-B^\zeta(0,x)}$:

$$
\pi_{x,x+e_1}^\zeta = p_x \frac{e^{-B^\zeta(0,x+e_1)}}{e^{-B^\zeta(0,x)}} \quad \text{and} \quad \pi_{x,x+e_2}^\zeta = (1 - p_x) \frac{e^{-B^\zeta(0,x+e_2)}}{e^{-B^\zeta(0,x)}}.
$$

(They do add up to 1.)

Theorem (Balázs, R-A, Seppäläinen '16). For almost every choice of the environment $\omega = \{p_x : x \in \mathbb{Z}_+\}$, the quenched distribution of $X_{0,m}$, conditional on $X_n \approx n\zeta$, converges as $n \to \infty$ to that of a Markov chain with transitions π^ζ.

Note: $\zeta = \xi$ gives $B^\xi \equiv 0$ and $\pi^\xi \equiv p$.

So, if $\zeta \neq \xi$, the new process is another random walk in a stationary but very correlated random environment.
Distribution of π^ζ

In the solvable $Beta(\alpha, \beta)$ case we can identify π^ζ explicitly.
Distribution of π^ζ

In the solvable Beta(α, β) case we can identify π^ζ explicitly:

Fix a parameter $\lambda > 0$ (depending on ζ).
Distribution of π^ζ

In the solvable Beta(α, β) case we can identify π^ζ explicitly:

Fix a parameter $\lambda > 0$ (depending on ζ).

Let $\{U_{k \epsilon_1} : k \geq 0\}$ be i.i.d. Beta($\alpha + \lambda, \beta$).

Let $\{V_{k \epsilon_2}^{-1} : k \geq 0\}$ be i.i.d. Beta(λ, α).

Let $\{\tilde{p}_x : x \in \mathbb{N}^2\}$ be i.i.d. Beta(α, β).

All three families are mutually independent.
Distribution of π^ζ

For the rest of the edges of \mathbb{Z}_2^+ define Us and Vs via induction

$$U' = \frac{\tilde{p} V + (1 - \tilde{p}) U}{V}, \quad V' = \frac{\tilde{p} V + (1 - \tilde{p}) U}{U}.$$

And define $\pi^\zeta_{x,x+e_1} = \frac{V_x - 1}{V_x - U_x} \in (0, 1)$ and $\pi^\zeta_{x,x+e_2} = 1 - \pi^\zeta_{x,x+e_1}$.

Lemma: $$(U_0, V_0; \pi^\zeta)$$ has the same distribution as $$(U, V; \tilde{p})$$.

Corollary: $f \pi^\zeta_{x,x+y}; x+y+e_1: y \in \mathbb{Z}_2^+$ has the same distribution as for $x = 0$.

Distribution of π^ζ

For the rest of the edges of \mathbb{Z}_+^2 define U_s and V_s via induction

$$U' = \frac{\tilde{p}V + (1 - \tilde{p})U}{V}, \quad V' = \frac{\tilde{p}V + (1 - \tilde{p})U}{U}.$$

And define $\pi^\zeta_{x, x+e_1} = \frac{V_x - 1}{V_x - U_x} \in (0, 1)$ and $\pi^\zeta_{x, x+e_2} = 1 - \pi^\zeta_{x, x+e_1}$.

Lemma: $(U_0', V_0'; \tilde{p}, \pi^\zeta)$ has the same distribution as $(U_0, V_0; \tilde{p}, \pi^\zeta)$.

Corollary: $f(\pi^\zeta_{x, x+y}; x, x+y+e_1; \pi^\zeta_{x+e_2})$ has the same distribution as for $x = 0$.

![Diagram](Image)
Distribution of π^ζ

For the rest of the edges of \mathbb{Z}^2_+ define Us and Vs via induction

$$U' = \frac{\bar{p}V + (1 - \bar{p})U}{V}, \quad V' = \frac{\bar{p}V + (1 - \bar{p})U}{U}.$$

And define $\pi^\zeta_{x,x+e_1} = \frac{V_x - 1}{V_x - U_x} \in (0, 1)$ and $\pi^\zeta_{x,x+e_2} = 1 - \pi^\zeta_{x,x+e_1}$.
Distribution of π^ζ

For the rest of the edges of \mathbb{Z}_2^+ define Us and Vs via induction

$$U' = \frac{\bar{p}V + (1 - \bar{p})U}{V}, \quad V' = \frac{\bar{p}V + (1 - \bar{p})U}{U}.$$

