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Random tessellations

Three reference models

Poisson-Voronoi STIT Poisson line



Translation invariant measure on the space of hyperplanes

(H,H) . . . the space of hyperplanes in Rd ,

Λ . . . translation invariant measure on (H,H)
(directional distribution not concentrated on a set of
hyperplanes parallel to one line)

Consider the Poisson point process Γ on
H×(0,∞) (hyperplanes marked with birth times)
with intensity measure

Λ(dh) ds

Space-time process (Γt , t > 0) with

Γt = {(h, s) ∈ Γ : s ≤ t}
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W ... window, [W ] = {h ∈ H : h ∩W 6= ∅},
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Poisson hyperplane vs. STIT tessellation processes
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If a hyperplane intersects more than one cell (polytope), z1, . . . , zk ,
say, then select zj for division with probability

Λ([zj ])∑k
i=1 Λ([zi ])

, j = 1, . . . , k ,

where [zj ] = {h ∈ H : h ∩ zj 6= ∅}.
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If a hyperplane intersects more than one cell (polytope), z1, . . . , zk ,
say, then select zj for division with probability
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Simulations of STIT tessellations

four directions



Simulations of STIT tessellations

isotropic model



Simulations of STIT tessellations

3d isotropic STIT model (Ohser/Redenbach/Sych)



STIT tessellation process

In any bounded window (convex polytope) W :
This STIT construction yields a pure jump Markov process

(Yt ∧W , t ≤ 0)

on the space of tessellations of W .

It has the initial state Y0 ∧W = W and the generator

Lg(y) =
∑
z∈y

∫
[z]

[g(�z,h(y))− g(y)] Λ(dh)

for all nonnegative measurable functions g on the set of
tessellations of W , and the operator

�z,h(y) := (y \ {z}) ∪ {z ∩ h+, z ∩ h−}

i.e. �z,h(y) is the tessellation that arises from y by splitting the
cell z by the hyperplane h.
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STIT tessellation process

The process (Yt ∧W , t ≤ 0) is consistent in space, and therefore
there is a STIT tessellation process on Rd ,

(Yt , t > 0)

Important properties:

Yt is stationary in space (homogeneous) for all t > 0

t · Yt
D
= Y1 for all t > 0,

but (t · Yt , t > 0) is not stationary!!

(et · Yet , t ∈ R) is stationary in time

Ys+t
D
= Ys � ~Yt for all s, t > 0

(� . . . iteration/nesting of tessellations)
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STIT tessellations share several properties with Poisson
hyperplane tessellations

Intuitively:
If we are sitting in a fixed point of the space and only see, how the
cell around this observation point develops in time,
we cannot distinguish (in distribution)
whether we are sitting in a STIT process or in a Poisson hyperplane
tessellation process driven by the same hyperplane measure Λ.
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Mecke formula for Poisson hyperplane processes

Recall:

Theorem (Mecke formula for Poisson hyperplane processes
with birth times)

Let Γ be a Poisson process on H× (0,∞) (of hyperplanes with
birth times) with intensity measure Λ(dh) ds and
g : N×H× (0,∞)→ R a nonnegative measurable function. Then∫ ∑

(h,s)∈γ

g(γ, h, s)PΓ(dγ) =

∫ ∫ ∫
g(γ+δ(h,s), h, s, )PΓ(dγ)Λ(dh) ds.

Note: A hyperplane (h, s) of the Poisson hyperplane process (with
birth times), does neither depend on the past nor it has an impact
on the hyperplanes in future.
In contrast, if a hyperplane divides a cell of STIT at a time s then
this has an impact on the cell division after time s.
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Mecke type formula for STIT tessellations

Recall the construction of STIT
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maximal (d − 1)-polytope

The birth time of the maximal polytopes is essential!
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maximal (d − 1)-polytope

The birth time of the maximal polytopes is essential!



Mecke type formula for STIT tessellations

Theorem (Mecke type theorem for STIT; N./N./Th./W.)

