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Motivation
Does there exist a transport kernel for any pair of measures ϕ and ψ
on Rd with ϕ(Rd) = ψ(Rd) satisfying the following?

(1) Depends on ϕ and ψ in a measurable and translation-invariant way,

(2) and balances between ϕ and ψ:

T (x,B), ∀x ∈ Rd, B ∈ B(Rd),
T (x,Rd) = 1,∫

T (x,B)ϕ(dx) = ψ(B).

Trivial for finite measures, but false for general measures!

Almost Sure Existence for Random Measures

Theorem 1 [2]

If Φ and Ψ are ergodic stationary random measures on Rd, then
there exist a transport kernel satisfying (1) and almost surely (2)
for Φ and Ψ, if and only if the intensities λΦ and λΨ are equal.

This theorem in [2] is merely based on [H. Thorisson, 1996].

Main Problem

Problem

Construct a transport kernel as in Theorem 1 explicitly.

Many solutions in the last decade for the case of the Lebesgue
measure and a point process. A break-through is [1].

Our Method

Idea

Impose the condition
T (x, ·) ≤ ψ(·)

and relax the equalities of (2).

Work with the Radon-Nikodym derivative f :

T (x,B) =
∫
B

f (x, ξ)ψ(dξ).

Definition

Relaxation of (2): Sub-balancing:∫
f (x, ξ)ψ(dξ) ≤ 1, ∀x ∈ Rd∫
f (x, ξ)ϕ(dx) ≤ 1, ∀ξ ∈ Rd

Constrained (sub-balancing transport) density: additionally,
0 ≤ f ≤ 1

Notation:
• site: a point in the support of ϕ.
• center: a point in the support of ψ.
Algorithm overview to construct a constrained density: Infinitely
many stages, at each stage:
• Each site applies to the as close as possible centers, taking into
account the previous rejections.

• Each center rejects some portion of applications if it has reached its
capacity, keeping the as close as possible applications.

Algorithm (Site-Optimal Transport Density)

Given measures ϕ and ψ on Rd, define
fs(x, ξ) := lim

n→∞
An(x, ξ)−Rn(x, ξ),

where the functions are defined recursively: Let R0(x, ξ) := 0 and
for each n ≥ 1,
(i) Define the application radius of each site x0 by

an(x0) := sup

{
a :
∫
Ba(x0)

(1−Rn−1(x0, ξ))ψ(dξ) ≤ 1

}
,

and the application function by

An(x0, ξ) :=

 1 |x0 − ξ| < an(x0),
cRn−1(x0, ξ) + (1− c) |x0 − ξ| = an(x0),
0 |x0 − ξ| > an(x0),

where c = cn(x0) is the constant in [0, 1] s.th.∫
Rd

(An(x0, ξ)−Rn−1(x0, ξ))ψ(dξ) = 1 if an(x0) <∞.

(ii) Define the rejection radius of each center ξ0 by

rn(ξ0) := sup

{
r :
∫
Br(ξ0)

An(x, ξ0)ϕ(dx) ≤ 1

}
,

and its rejection function by

Rn(x, ξ0) :=

 0 |x− ξ0| < rn(ξ0),
c′An(x, ξ0) |x− ξ0| = rn(ξ0),
An(x, ξ0) |x− ξ0| > rn(ξ0),

where c′ = c′n(ξ0) is the constant in [0, 1] s.th.∫
Rd

(An(x, ξ0)−Rn(x, ξ0))ϕ(dx) = 1 if rn(ξ0) <∞.

Definition

A constrained density f is called stable if there is no pair (x0, ξ0)
of a site and a center that both desire each other, where site x0
desires center ξ0 when f (x0, ξ0) < 1 and either
• unsatisfied:

∫
Rd f (x0, ξ)ψ(dξ) < 1

• or ∃ξ1 ∈ Rd : |x0 − ξ1| > |x0 − ξ0| and f (x0, ξ1) > 0.
center ξ0 desires site x0 with a similar condition.

Theorem

1 The site-optimal density is stable.
2 In Theorem 1, if a stable constrained density satisfies (1) (e.g.
the site-optimal density) and λΦ = λΨ, then it almost surely
balances between Φ and Ψ.

Main Tool. The mass transport principle:
λΦEΦ [Ψ0(F, t)] = λΨEΨ

[
Φ0(F, t)

]
,

where EΦ is expectation w.r.t. the Palm distribution of Φ and

ψx(f, t) :=
∫
Rd

f (x, ξ)1|x−ξ|≤tψ(dξ).

Proof sketch.
• Ergodicity ⇒ EΦ [Ψ0(F,∞)] < 1 (resp. = 1) iff unsatisfied sites
have infinite (resp. zero) Φ-measure.

• Ergodicity ⇒ EΨ [Φ0(F,∞)] < 1 (resp. = 1) iff unsatisfied centers
have infinite (resp. zero) Ψ-measure.

• Both cannot happen due to stability.
• By the mass transport principle for t =∞, Equality happens in both.

Properties of Stable Constrained Densities

• Monotonicity w.r.t. ϕ and ψ.
• Optimality: the site-optimal density is the best for sites and worst
for centers: For any stable constrained density f , for a.e. site and
center, for all t ∈ [0,∞],

ψx(fs, t) ≥ ψx(f, t)
ϕξ(f, t) ≥ ϕξ(fs, t).

• In the stationary case, stable constrained density for Φ and Ψ is
a.s. unique.

• In the stationary stable case, a.s. the territories (i.e. supports of
f (x, ·) and f (·, ξ)) are bounded for a.e. x and ξ.

Examples

Example 1. Uniform on interval [0, α] for α ≥ 3
2. fs is {0, 1}-valued

with the following support.

Example 2. Let Φ and Ψ be ergodic point processes, regarded as
counting measures. Let Φ′ := 1

λΦ
Φ, Ψ′ := 1

λΨ
Ψ,

If λΦ
λΨ
6∈ Z, then there is no balancing allocation (i.e. T (x, ·) = δτ (x))

for Φ′ and Ψ′ satisfying Theorem 1.

In Examples 3 and 4, fs is {0, 1}-valued. The images show some
territories.
Example 3.
Φ: The Lebesgue measure,
Ψ: 1-dim Hausdorff measure on Z× R.
A non-stable constrained density:

The site-optimal density is obtained in one step (fs = A1):

Example 4.
Φ: The Lebesgue measure,
Ψ: an ergodic point process.
The site-optimal algorithm is a generalization of [1].

Figure 1: Stable marriage of Poisson and Lebesgue borrowed from [1].
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