And define $\pi^\zeta_{x,x+e_1} = \frac{V_x - 1}{V_x - U_x} \in (0, 1)$ and $\pi^\zeta_{x,x+e_2} = 1 - \pi^\zeta_{x,x+e_1}$.
Distribution of π^ζ

For the rest of the edges of \mathbb{Z}_+^2 define Us and Vs via induction

\[U' = \frac{\tilde{\rho} V + (1 - \tilde{\rho}) U}{V}, \quad V' = \frac{\tilde{\rho} V + (1 - \tilde{\rho}) U}{U}. \]

And define $\pi^\zeta_{x,x+e_1} = \frac{V_x - 1}{V_x - U_x} \in (0, 1)$ and $\pi^\zeta_{x,x+e_2} = 1 - \pi^\zeta_{x,x+e_1}$.

Distribution of π^ζ

For the rest of the edges of \mathbb{Z}_+^2 define Us and Vs via induction

$$U' = \frac{\tilde{p}V + (1 - \tilde{p})U}{V}, \quad V' = \frac{\tilde{p}V + (1 - \tilde{p})U}{U}.$$

And define $\pi^\zeta_{x,x+e_1} = \frac{V_x - 1}{V_x - U_x} \in (0, 1)$ and $\pi^\zeta_{x,x+e_2} = 1 - \pi^\zeta_{x,x+e_1}$.

Lemma: $(U_0, V_0; \zeta)$ has the same distribution as $(U, V; \tilde{p})$.

Corollary: $f_{\zeta}(x; x+y; x+y+e_1)$ has the same distribution as for $x = 0$.

- \tilde{p}
- U'
- V'
- π^ζ
- $1 - \pi^\zeta$
Distribution of π^ζ

For the rest of the edges of \Z_+^2 define Us and Vs via induction

$$U' = \frac{\tilde{p} V + (1 - \tilde{p}) U}{V}, \quad V' = \frac{\tilde{p} V + (1 - \tilde{p}) U}{U}.$$

And define $\pi^\zeta_{x, x+e_1} = \frac{V_x - 1}{V_x - U_x} \in (0, 1)$ and $\pi^\zeta_{x, x+e_2} = 1 - \pi^\zeta_{x, x+e_1}$.

Lemma: (U'_0, V'_0, π^ζ) has the same distribution as (U, V, \tilde{p}).

Corollary: $f_{\pi^\zeta_{x, x+y}}(x+y) \sim_{x+2} \Z_+^2$ and g has the same distribution as $x = 0$.

\[\text{Diagram:} \]

- V and U with \tilde{p} indicating the probability of transition and $1 - \pi^\zeta$ indicating the probability of staying in the same state.
- U' and V' showing the transition from current state to next state.

Distribution of π^ζ

For the rest of the edges of \mathbb{Z}_2^2 define Us and Vs via induction

$$U' = \frac{\p V + (1 - \p)U}{V}, \quad V' = \frac{\p V + (1 - \p)U}{U}.$$

And define $\pi^\zeta_{x,x+e_1} = \frac{V_x - 1}{V_x - U_x} \in (0, 1)$ and $\pi^\zeta_{x,x+e_2} = 1 - \pi^\zeta_{x,x+e_1}$.

Lemma: (U', V', π^ζ) has the same distribution as (U, V, \p).

[Diagram showing the distribution and relationships between U, V, U', and V' with arrows and labels for \p, $1 - \pi^\zeta$, and π^ζ.]
Distribution of π^ζ

For the rest of the edges of \mathbb{Z}_2^+ define Us and Vs via induction

$$U' = \frac{\hat{p}V + (1 - \hat{p})U}{V}, \quad V' = \frac{\hat{p}V + (1 - \hat{p})U}{U}.$$

And define $\pi^\zeta_{x,x+e_1} = \frac{V_x - 1}{V_x - U_x} \in (0, 1)$ and $\pi^\zeta_{x,x+e_2} = 1 - \pi^\zeta_{x,x+e_1}$.

Lemma: (U', V', π^ζ) has the same distribution as (U, V, \hat{p}).

