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Anisotropy of Hölder Gaussian random fields:
characterization, estimation,

and application to image textures.

Frédéric RICHARD

Institute of Mathematics of Marseille, Aix-Marseille University.

19th workshop on Stochastic Geometry, Stereology and
Image Analysis (SGSIA)

CIRM, may, 2017.

1 / 23



Frédéric Richard, AMU, 2017

Introduction Characterization Estimation Application Conclusion

Context and goal

• Context: analysis of rough anisotropic textures of images,
• Goal: characterization and estimation of directional

properties associated to the field regularity.
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Outline of the talk

1. Characterization.

2. Estimation.

3. Application.
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Hölder regularity

• A field Z is Hölder of order H ∈ (0,1) if

|Z (x)− Z (y)| ≤ A|x − y |α

holds a.s. for any α < H, but not for α > H.
• If Z is Gaussian and stationary with an autocovariance

E(Z (x + h)Z (x)) = 1
(2π)d

∫
Rd ei〈w ,h〉f (w)dw ,

characterized by a spectral density f .

• Then, Z is H-Hölder iff, for any 0 < α < H and H < β < 1,
there exist A,B,C > 0 s.t. when |w| > A

(1) f (w)|w |2α+d ≤ B,

(2) f (w)|w |2β+d ≥ C,

whenever arg(w) is in a set Eβ of positive measure.
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Asymptotic topothesy

• Example (anisotropic fractional Brownian field (*)):

∀ |w | > A, gτ,β(w) = τ(arg(w))|w |−2η(arg(w))−d

is Hölder of order H = essinf {η(s), τ(s) > 0}.

• A more generic model: for some A, γ > 0,

|w | > A⇒ 0 ≤ f (w)− gτ,η(w) ≤ C|w |−2H−d−γ .

• For such a model, there exists a bounded and
non-vanishing function τ∗ defined as

τ∗(s) = lim
ρ→+∞

ρ2H+d f (ρs)

for almost all spectral directions s.

(*) Bonami and Estrade, 2004
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Asymptotic topothesy and regularity

• Since τ∗ is bounded, Hölder index ≥ H.

• E0 = {s, τ∗(s) > 0} indicates spectral directions where

• density convergence is at lowest speeds of order ρ2H+d ,
• high-frequencies are the largest.

• Due to high-frequencies in these directions, the field
regularity is ≤ H.

• The asymptotic topothesy: quantifies contributions of
directional high-frequencies to the field irregularity.
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A non-stationary framework

• Due to the presence of large polynomial trend, the
stationarity assumption is not satisfactory.

• We rather assume that the field is intrinsic, meaning that it
has only stationary increments of a specified order.

• Gaussian IRF are characterized by generalized covariance
C having a spectral representation
[Ref. Gelfand & Villenkin, 1964; Matheron 1973].

• Weak integrability condition on the density:∫
|w |<ε

|w |2M+2f (w)dw <∞.
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Image analysis

• Observed image: Z N [m] = Z (m/N),m ∈ [[1,N]]d .

• Increments of order > M at different scales and in different
orientations:

∀m ∈ Zd ,V N
u [m] =

∑
k∈Z2

v [k ]Z N [m − Tuk ],

with a kernel v of order > M, and a transform Tu (rotation
of angle arg(u) and a rescaling of factor |u|).

• Quadratic variations:

W N
u =

1
Ne

∑
m∈EN

(V N
u [m])2.
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Asymptotic normality

Theorem (Richard, 2016)
Let Y N

u = log(W N
u ) and xN

u = log(|u|2/N). Define εNu such that

Y N
u = H xN

u + log(βH,τ∗(arg(u))) + εNu ,

with

βH,τ∗(θ) =
1

(2π)d

∫
S
τ∗(ϕ) ΓH,v (θ − ϕ) dϕ = τ∗ ~ ΓH,v (θ),

and
ΓH,v (θ) =

∫
R+

|v̂ (ρθ)|2 ρ−2H−1dρ,

Then, as N tends to +∞, the random vector (N
d
2 εNu )u∈F tends

in distribution to a centered Gaussian vector.
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An inverse problem

Problem 1: For j ∈ J , let β̃j be the estimate of β(θj) in some
indexed directions θj , and H̃ an estimate of H. Define a
generalized least square criterion

CH̃,β̃(τ) =
∑

j,k∈J
γj,k (β̃j − ΓH̃,v ~ τ(θj))(β̃k − ΓH̃,v ~ τ(θk )),

Find τ∗ as the function of L2([0,2π)) which minimizes CH̃,β̃.

