

Imperial College What does "collective London dynamics" mean?

Coordination

Ex. all particles move spontaneously in the same direction

Sperm confined in an annular chamber. Creppy, Plouraboué, Praud, Druart, Cazin, Yu, PD, J. Roy Soc. Interface 2016

What does "collective dynamics" mean?

Coordination

Self-organization

Ex. spontaneous lane formation

M. Moussaid

J. Pettré

C. Appert-Rolland G. Theraulaz

Pedestrians walking in an annular corridor.
Moussaïd, Guillot, Moreau, Fehrenbach, Chabiron, Lemercier, Pettré, Appert-Rolland, PD, Theraulaz, PLoS CB, 8 (2012), e1002442

Imperial College What does "collective dynamics" mean?

Systems showing emergent behavior do not exclusively come from biology or social sciences

With E. Climent, N. Mac, F. Plouraboué, O. Praud,

E. Climent

F. Plouraboué

Imperial College London Why is studying emergence

Emergence = Transition: disorder \rightarrow self-organization

> Ex. random state vs aligned state

Depends on noise

i.e. how often particles change orientation randomly

Ex. Vicsek model

Vicsek, Czirók, Ben-Jacob, Cohen, Shochet, PRL 75 (1995) 1226

self-propulsion + alignment + noise

A. Frouvelle

Alignment interaction + noise Simulation by A. Frouvelle

Larger noise

Smaller noise

t = 00,00

Imperial College London Why is studying emergence

Emergence = Transition: disorder \rightarrow self-organization

Ex. random state vs aligned state

Depends on noise

In an abrupt way

All variation in narrow parameter range

Phase transition (or bifurcation)

Non-smooth behavior!

Different types of phase transitions

Symmetry breaking

Packing

Ant trails: ants enter arena from center and reach to the circular boundary

Nb ants = 0 Nb phero = 0 t=0.00

Continuum to networks

Emergent networks

Expe: Perna, Granovskiy, Garnier, Nicolis, Labédan, Theraulaz, Fourcassié, Sumpter, PLoS CB 8 (2012), e1002592.

S. Garnier

Simulations: Boissard, PD, Motsch, JTB 66 (2013) 1267

S. Motsch

Imperial College London 1st step: kinetic equation

Start with individual particles
Construct Probability f=f(x,v,t)

Equation for f requires influence of any given particle on the system be very small

Propagation of chaos

Propagation of chaos may be untrue for systems exhibiting emergence

Carlen, Chatelin, PD, Wennberg, Physica D 260 (2013) 90 & M3AS 23 (2013) 1339.

Imperial College London 2nd step: complexity reduction

Remove velocity variable by integration

$$f(x,t) = \int f(x,v,t) dv \quad PARTICLE DENSITY AT X$$

$$(v)(x,t) = \frac{1}{g(x,t)} \int f(x,v,t) v dv \quad MEAN \quad VELOCITY \quad AT X.$$

Macroscopic equations (for ρ and <v>) derived from conservations

In classical cases (gases):

No conservations for "exotic" particles

Ex. vehicles: no momentum conservation

How to obtain macroscopic equations?

"weaker" conservation:

"generalized collision invariant"

Application: Vicsek

Self propulsion + alignment + noise

Macroscopic model is

$$\partial_t \rho + c_1 \nabla_x (\rho u) = 0$$

$$\rho \left(\partial_t u + c_2 (u \cdot \nabla_x) u \right) + P_{u^{\perp}} \nabla_x \rho = 0$$

$$|u| = 1$$

PD, Motsch, M3AS 18 Suppl (2008) 1193

Self-Organized Hydrodynamics (SOH)

Imperial College London Vicsek (micro) vs SOH (macro)

Micro model (Vicsek) Self propulsion + alignment + noise

Particles at t = 0.00

Particles

Density and velocity at t = 0.00

Density (color) Velocity (arrows)

Micro (Vicsek) Macro (SOH)

Micro at t = 20.00

Macro at t = 20.00

Density (color) Velocity (arrows)

Simulations by S. Motsch

Imperial College London Vicsek (micro) vs SOH (macro)

Self propulsion + alignment + noise + repulsion

Micro at t = 0.00

Macro (SOH)

Macro at t = 0.00

Density (color) Velocity (arrows)

Simulations by G. Dimarco and N. Mac

G. Dimarco

Blood capillary formation

Blood/O2 transport enhanced by capillaries

B. Aymard F. Plouraboué

B. Aymard, A. Lorsignol, L. Casteilla, P. Kennel, F. Plouraboué, PD, in preparation

Imperial College London Body attitude coordination

Imperial College London Body attitude coordination

Birds, fish: frames

Macroscopic model:

Frame alignment

PD, A. Frouvelle, S. Merino-Aceituno, arXiv:1605.03509 to appear in M3AS

A. Frouvelle S. Merino-Aceituno

Conclusion

Emergence: Property of systems that develop patterns on scales larger than those of their individual components

Emergent systems are important in science and engineering

Emergence is a phase transition: a brutal change of the system's properties in response to small parameter changes

Kinetic theory is a method of choice to derive models of emergent systems in line of Hilbert's 6th problem

But emergence requires developing concepts beyond the state of the art

Imperial College London Special thanks to my sponsors

Imperial College London

Since I'm in UK

When I was in France