Corollary: $\{\pi^\zeta_{x+y,x+y+e_1} : y \in \mathbb{Z}_2^+\}$ has the same distribution as for $x = 0$.
Bijection between velocity ζ and boundary parameter λ

$\lambda \in [0, \infty]$ is in one-to-one correspondence with ζ via

$$
\zeta_1 = \frac{\psi_1(\lambda) - \psi_1(\alpha + \lambda)}{\psi_1(\lambda) - \psi_1(\alpha + \beta + \lambda)} \in \left[\frac{\alpha}{\alpha + \beta}, 1 \right], \quad \zeta_2 = 1 - \zeta_1
$$

with $\lambda = 0 \iff \zeta = e_1$ and $\lambda = \infty \iff \zeta = \xi = \left(\frac{\alpha}{\alpha + \beta}, \frac{\beta}{\alpha + \beta} \right)$.

ψ_1 is the trigamma function: $\psi_1 = (\log \Gamma)''$.

For rest of velocities, $\zeta_1 \in \left[0, \frac{\alpha}{\alpha + \beta} \right]$, switch role of Us and Vs.
Formula for quenched rate

\[(B^\zeta(0, e_1), B^\zeta(0, e_2)) \sim (\log U_0, \log V_0) \text{ with parameter } \lambda(\zeta).\]
Formula for quenched rate

\[(B^\zeta(0, e_1), B^\zeta(0, e_2)) \sim (\log U_0, \log V_0) \text{ with parameter } \lambda(\zeta).\]

\[H_q(s) = -s\mathbb{E}[B^\zeta(0, e_1)] - (1 - s)\mathbb{E}[B^\zeta(0, e_2)] \quad (\zeta = se_1 + (1 - s)e_2)\]
Formula for quenched rate

\[(B^{\zeta}(0, e_1), B^{\zeta}(0, e_2)) \sim (\log U_0, \log V_0) \text{ with parameter } \lambda(\zeta).\]

\[H_q(s) = -s \mathbb{E}[B^{\zeta}(0, e_1)] - (1 - s) \mathbb{E}[B^{\zeta}(0, e_2)] \quad (\zeta = se_1 + (1 - s)e_2)\]

\[= -s \mathbb{E}[\log U] - (1 - s) \mathbb{E}[\log V] \]
Formula for quenched rate

\((B^\zeta(0, e_1), B^\zeta(0, e_2)) \sim (\log U_0, \log V_0)\) with parameter \(\lambda(\zeta)\).

\[
H_q(s) = -s \mathbb{E}[B^\zeta(0, e_1)] - (1 - s) \mathbb{E}[B^\zeta(0, e_2)] \quad (\zeta = se_1 + (1 - s)e_2)
\]

\[
= -s \mathbb{E}[\log U] - (1 - s) \mathbb{E}[\log V]
\]

\[
= s \psi_0(\alpha + \beta + \lambda(\zeta)) + (1 - s)\psi_0(\lambda(\zeta)) - \psi_0(\alpha + \lambda(\zeta))
\]

for \(s \in [\frac{\alpha}{\alpha+\beta}, 1]\).

(For \(s \in [0, \frac{\alpha}{\alpha+\beta})\) switch the role of the axes.)

(Barraquand and Corwin '15 got this formula first, by a more direct computation.)
KPZ behavior of averaged conditioned RWRE

Because of the correlations in the environment, averaging the new RWRE does not give a classical RW (nor a Markov chain).
KPZ behavior of averaged conditioned RWRE

Because of the correlations in the environment, averaging the new RWRE does not give a classical RW (nor a Markov chain).

So the average CLT does not come as before.
KPZ behavior of averaged conditioned RWRE

Because of the correlations in the environment, averaging the new RWRE does not give a classical RW (nor a Markov chain).

So the average CLT does not come as before.

Furthermore, the aforementioned quenched CLT does not apply (as it was proved for i.i.d. environment, later improved to allow some mixing).
KPZ behavior of averaged conditioned RWRE

Because of the correlations in the environment, averaging the new RWRE does not give a classical RW (nor a Markov chain).

So the average CLT does not come as before.

Furthermore, the aforementioned quenched CLT does not apply (as it was proved for i.i.d. environment, later improved to allow some mixing).

Theorem: For $\zeta \neq \xi$, $\exists C, c$: $\forall n \in \mathbb{N}$ and b large,

$$\mathbb{E} P^{\pi^\zeta} \{|X_n - n\zeta| \geq bn^{2/3}\} \leq Cb^{-3}$$

and

$$\mathbb{E} P^{\pi^\zeta} [|X_n - n\zeta|] \geq cn^{2/3}.$$
KPZ behavior of averaged conditioned RWRE

Because of the correlations in the environment, averaging the new RWRE does not give a classical RW (nor a Markov chain).

