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Dendrite networks of neurons (green lines):

How do we construct an isotropic auto-covariance function Co for the
diameter Y (e.g. a GRF):

cov(Y (u),Y (v)) = Co(d(u, v))

and what should the metric d be?
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Point patterns on linear networks:
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How do we construct point processes with an isotropic (pseudo-stationary)
pair correlation function

pcf(u, v) = go(d(u, v))

and what should the metric d be?
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Need for a more general definition than linear networks

Linear network = union of a finite collection of line segments in R2;
distance = shortest path distance.

Example (road networks):

bridges and tunnels can generate networks which do not have a planar
representation as a union of line segments in R2;

varying speed limits or number of traffic lanes may require distances
on line segments to be measured differently than their spatial extent.
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Definition 1

A graph with Euclidean edges is a triple G = (V, E , {ϕe}e∈E) s.t.

(a) Graph structure: (V, E) is a finite simple connected graph
(V is finite; every pair of vertices is connected by a path;
no multiple edges or loops).

(b) Edges are sets: Each edge e = {u, v} ∈ E is associated with a set,
also denoted e, where V and all edge sets e ∈ E are mutually disjoint.

(c) Edge coordinates: If e = {u, v} ∈ E , then {e, e} := ϕe({u, v}) ⊂ R
s.t. ϕe : e ∪ {u, v} 7→ [e, e] is a bijection.

(d) Distance consistency: If e = {u, v} ∈ E , then

dV(u, v) = len(e) := e − e

where dV is the standard shortest-path weighted graph metric with
edge weights given by len(e) for e ∈ E .
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The two graphs on the left are graphs with Euclidean edges
(the blue dots represent the vertices, the grey lines (as subsets of R2)
represent the edges, and edge coordinates are given by arc-length.)

However, the right most graph is not a graph with Euclidean edges:
there are multiple edges; and distance consistency is violated.
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A linear network...
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A linear network... is clearly a graph with Euclidean edges
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A graph with Euclidean edges which is not a linear network
(has no planar representation):
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Definition 2 (Geodesic metric)

Write u ∈ G as a synonym for u ∈ V ∪
⋃

e∈E e.

The length of an edge or partial edge of the form ϕ−1
e (I ) (I ⊆ [e, e]) is

given by the Euclidean length of I .

Similarly, define the length of a path puv between two points u, v ∈ G.

The geodesic metric on G (shortest path distance): For u, v ∈ G,

dG (u, v) := inf{len(puv ) : paths puv connecting u and v}.

As soon argued, we want in addition another metric related to electrical
network theory...
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Electrical network

Definition from physics: For a finite (or countable) graph with each edge
representing a resistor, the resistance between nodes u and v is the
voltage drop from u to v when a current of one ampere flows from u to v .
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Definition 3 (Extension of resistance distance on V to G)

Define the resistance metric as the variogram of an auxiliary random
field ZG :

dR(u, v) := var(ZG(u)− ZG(v)) u, v ∈ G,

where ZG is a finite sum of independent, mean zero, GRFs:

ZG(u) := Zµ(u) +
∑

e∈E(G)

Ze(u)

where

Zµ is defined on
I V(G) using a covariance matrix related to the so-called graph Laplacian

in electrical network theory (...)
I on each edge by linear interpolation;

Ze(u) = Be(ϕe(u)) if u ∈ e, where Be is an independent Brownian
bridge defined over [e, e], and Ze(u) = 0 if u 6∈ e.
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Why it is natural to consider dR

Physical meaning: resistance makes it natural for applications
associated with flow and travel time across road networks.

Purely mathematical reason: solve a key degeneracy problem for
developing isotropic auto-covariance functions w.r.t. dG (more later).

Theorem 1 dR(u, v) is a metric which is an extension of the classic
(effective) resistance metric when viewing G as an electrical network over
nodes V and with resistors given by len(e) for e ∈ E .

Theorem 2 dR(u, v) ≤ dG (u, v) with equality iff G is a tree.

