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Random tessellations

Three reference models

Poisson line
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o (H,9) ...the space of hyperplanes in RY,

e A ...translation invariant measure on (7, )
(directional distribution not concentrated on a set of
hyperplanes parallel to one line)

@ Consider the Poisson point process I on
Hx(0,00) (hyperplanes marked with birth times)
with intensity measure

A(dh) ds

o Space-time process (I'¢, t > 0) with

e={(h,s)erl: s<t}
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Simulations of STIT tessellations

isotropic model




Simulations of STIT tessellations

3d isotropic STIT model (Ohser/Redenbach/Sych)
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STIT tessellation process

In any bounded window (convex polytope) W:
This STIT construction yields a pure jump Markov process

(YeAW, t<0)

on the space of tessellations of W'.
It has the initial state Yo A W = W and the generator

Le(y) =Y /[ [8(220(1) 8] A

zey z

for all nonnegative measurable functions g on the set of
tessellations of W, and the operator

@zn(y) = (y\{zh)u{znh*,znh"}

i.e. @z.n(y) is the tessellation that arises from y by splitting the
cell z by the hyperplane h.
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STIT tessellation process

The process (Y: A W, t <0) is consistent in space, and therefore
there is a STIT tessellation process on RY,

(Ye, t>0)

Important properties:
o Y;is stationary in space (homogeneous) for all t > 0
o t- Yt Y7 for all t > 0,
but (t- Y: t > 0) is not stationary!!
o (ef- Yet t € R) is stationary in time

° Ys+t Ys EEthoralls t>0
(B ...iteration/nesting of tessellations)



STIT tessellations share several properties with Poisson
hyperplane tessellations

Intuitively:

If we are sitting in a fixed point of the space and only see, how the
cell around this observation point develops in time,

we cannot distinguish (in distribution)

whether we are sitting in a STIT process or in a Poisson hyperplane
tessellation process driven by the same hyperplane measure A.
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Theorem (Mecke formula for Poisson hyperplane processes
with birth times)
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Mecke formula for Poisson hyperplane processes

Recall:

Theorem (Mecke formula for Poisson hyperplane processes
with birth times)

Let I' be a Poisson process on H x (0, 00) (of hyperplanes with
birth times) with intensity measure A(dh) ds and
g : N x H x (0,00) — R a nonnegative measurable function. Then

/ > (v, hs)Pr(dy) = /// (v+0(h,s)> hs s, )Pr(dy)A(dh) ds

(h,s)ey

Note: A hyperplane (h,s) of the Poisson hyperplane process (with
birth times), does neither depend on the past nor it has an impact
on the hyperplanes in future.

In contrast, if a hyperplane divides a cell of STIT at a time s then
this has an impact on the cell division after time s.
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Mecke type formula for STIT tessellations

Theorem (Mecke type theorem for STIT; N./N./Th./W.)

Let M be the process of birth time marked maximal

(d — 1)-polytopes of a STIT tessellation process (Y;, t > 0) driven
by a hyperplane measure A. Then

Z g(mnz(p,s),z(p,s), p,s) Pu(dm)

(p,s)em
11121
g((mgi)s) A(zN h+))U(mE_2|r)s) A(zNh™)),z,zNh, s)

Ppi(dm®) Pp(dm®)) Py, (dys) A(dh) ds

for all nonnegative measurable functions g.



The proof uses the 'global construction’ (rather involved !!) by
Joseph Mecke of STIT tessellations and the Mecke formula for
Poisson point processes.



Application: Maximal k-polytopes

STIT process in RY,
the d-dim. cells are divided by (d — 1)-dim. hyperplanes

= (d — 1)-dim. maximal polytopes

the k-dimensional faces of maximal (d — 1)-polytopes,
k=0,..,d—2
maximal k-polytopes

They appear as the intersection of certain sequences of d — k
maximal polytopes of dimension d — 1.



Application

For k =0,...,d — 2 consider a tuple

((p1,51)s -+ > (Pd—ksSd—k))

of maximal (d — 1)-polytopes together with their birth times with
51 <...< Sq_k, and

p= ﬂ;jz_lk pi is a maximal k-polytope.



Application

For k =0,...,d — 2 consider a tuple

((p1,51)s -+ > (Pd—ksSd—k))

of maximal (d — 1)-polytopes together with their birth times with
51 <...< Sq_k, and

p= ﬂ;jz_lk pi is a maximal k-polytope.

For a fixed time t and j = 0, ..., k denote by
()
@(ﬁﬁh---ﬁd—k)i

the distribution of the typical Vj-weighted maximal k-polytope
(marked with the birth times) of STIT.



Application

Theorem

Letd >2, ke{0,...,d—1},j€{0,...,k} and t > 0. The

marginal distribution Qg)t of the birth times 3 = (f1, ..., Bd—«)

of the typical Vj-weighted maximal k-polytope has the density
k—j

S
(S, Sd—k) —> (d—j)(d—k—l)!% 1{0< sy <...<sqg_j <t}

with respect to the Lebesgue measure on RY.



Application

Corollary

Let d > 2, k € {0,. —1}and j €{0,... k}.

The marginal dlstrlbut|on Qﬁ) of the last birth time of the
typical Vj-weighted maximal k- polytope has the density

d—j—1
Sd

Sd— k’—)(d J) 1{0<Sd k<t}

with respect to the Lebesgue measure on R.



Application

Corollary
For all sy_x < t, the conditional distribution
@U) of the birth times (B1, ..., Bd—k—1),

(B1ye-sBd—k—1),t|Bd—k=Sd—k
given By_x = Sq_k has the density
(51, 5d—k1) > (d— k= 1)s; 9 V10 < 5y < ... < sq4}

In particular, this conditional distribution does not depend on J,
and it is the uniform distribution on the (d — k — 1)-simplex
{(51, e ,Sd,kfl) eRIk1.0< S1 < ... <Sqg—k-1< Sdfk}-
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Application

Theorem

Let d >2, ke {0,...,d =1}, €{0,...,k}, t >0,
g : Pi x (0,t)97% — R non-negative and measurable. Then

[e@90, , dan=[ [ [eas

)
@F’ | Bd—k=5d— k(dq) Q({gl~--~78d—k—1)»t‘8dfk:5d7k(d(sh + 5 5d—k-1))

QYY) (dse—)

i.e. the typical Vj-weighted maximal k-polytope P and

(81, ..., Bd—k—1) are conditionally independent, given the last
birth time Sy_x = sq_k. This can also be interpreted as a Markov
property for functionals of the STIT tessellation processes.



Application

Theorem (N./Nguyen/Thale/WeiB)

Let d > 2, t > 0. The probabilities p1,1(n) for exactly n nodes
in the relative interior of the

length weighted typical maximal segment

are given by

p1,1(n)

+1)(d -
525d 1 d t —2S4_1 — Sqd— 2—...—51)"
dsy...dsy_
// / tdld = Sg1—540—...—s)miz o

forne {0,1,2,...}.