So the average CLT does not come as before.

Furthermore, the aforementioned quenched CLT does not apply (as it was proved for i.i.d. environment, later improved to allow some mixing).

Theorem: For $\zeta \neq \xi$, $\exists C, c: \forall n \in \mathbb{N}$ and b large,

\[
\mathbb{E} P^{\pi_{\zeta}} \{ |X_n - n\zeta| \geq bn^{2/3} \} \leq Cb^{-3}
\]

and

\[
\mathbb{E} P^{\pi_{\zeta}} [|X_n - n\zeta|] \geq cn^{2/3}.
\]

Complements the aforementioned results saying KPZ fluctuations exponent (for $\log P^\omega (X_n \approx n\zeta)$) is $1/3$.
KPZ behavior in some other RWREs

There is an earlier result with a KPZ wandering exponent for a RWRE...
KPZ behavior in some other RWREs

There is an earlier result with a KPZ wandering exponent for a RWRE:

The limit of Seppäläinen’s inverse gamma polymer, pinned to go in a given direction.

This is again a random walk in a very correlated random environment and its path has fluctuation exponent 2/3 (Georgiou, R-A, Seppäläinen, Yilmaz ’15).
KPZ behavior in some other RWREs

There is an earlier result with a KPZ wandering exponent for a RWRE:

The limit of Seppäläinen’s inverse gamma polymer, pinned to go in a given direction.

This is again a random walk in a very correlated random environment and its path has fluctuation exponent 2/3 (Georgiou, R-A, Seppäläinen, Yilmaz ’15).

But it is different from the one described in this talk, even though Beta random variables appear in its description too!
KPZ behavior in some other RWREs

There is an earlier result with a KPZ wandering exponent for a RWRE:

The limit of Seppäläinen’s inverse gamma polymer, pinned to go in a given direction.

This is again a random walk in a very correlated random environment and its path has fluctuation exponent 2/3 (Georgiou, R-A, Seppäläinen, Yilmaz ’15).

But it is different from the one described in this talk, even though Beta random variables appear in its description too!

In both models, solvability comes from the Beta-Gamma algebra. Namely:

If A is $\text{Gamma}(a + b, c)$ and B is an independent $\text{Beta}(a, b)$, then AB and $A(1 − B)$ are independent $\text{Gamma}(a, c)$ and $\text{Gamma}(b, c)$.
Existence of Busemann limit: coupling

For $\lambda > 0$ recall the system of edge variables U and V.

Denote them by U^λ and V^λ.
Existence of Busemann limit: coupling

For $\lambda \geq 0$ recall the system of edge variables U and V. Denote them by U^λ and V^λ.

Can couple all of them (through uniform random variables) so that U^λ is increasing in λ, V^λ is decreasing in λ, and the two are continuous.
Existence of Busemann limit: coupling

For $\lambda > 0$ recall the system of edge variables U and V.

Denote them by U^λ and V^λ.

Can couple all of them (through uniform random variables) so that U^λ is increasing in λ, V^λ is decreasing in λ, and the two are continuous.

Define $p^\lambda_x = \frac{U^\lambda_x (V^\lambda_x - 1)}{V^\lambda_x - U^\lambda_x} \in (0, 1)$.

Theorem: $\{p^\lambda_x : x \in \mathbb{Z}_+^2\}$ are i.i.d. Beta(α, β) random variables (regardless of λ!).
Existence of Busemann limit: coupling

For $\lambda > 0$ recall the system of edge variables U and V.

Denote them by U^λ and V^λ.

Can couple all of them (through uniform random variables) so that U^λ is increasing in λ, V^λ is decreasing in λ, and the two are continuous.

Define $p_x^\lambda = \frac{U_x^\lambda(V_x^\lambda - 1)}{V_x^\lambda - U_x^\lambda} \in (0, 1)$.

Theorem: $\{p_x^\lambda : x \in \mathbb{Z}_+^2\}$ are i.i.d. Beta(α, β) random variables (regardless of λ!).

