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Fractal percolation
Let J:=[0,1?CR?, M€ N, M >2and p €[0,1].
1. Subdivide J into squares of sidelength 1/M and decide for

each of them independently whether it is kept (with prob. p)
or discarded (with prob. 1 — p).

Forn=23,...
n. Repeat step 1 for each of the squares kept in step n — 1.
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Let F(n) be the union of the squares kept in the n-th step.
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> for p < pc, F is almost surely totally disconnected (‘dustlike’),
» for p > pc, F percolates with positive probability.
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» [White 2000]: p.(2) > 0.8107
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v

F is a fractal (a self-similar random set).

v

For each n € Ny, F(n) is polyconvex. Intrinsic volumes are
well defined for F(n).

Let r := 1/M. We are interested in the limits

v

Zi(F) = lim r"C=REV,(F(n)).
» compare with fractal curvatures [Zahle 11]:

Ci(F) = Eli\%sD‘kEVk(Fg).
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Expected intrinsic volumes

Theorem (Existence of the limits)

Let F be a fractal percolation in RY with parameters M > 2 and
p € [0,1]. Then, for each k € {0, ...,

Zi(F) = lim r"PC=ROEV,(F(n))

n—o0

exists and is given by

Vk([07 l]d) + Z

TC{l,..‘,Md},|T|>2

FJ(n) is the union of the level-n
cubes contained in J;.
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The case d =2

In R2, the general formula reduces to
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where
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Reducing the dimension

» Let K1, K be two independent (1-dim.) fractal percolations
defined on / = [0, 1] (with the same M and p as F).

» For n €N, let Kj(n), i = 1,2 denote the n-th steps of their
construction.

> Let Kj(n), i = 1,2 be the random set, which equals K;(n)
with probability p and is empty otherwise.

Then for each n € N, in distribution
F(n) N F?(n) = ¢¥(Ki(n — 1) N Ka(n — 1)),

where 1) : | — R? is the similarity mapping / to J; N J.

In particular,

EVi(FY(n) N F3(n)) = r*p’EVi(Ki(n — 1) N Ka(n — 1)).
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Another approximation of F

Instead of the sequence F(n) consider the union G(n) of those
boxes @ of level n, which have a nonempty intersection with F.
Then

» G(n) C F(n),
F=0,6(n);
G(n) are still polyconvex;

v

v

v

similar formulas hold for the rescaled limits of expected
intrinsic volumes;

the survival probability p = p(p) := P(F # () appears

v
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In F(n) diagonal connections are counted,
which produce many extra holes. But di-
agonal connections do not survive in F.
Consider the closed complements of F(n)
in J =0, 1]¢:

C(n)=J\ F(n).

Then —Vp(C(n)) corresponds to the Eu-
ler characteristic of F(n) with a 4-neigh-
borhood (no diagonal connections).

Vi(F) := lim r"P=RREV,(C(n))

n—oo
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Open Questions
> Is the zero of the rescaled limit of expected Euler

characteristics a lower bound for p.?
Does Zo(Fp) > 0 imply p < pc?

Zo(Fy) = lim rP"Vo(Fo(n)
» What is the best approximation of F?
(C(n))n? Parallel sets? etc.

» similar relations for other scale invariant models (Boolean
multiscale models, Brownian loop soup, ...) [Broman,Camia 10]
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