Let M be the process of birth time marked maximal
(d − 1)-polytopes of a STIT tessellation process (Yt , t > 0) driven
by a hyperplane measure Λ. Then∫ ∑

(p,s)∈m

g
(

m ∧ z(p, s), z(p, s),

p, s
)
PM(dm)

=

∫ ∫ ∫ ∑
z∈ys

∫ ∫

g
(

(m
(1)
(+s) ∧ (z ∩ h+)) ∪ (m

(2)
(+s) ∧ (z ∩ h−)), z ,

z∩h, s
)

PM(dm(1))PM(dm(2))

PYs (dys) Λ(dh) ds

for all nonnegative measurable functions g .
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The proof uses the ’global construction’ (rather involved !!) by
Joseph Mecke of STIT tessellations and the Mecke formula for
Poisson point processes.



Application: Maximal k-polytopes

STIT process in Rd ,

the d-dim. cells are divided by (d − 1)-dim. hyperplanes

⇒ (d − 1)-dim. maximal polytopes

the k-dimensional faces of maximal (d − 1)-polytopes,
k = 0, ..., d − 2,

maximal k-polytopes

They appear as the intersection of certain sequences of d − k
maximal polytopes of dimension d − 1.



Application

For k = 0, ..., d − 2 consider a tuple

((p1, s1), . . . , (pd−k , sd−k))

of maximal (d − 1)-polytopes together with their birth times with
s1 < . . . < sd−k , and

p =
⋂d−k

i=1 pi is a maximal k-polytope.

For a fixed time t and j = 0, ..., k denote by

Q(j)

(P,β1,...,βd−k ),t

the distribution of the typical Vj -weighted maximal k-polytope
(marked with the birth times) of STIT.
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Application

Theorem

Let d ≥ 2, k ∈ {0, . . . , d − 1}, j ∈ {0, . . . , k} and t > 0. The

marginal distribution Q(j)
β,t of the birth times β = (β1, . . . , βd−k)

of the typical Vj -weighted maximal k-polytope has the density

(s1, . . . , sd−k) 7→ (d−j)(d−k−1)!
sk−jd−k
td−j

1{0 < s1 < . . . < sd−k < t}

with respect to the Lebesgue measure on Rd−k .



Application

Corollary
Let d ≥ 2, k ∈ {0, . . . , d − 1} and j ∈ {0, . . . , k}.
The marginal distribution Q(j)

βd−k ,t
of the last birth time of the

typical Vj -weighted maximal k-polytope has the density

sd−k 7→ (d − j)
sd−j−1
d−k
td−j

1{0 < sd−k < t}

with respect to the Lebesgue measure on R.



Application

Corollary
For all sd−k < t, the conditional distribution

Q(j)
(β1,...,βd−k−1),t|βd−k=sd−k

of the birth times (β1, . . . , βd−k−1),

given βd−k = sd−k has the density

(s1, . . . , sd−k−1) 7→ (d − k − 1)! s
−(d−k−1)
d−k 1{0 < s1 < . . . < sd−k}

In particular, this conditional distribution does not depend on j ,
and it is the uniform distribution on the (d − k − 1)-simplex
{(s1, . . . , sd−k−1) ∈ Rd−k−1 : 0 < s1 < . . . < sd−k−1 < sd−k}.



Application

Theorem

Let d ≥ 2, k ∈ {0, . . . , d − 1}, j ∈ {0, . . . , k}, t > 0,
g : Pk × (0, t)d−k → R non-negative and measurable. Then∫

g(q, s)Q(j)

(P,β1,...,βd−k ),t
(d(q, s)) =

∫ ∫ ∫
g(q, s)

Q(j)

P,t|βd−k=sd−k
(dq) Q(j)

(β1,...,βd−k−1),t|βd−k=sd−k
(d(s1, . . . , sd−k−1))

Q(j)
βd−k

(dsd−k)

i.e. the typical Vj -weighted maximal k-polytope P and
(β1, . . . , βd−k−1) are conditionally independent, given the last
birth time βd−k = sd−k . This can also be interpreted as a Markov
property for functionals of the STIT tessellation processes.
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Application

Theorem (N./Nguyen/Thäle/Weiß)

Let d ≥ 2, t > 0. The probabilities p1,1(n) for exactly n nodes
in the relative interior of the
length weighted typical maximal segment
are given by

p1,1(n)

=(n + 1)(d − 1)!∫ t

0

∫ sd−1

0
. . .

∫ s2

0

s2
d−1

td−1

(d · t − 2sd−1 − sd−2 − . . .− s1)n

(d · t − sd−1 − sd−2 − . . .− s1)n+2
ds1 . . . dsd−1

for n ∈ {0, 1, 2, . . .}.