So we can use these as transitions for the Beta RWRE.
Existence of Busemann limit: cocycle

Given ζ, let $\lambda = \lambda(\zeta)$ and define

$$B^\zeta(x, x + e_1) = \log U^\lambda_x \quad \text{and} \quad B^\zeta(x, x + e_2) = \log V^\lambda_x.$$
Existence of Busemann limit: cocycle

Given ζ, let $\lambda = \lambda(\zeta)$ and define

$$B^\zeta(x, x + e_1) = \log U_x^\lambda \quad \text{and} \quad B^\zeta(x, x + e_2) = \log V_x^\lambda.$$

The inductive definition of the Us and Vs ensures the cocycle property:

$$B^\zeta(x, x + e_1) + B^\zeta(x + e_1, x + e_1 + e_2) = B^\zeta(x, x + e_2) + B^\zeta(x + e_2, x + e_1 + e_2).$$
Existence of Busemann limit: cocycle

Given ζ, let $\lambda = \lambda(\zeta)$ and define

$$B^\zeta(x, x + e_1) = \log U_{x}^{\lambda} \quad \text{and} \quad B^\zeta(x, x + e_2) = \log V_{x}^{\lambda}.$$

The inductive definition of the Us and Vs ensures the cocycle property:

$$B^\zeta(x, x + e_1) + B^\zeta(x + e_1, x + e_1 + e_2) = B^\zeta(x, x + e_2) + B^\zeta(x + e_2, x + e_1 + e_2).$$

Can then define $B^\zeta(0, x)$ for all $x \in \mathbb{Z}_+^2$ by adding over edge-values along any up-right path from 0 to x.
Existence of Busemann limit: cocycle

Given ζ, let $\lambda = \lambda(\zeta)$ and define

$$B^\zeta(x, x + e_1) = \log U^\lambda_x \quad \text{and} \quad B^\zeta(x, x + e_2) = \log V^\lambda_x.$$

The inductive definition of the Us and Vs ensures the cocycle property:

$$B^\zeta(x, x + e_1) + B^\zeta(x + e_1, x + e_1 + e_2) = B^\zeta(x, x + e_2) + B^\zeta(x + e_2, x + e_1 + e_2).$$

Can then define $B^\zeta(0, x)$ for all $x \in \mathbb{Z}_+^2$ by adding over edge-values along any up-right path from 0 to x.

Then define $B^\zeta(x, y) = B^\zeta(0, y) - B^\zeta(0, x)$ and we have the cocycle property: $B^\zeta(x, y) + B^\zeta(y, z) = B^\zeta(x, z)$.
Existence of Busemann limit: dual polymer

Take ζ, $\lambda = \lambda(\zeta)$, $x \in \mathbb{N}^2$ and consider the rectangle with corners 0 and x.

![Rectangle diagram]

Note how path $x_0; n$ accumulates a product of p's and $(1 \cdot p)$'s, until it hits the north-east boundary. I.e. $B(0; x)$ is almost the same as $\log P! (X_n = x_i; X_0 = 0)$.

Remark: This connects the RWRE to a polymer with boundary conditions, which leads to the KPZ wandering exponent.
Existence of Busemann limit: dual polymer

Take ζ, $\lambda = \lambda(\zeta)$, $x \in \mathbb{N}^2$ and consider the rectangle with corners 0 and x.

Define edge weights $\sigma_{u, u+e_1} = p_u^\lambda$ and $\sigma_{u, u+e_2} = 1 - p_u^\lambda$ inside.
Existence of Busemann limit: dual polymer

Take ζ, $\lambda = \lambda(\zeta)$, $x \in \mathbb{N}^2$ and consider the rectangle with corners 0 and x.

Define edge weights $\sigma_{u,u+e_1} = p_u^\lambda$ and $\sigma_{u,u+e_2} = 1 - p_u^\lambda$ inside and $\sigma_{u,u+e_1} = e^{B^\zeta(u,u+e_1)}$, $\sigma_{u,u+e_2} = e^{B^\zeta(u,u+e_2)}$, on north and east boundaries.
Existence of Busemann limit: dual polymer

Take $\zeta, \lambda = \lambda(\zeta), x \in \mathbb{N}^2$ and consider the rectangle with corners 0 and x.

Define edge weights $\sigma_{u,u+e_1} = p_u^\lambda$ and $\sigma_{u,u+e_2} = 1 - p_u^\lambda$ inside and $\sigma_{u,u+e_1} = e^{B_\zeta(u,u+e_1)}$, $\sigma_{u,u+e_2} = e^{B_\zeta(u,u+e_2)}$, on north and east boundaries.

Lemma: \[\sum_{x_0=0, x_n=x} \prod_{i=0}^{n-1} \sigma_{x_i,x_{i+1}} = e^{B_\zeta(0,x)}. \]
Existence of Busemann limit: dual polymer

Take \(\zeta, \lambda = \lambda(\zeta), x \in \mathbb{N}^2 \) and consider the rectangle with corners 0 and x.