Theorem 3 dR(u, v) is invariant to splitting edges and to merging edges
at degree two vertices.
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One main result (reproducible Hilbert space embedding)

Definition 4 For an arbitrary chosen origin uo ∈ V, let F be the class of
functions f : G 7→ R continuous with respect to dG s.t. for all e ∈ E , the
restriction of f to e, fe , is absolutely continuous and f ′e ∈ L2([e, e]). Define

〈f , g〉F := f (uo)g(uo) +
∑

e∈E(G)

∫ e

e
f ′e (t)g ′e (t) dt, f , g ∈ F .

Theorem 4 (RPHS) (F , 〈·, ·〉F ) is an infinite-dimensional Hilbert space
with (reproducing kernel) RG(u, v) = cov(ZG(u),ZG(v)) = . . . (see
expression in the paper) and hence we have an explicit expression for

dR(u, v) = RG(u, u) + RG(v , v)− 2RG(u, v)

= sup
f ∈F

{
|f (u)− f (v)|2 : ‖f ‖F ≤ 1

}
.
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Another main result (Hilbert space embedding)

Definition 5 If (X , d) is a distance space, then Co is an isotropic
auto-covariance function on (X , d) iff Co(d(x , y)) : X × X 7→ R is p.s.f.

To obtain isotropic auto-covariance functions on (G, dR) and (G, dG ), we
use certain Hilbert space embeddings, including

Theorem 5 (G, dG )

√
·

↪→ H

and based on deep results of von Neumann and Schoenberg from the
1930’s and 1940’s...
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Yet another main result — for the resistance metric!

Theorem 6 For σ2, β > 0, we have parametric families of isotropic
auto-covariance functions on (G, dR):

Power exponential covariance function:

Co(s) = σ2 exp (−βsα) , α ∈ (0, 1].

Generalized Cauchy covariance function:

Co(s) = σ2 (βsα + 1)−ξ/α , α ∈ (0, 1], ξ > 0.

The Matérn covariance function:

Co(s) = σ2

(
βs
)α

Kα
(
βs
)

Γ(α)2α−1
, α ∈ (0, 1/2].

The Dagum covariance function:

Co(s) = σ2

[
1−

(
βsα

1 + βsα

)ξ/α]
, α, ξ ∈ (0, 1].

Each Co is strictly p.d. and completely monotonic.
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For the geodesic metric!

Theorem 7 Theorem 6 applies also on (G, dG ) provided G is a tree, a
cycle or a finite 1-sum of trees and cycles.

Definition 6 Suppose G1 = (V1, E1, {ϕe}e∈E1) and G2 = (V2, E2, {ϕe}e∈E2)
have only a vertex vo in common, i.e. G1 ∩ G2 = {vo}. The 1-sum of G1

and G2 is G = (V1 ∪ V2, E1 ∪ E2, {ϕe}e∈E1∪E2).

● ● ●
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Forbidden graph for the geodesic metric

Theorem 8 If G has three paths which have common endpoints but are
otherwise pairwise disjoint, then ∃β > 0 s.t. s 7→ exp(−βs) (s ≥ 0) is not
an isotropic auto-covariance function on (G, dG ).
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Some other results

Theorem 9 Let Co be one of the functions given in (I)-(IV) in Theorem 6
but with α outside the parameter range (α > 1 in (I), (II), or (IV), and
α > 1/2 in (III)). Then there exists a star-shaped graph with Euclidean
edges G s.t. s 7→ exp(−βs) (s ≥ 0) is an isotropic auto-covariance function
on (G, dG ), but Co is not an isotropic covariance function on (G, dG ).

Theorem 10 If Co is an auto-covariance function on (G, dG ) for all
star-shaped graphs with Euclidean edges G, then Co ≥ 0 and either Co has
unbounded support or Co(t) = 0 ∀t > 0.

NB: I Theorems 9 and 10, ”(G, dG )” can be replaced by ”(R, dG )”.
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Simulations of LGCPs using exponential auto-covariance
functions:

Given a realisation of a GRF Y on G with exponential auto-covariance
function, simulate a Poisson process with intensity function exp(Y ).

β = 0.1
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