Problem 2: Find τ∗ which minimizes a penalized l.s. criterion

C̃H̃,β̃,λ(τ) = CH̃,β̃(τ) + λ|τ − τ0|2W , (1)

where λ > 0, τ0 =
∫

[0,π) τ(θ)dθ and | · |W a Sobolev norm.
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Implementation
• Expansion in a cos/sin basis:
τ(θ) = τ0 +

∑A
m=1 τ1,m cos(2mθ) + τ2,m sin(2mθ).

• Discretized criterion:

C̃A
H̃,β̃,λ(τ) = |Lτ − β̃|2Γ + λ τT Rτ

• Expressions of relative bias and standard deviation:

rBIAS =
|E(τ̃∗λ)− τ∗|
|τ∗|

≤ λκ|R|
λ+ ν+

,

rSTD =

√
trace(V(τ̃∗λ))

|τ∗|
≤

κν+
√
ν−
√

t
β′Γβ (λ+ ν+)

.

where ν+, ν−, κ, t are the largest and lowest eigenvalues,
the conditioning number and the trace of (L′ΓL)−1,
respectively.

• The RMSE is minimal for

λ∗ =
ν+ν− t
|R|2 β′Γβ

.
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Numerical study
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Figure: Errors obtained (a) without and (b) with penalization.

Data: 10000 simulations of anisotropic fractional Brownian
fields with uniformly sampled Hurst index.
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Glossy Semi-glossy Matte

• Texture of papers: critical feature for conservators, artists,
and manufacturer.

• Automated paper classification.
• Collection of raking-light photomicrographs (Paul Messier,

conservator in MoMA, NY).
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Paper classification
Two classification features: estimates of the Hurst index and an
anisotropy index defined as

I =

√√√√∫
[0,π)

(
τ∗(s)−

∫
[0,π)

τ∗(u)du

)2

ds.
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Comparison of affinity matrices
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• In brief,
• asymptotic topothesy: a spectral characterization of

directional properties associated to the Holder regularity of
Gaussian fields,

• estimation of this function based on quadratic variations of
increments and their asymptotic properties.

• classification of photographic paper textures.

• Perspectives :
• a partial answer to the issue of the estimation of the

topothesy function of anisotropic fractional Brownian field,

• information about field covariance structure that can be
used to deal other image processing tasks (separation
trend/texture, examplar-based simulation, inpainting,...).

21 / 23



Frédéric Richard, AMU, 2017

Introduction Characterization Estimation Application Conclusion

• In brief,
• asymptotic topothesy: a spectral characterization of

directional properties associated to the Holder regularity of
Gaussian fields,

• estimation of this function based on quadratic variations of
increments and their asymptotic properties.

• classification of photographic paper textures.

• Perspectives :
• a partial answer to the issue of the estimation of the

topothesy function of anisotropic fractional Brownian field,

• information about field covariance structure that can be
used to deal other image processing tasks (separation
trend/texture, examplar-based simulation, inpainting,...).

22 / 23



Frédéric Richard, AMU, 2017

Introduction Characterization Estimation Application Conclusion

References
F. Richard, Anisotropy of Holder Gaussian random fields: characterization, estimation, and application to image
textures, preprint 2016.

F. Richard, Some anisotropy indices for the characterization of Brownian textures and their application to breast
images, Spatial Statistics, 18:147–162, 2016.

F. Richard, Tests of isotropy for rough textures of trended images, Statistica Sinica, 26:1279-1304, 2016.

F. Richard, Analysis of anisotropic Brownian textures and application to lesion detection in mammograms, Procedia
Environmental Sciences, 27:16-20, 2015.
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H. Biermé and F. Richard, ”Analysis of Texture Anisotropy Based on Some Gaussian Fields with Spectral Density”,
Springer Proceedings: Mathematical Image Processing, Editor M. Bergounioux, pp. 59-73, 2011.
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