Define edge weights \(\sigma_{u,u+e_1} = p_u^\lambda \) and \(\sigma_{u,u+e_2} = 1 - p_u^\lambda \) inside and \(\sigma_{u,u+e_1} = e^{B(\zeta)(u,u+e_1)} \), \(\sigma_{u,u+e_2} = e^{B(\zeta)(u,u+e_2)} \), on north and east boundaries.

Lemma: \[
\sum_{x_0=0,x_n=x} \prod_{i=0}^{n-1} \sigma_{x_i,x_{i+1}} = e^{B(\zeta)(0,x)}.
\]

Note how path \(x_0,n \) accumulates a product of \(p \)'s and \((1 - p) \)'s, until it hits the north-east boundary.

I.e. \(B(\zeta)(0,x) \) is almost the same as \(\log P_\omega(X_n = x |, X_0 = 0) \).
Existence of Busemann limit: dual polymer

Take ζ, $\lambda = \lambda(\zeta)$, $x \in \mathbb{N}^2$ and consider the rectangle with corners 0 and x.

Define edge weights $\sigma_{u,u+e_1} = p_u^\lambda$ and $\sigma_{u,u+e_2} = 1 - p_u^\lambda$ inside and $\sigma_{u,u+e_1} = e^{\mathcal{B}_\zeta(u,u+e_1)}$, $\sigma_{u,u+e_2} = e^{\mathcal{B}_\zeta(u,u+e_2)}$, on north and east boundaries.

Lemma: \[\sum_{x_0=0, x_n=x} \prod_{i=0}^{n-1} \sigma_{x_i,x_{i+1}} = e^{\mathcal{B}_\zeta(0,x)}. \]

Note how path $x_{0,n}$ accumulates a product of p's and $(1 - p)$'s, until it hits the north-east boundary.

I.e. $\mathcal{B}_\zeta(0, x)$ is almost the same as $\log \mathbb{P}^\omega(X_n = x |, X_0 = 0)$.

Remark: This connects the RWRE to a polymer with boundary conditions, which leads to the KPZ wandering exponent.
Existence of Busemann limit: comparison lemma

By a monotonicity of $B^\zeta(0, x)$ in the edge weights σ the above gives:

Lemma: With probability one, for n large and $\eta' \cdot e_1 < \zeta \cdot e_1 < \eta \cdot e_1$

$$B^n(0, e_1) \leq \log P^\omega(X_n \approx n\zeta \mid X_0 = 0) - \log P^\omega(X_n \approx n\zeta \mid X_1 = e_1) \leq B^{n'}(0, e_1).$$

\[\eta' \quad \zeta \quad \eta\]
Existence of Busemann limit: comparison lemma

By a monotonicity of $B^\zeta(0, x)$ in the edge weights σ the above gives:

Lemma: With probability one, for n large and $\eta' \cdot e_1 < \zeta \cdot e_1 < \eta \cdot e_1$

$B^n(0, e_1) \leq \log P^\omega(X_n \approx n\zeta | X_0 = 0) - \log P^\omega(X_n \approx n\zeta | X_1 = e_1) \leq B^{n'}(0, e_1)$.

Now take $n \to \infty$ then η and $\eta' \to \zeta$ to get that

$$\lim\{\log P^\omega(X_n \approx n\zeta | X_0 = 0) - \log P^\omega(X_n \approx n\zeta | X_1 = e_1)\}$$

exists (almost surely) and equals $B^\zeta(0, e_1)$.

\[\text{□}\]
Existence of Busemann limit: comparison lemma

By a monotonicity of $B^\zeta(0, x)$ in the edge weights σ the above gives:

Lemma: With probability one, for n large and $\eta' \cdot e_1 < \zeta \cdot e_1 < \eta \cdot e_1$

$B^n(0, e_1) \leq \log P^\omega(X_n \approx n \zeta \mid X_0 = 0) - \log P^\omega(X_n \approx n \zeta \mid X_1 = e_1) \leq B^{n'}(0, e_1)$.

Now take $n \to \infty$ then η and $\eta' \to \zeta$ to get that

$$\lim\{\log P^\omega(X_n \approx n \zeta \mid X_0 = 0) - \log P^\omega(X_n \approx n \zeta \mid X_1 = e_1)\}$$

exists (almost surely) and equals $B^\zeta(0, e_1)$.

□ Thank You!