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Some particles
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Introduction

I Goal: Define a framework to analyze the size, shape and
orientation of particle populations.

I Impose minimal shape assumptions.

I Approach should be sophisticated enough to distinguish
important characteristics, but simple enough to allow
comparisons between populations.

I Minkowski tensors have been used to accomplish this in
material science.

I We use local stereology to estimate volume tensors of particle
populations.
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Volume tensors

Let K ⊂ R3 be a compact set.

Volume tensor of rank r ∈ N0

Φr (K ) =
1

r !

∫
K
x r dx

x r : Symmetric tensor product of rank r .

x0 = 1, x1 = x , x2 = (xixj)ij = xx>.

Volume tensors are a special case of Minkowski tensors
(Φr = Φ3,r ,0) which in turn are natural generalization of intrinsic
volumes.
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Important special cases

r = 0
Φ0(K ) = V (K ), the volume of K ,

r = 1
Φ1(K )/Φ0(K ) = c(K ), the centre of gravity.

r = 2: Shape and orientation information

Let
K̄ = (K − c(K ))/V (K )1/3,

then

Φ2(K̄ ) =
1

Φ0(K )5/3

(
Φ2(K )− Φ1(K )2

2Φ0(K )

)
.

If K is an ellipsoid (or a cuboid or ....), then Φ2(K̄ ) determines it
uniquely (up to scale and location).
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Volume tensors of particle populations

The particle process X

I Stationary marked point process

{[x(K );K − x(K )] | K ∈ X}.

I x(K ) is the reference point of the particle K ∈ X .

I Particle (mark) distribution is denoted by Q.

I Typical particle: K0 ∼ Q.

I Illustrate shape of the particle population by an ellipsoidal
approximation.
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Illustration of an ellipsoidal approximation

Miles ellipsoid

e(X ): ellipsoid with V (e(X )) = EV (K0),

Φ2(e(X )) = EΦ2(K0)− (EΦ1(K0))2/(2EΦ(K0))
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Motivation of the Miles ellipsoid

Particle cover density

fK0(x) =
P(x ∈ K0)

EV (K0)
, x ∈ R3.

The Miles ellipsoid e(X ) is the uniquely determined centered
ellipsoid such that a particle process with a deterministic ellipsoidal
mark has the same expected volume and covariance of the cover
density as X .

Moments of the cover density

EΦr (K0)

EV (K0)
=

1

r !

∫
R3

x r fK0(x) dx
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Estimating expected volume tensors
Aim: Estimate

EΦr (K0)

based on a sample

{K ∈ X | x(K ) ∈W }.

The estimator

E
∑

K∈X ,x(K)∈W Φr (K − x(K ))

N(W )

is ratio-unbiased for EΦr (K0) and it is consistent under suitable
assumptions in an expanding window regime.

I If we have a 3D image of each particle (with sufficient
resolution), we can calculate the volume tensors (up to very
small errors).

I If complete access to the sampled particles is not possible:
Stereological estimators of volume tensors.
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Estimating expected volume tensors

Suppose that Φ̂(K ) is a design-unbiased estimator of Φ(K ). Then,

Φ̂
N(W )
r :=

E
∑

K∈X ,x(K)∈W Φ̂r (K − x(K ))

N(W )

is ratio-unbiased for EΦr (K0) and it is consistent under suitable
assumptions in an expanding window regime.
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Isotropy assumptions

No isotropy assumption

I Slice estimators Φ̂

Restricted isotropy

Q is invariant under rotations around a fixed axis L1
I Slice estimators Φ̂

I Section estimators Φ̃

Rotation invariance
Q is rotation invariant

I Slice estimator Φ̂

I Section estimator Φ̃

I . . .
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Local stereology

I Design-based approaches.

I Sampling designs based on sections/slices containing a fixed
point or line.

I Many biological structures are naturally centered around a
point of reference.
Example: Nucleus of a cell.

I Convenient in microscopy because it avoids problems with
overprojection.
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Slice estimators: The optical rotator design
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Slice estimators for volume tensors

I L2 is a randomly rotated plane containing the vertical axis L1.

I T2 = L2 + B(O, t) is a vertical random slice.

I Let x ∈ R3. Then

P(x ∈ T2) =
2

π
arcsin

( t

d(x , L1)

)
.

I Design-unbiased estimator of Φr (K ):

Φ̂r (K ) =
1

r !

∫
K∩T2

x r P(x ∈ T2)−1 dx .

I Usually, the slice T2 is subsampled further.

I Final sample of the particle consists of approx. 12 points on
the boundary.
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Section estimators for volume tensors

I L2 is a randomly rotated plane containing the vertical axis L1.

I Restricted isotropy implies

EΦr (K0) = E
∫
M

Φr (RK0)dν(R) = EΦr (K0)

where M is the set of all rotations around L1, and ν is the
uniform probability measure on M.

I Design-unbiased estimator Φ̃r (K ) of Φr (K ) based on
observations in L2 is possible.

I Usually, the section L2 is subsampled further.

I Final sample of the particle consists of approx. 4 points on the
boundary.
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Comments on the construction of the estimators

I Slice estimators
I Rotational integral formula for volume tensors is used.
I Purely design-based estimator for Φr (K ).
I Under restricted isotropy, estimators may not “reflect” this

property.

I Section estimators
I Restricted isotropy assumption is used at the population level.
I Rotational integral formula for auxiliary quantity Φr which is

not a volume tensor.
I Estimators “reflect” restricted isotropy (if it holds or not).

I Section estimators are also possible without the restricted
isotropy assumption

I Slice estimators should also be possible under restricted
isotropy, smaller variance?
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Simulation comparison of slice and section estimators

Lévy particle model

Random deformations and translation of a prolate ellipsoid

I Model fulfils the restricted isotropy assumption

I 500’000 simulated particles

I Volume tensors estimated from n=10,20,50,100 particles in
500’000/n samples

I Slice estimator: approx. 12 points per particle

I Section estimator: approx. 4 points per particle
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Simulation results: mean (CV)

Slice estimators
n 10 20 50 100
v 606.86 (0.151) 606.86 (0.095) 606.86 (0.067) 606.86 (0.047)
z -0.073 (6.162) -0.074 (4.021) -0.074 (2.867) -0.074 (2.034)
a 5.821 (0.082) 5.841 (0.054) 5.848 (0.039) 5.852 (0.028)
b 4.981 (0.068) 4.977 (0.044) 4.976 (0.031) 4.975 (0.022)

Section estimators
n 10 20 50 100
v 606.33 (0.152) 606.33 (0.096) 606.33 (0.068) 606.33 (0.048)
z -0.069 (7.057) -0.069 (4.56) -0.069 (3.258) -0.069 (2.337)
a 5.797 (0.098) 5.832 (0.064) 5.844 (0.047) 5.85 (0.033)
b 4.992 (0.07) 4.981 (0.044) 4.976 (0.032) 4.974 (0.022)

True values
v = 606.55, z = −0.073, a = 5.857, b = 4.972
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Side note on the slice estimator for Φ2

Restricted isotropy

If Q is invariant under rotations around an axis L1, then

I

EΦ1(K0) ∈ L1

Project Φ̂n
1 onto L1.

I

EΦ2(K0) = BΛB>, Λ = diag(η1, η2, η2).

Estimate EΦ2(K0) as the minimizer of the Frobenius norm of

Φ̂n
2 − BΛ̃B>, Λ̃ = diag(β1, β2, β2).
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Statistical tests for isotropy

Based on the slice estimator
Under rotation invariance of Q it holds that

EΦ2(K0) = (φij)i ,j=1,2,3 = σ2I3

for some σ > 0.

Other possibilities (mostly unexplored)

I Compare slice estimator to restricted isotropy slice estimator

I Compare (unrestricted) section estimator to restricted isotropy
section estimator

I The same is possible for testing isotropy under the assumption
of restricted isotropy

I Tests for isotropy based on the characteristic function of the
cover density of the particle process
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A non-parametric test for isotropy

We want to test the hypothesis

H0 : φii = σ2 > 0, φij = 0, i 6= j .

Approximate the distribution of

(φ̂11, φ̂22, φ̂33, φ̂12, φ̂13, φ̂23)

by a six-dimensional normal distribution (delta method for n large
enough) and derive a χ2-statistic.
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Empirical level of the test
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Empirical level of the test

First model Second model
n 0.01 0.05 0.1 0.01 0.05 0.1 nsimu

25 0.003 0.042 0.100 0.001 0.026 0.082 4200
50 0.012 0.056 0.112 0.008 0.048 0.109 2100

100 0.012 0.070 0.127 0.012 0.056 0.111 1050
150 0.006 0.051 0.106 0.011 0.049 0.104 700
200 0.013 0.067 0.124 0.006 0.044 0.101 525
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Empirical power of the test
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Empirical power of the test

First model Second model
n 0.01 0.05 0.1 nsimu 0.01 0.05 0.1 nsimu

25 0.003 0.048 0.139 3840 0.018 0.252 0.500 2240
50 0.026 0.146 0.262 1920 0.355 0.733 0.871 1120

100 0.096 0.293 0.473 960 0.893 0.980 0.998 560
150 0.219 0.489 0.628 640 0.995 0.997 1 373
200 0.365 0.654 0.796 480 1 1 1 280
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Data example of the slice estimators

I Data collected from a histological slab of 140µm through the
human brain cortex.

I Slab has been taken perpendicular to the brain surface with a
random rotation around the normal to the brain surface.

I Interest: Nuclei of pyramidal neurons

I Question: Are the nuclei elongated perpendicular to the brain
surface like the pyramidal neurons?

I Data: n = 100 neuron nuclei, nucleolus as reference point.
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Results
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Results – cont’d

I Assumption: Restricted isotropy, because we only have one
rotated slice.

I Miles ellipsoid under restricted isotropy:
Prolate ellipsoid with rotation axis perpendicular to the brain
surface and semi axis 5.866 in this direction; other half-axis
lengths are 4.968.

I Miles ellipsoid under isotropy: Sphere with radius 5.251.

I Null hypothesis of isotropy is rejected at level α = 0.05.
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Summary

I Volume tensors provide descriptors of size, location, shape and
orientation of particles.

I In biological applications it is often not possible to observe the
entire boundary of particles of interest.

I We use local stereological estimators for volume tensors in a
combination of a model- and design-based approach.

I Volume tensors allow for easy interpretation of anisotropy
through the Miles ellipsoid.
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Outlook

I Two sample test for differences in shape and orientation.

I Minkowski tensors are natural extensions of intrinsic volumes.

I Is there interesting shape information that can be gathered by
estimating other Minkowski tensors than volume tensors?
(Local stereological estimators are available.)

I It is possible to estimate the characteristic function of the
cover density. This can also be used for inference and testing.
(Work in progress.)
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The characteristic function of the cover density

Characteristic function of the cover density

ϕK0(s) =

∫
R3

e i〈s,x〉fK0(x)dx , s ∈ R3.

We define the empirical characteristic function of the typical
particle K0

ϕ̃K0(s) =

∫
K0

e i〈s,x〉 dx ,

because
Eϕ̃K0(s)

EV (K0)
= ϕK0(s).
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The isotropic characteristic function

If Q is rotation invariant, then there is ψK0 : [0,∞)→ C with

ϕK0(s) = ψK0(‖s‖).

We can always define the isotropic characteristic function of fK0 by

ψK0(r) =
1

4πr2

∫
∂Br (0)

ϕK0(s)ds =

∫
R3

sin(r‖x‖)
r‖x‖

fK0(x)dx

and the empirical isotropic characteristic function by

ψ̃K0(r) =
1

4πr2

∫
∂Br (0)

ϕ̃K0(s) ds =

∫
K0

sin(r‖x‖)
r‖x‖

dx

because Eψ̃K0(r)/EV (K0) = ψK0(r).
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Testing for (restricted) isotropy

We are interested in testing one of the following hypothesis:

H0 : ϕK0(s) = ψK0(‖s‖), s ∈ R3,

H0 : ϕK0(s) = ϕL0(s), s ∈ R3,

H0 : ψK0(r) = ψL0(r), r ∈ [0,∞).

I Easy to derive a test also for restricted isotropy.

I Distribution under the null is more complicated as we have a
condition for all s ∈ R3 or r ∈ [0,∞).

I Possibilities:
I Test on a grid of points.
I Use pointwise tests and adjust for multiple testing.
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