Stable Transports between Stationary Random Measures

Motivation

Does there exist a transport kernel for any pair of measures ¢ and
on R? with ¢(R?) = v(RY) satisfying the following?

(1) Depends on ¢ and ) in a measurable and translation-invariant way,

(2) and balances between ¢ and :

T(z,B), VYzeR? BeBRY,
T(x,RY) = 1,
[ T Byetn) = v(By

Trivial for finite measures, but false for general measures!

Almost Sure Existence for Random Measures

Theorem 1 [2]

If & and U are ergodic stationary random measures on R, then
there exist a transport kernel satisfying (1) and almost surely (2)
for ® and W, if and only if the intensities A¢ and Ay are equal.

This theorem in |2] is merely based on [H. Thorisson, 1996].
Main Problem

Problem

Construct a transport kernel as in Theorem 1 explicitly.

Many solutions in the last decade for the case of the Lebesgue
measure and a point process. A break-through is [1].

Our Method

Impose the condition

T(z,-) < ()

and relax the equalities of (2).

Work with the Radon-Nikodym derivative f:

T(w.B) = [ flo.olde)

Definition

Relaxation of (2): Sub-balancing;:
/f(%f)”(ﬂ(df) < 17 Vo € Rd

/ F(z,&)pldz) <1, Vé € R

Constrained (sub-balancing transport) density: additionally,

0<f <1
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Notation:

= site: a point in the support of .

= center: a point in the support of .

Algorithm overview to construct a constrained density: Infinitely
many stages, at each stage:

= Each site applies to the as close as possible centers, taking into
account the previous rejections.

= Each center rejects some portion of applications if it has reached its
capacity, keeping the as close as possible applications.

Algorithm (Site-Optimal Transport Density)

Given measures ¢ and ¢ on R, define
f8<x7 §> = nh_?;)lo ATL(ZC? é-) o Rn(ZU, €>7

where the functions are defined recursively: Let Ry(z, &) := 0 and
for each n > 1,

(1) Define the application radius of each site xy by

(o) = sup {a : /B( )(1 — Ryp—1(z0,€)) ¥(d€) < 1},

and the application function by

(1

An(x()) g) = < CRn—1<x07 €> + (1 o C)
0

\

where ¢ = ¢,(zy) is the constant in [0, 1] s.th.

/R (An(20,€) = Rua(20,€)) (d€) = 1 if (o) < oo

(i1) Define the rejection radius of each center &, by

(&) = sup {7“ : /B@)An(x,fo)gp(daz) < 1} :

and its rejection function by

0
C,An(aj) &))
A’I%(x? gO)

where ¢ = ¢ (&) is the constant in |

| (Aula,65) = Rula 1) plda) =

Rn(xa €O> =

Definition

A constrained density f is called stable if there is no pair (xg, &)
of a site and a center that both desire each other, where site x
desires center & when f(xy, &) < 1 and either

- unsatisfied: [, f(zo, §)¥(dE) < 1
= or d& € R? ; |ZIZQ — €1| > |£U0 — &)‘ and f(:lio,gl) > ().

center & desires site xy with a similar condition.

Theorem

o The site-optimal density is stable.

@ In Theorem 1, if a stable constrained density satisfies (1) (e.g.
the site-optimal density) and A¢ = Ay, then it almost surely
balances between ¢ and W.

Main Tool. The mass transport principle:
Moo [Vo(F,t)] = AvEy [@O(R t)} :

where [Eg is expectation w.r.t. the Palm distribution of ® and

6l ft) = [ F@ O qentlde)
R
Proof sketch.
« Ergodicity = Eg¢ [V(F, 00)] < 1 (resp. = 1) iff unsatisfied sites
have infinite (resp. zero) ®-measure.

- Ergodicity = Ey [®(F, 00)] < 1 (resp. = 1) iff unsatisfied centers
have infinite (resp. zero) W-measure.

= Both cannot happen due to stability.
= By the mass transport principle for ¢ = oo, Equality happens in both.

Properties of Stable Constrained Densities

= Monotonicity w.r.t. ¢ and .

« Optimality: the site-optimal density is the best for sites and worst
for centers: For any stable constrained density f, for a.e. site and
center, for all ¢ € [0, oo,

Vol fst) = Vulfi1)
S (frt) = & (fir ).
= In the stationary case, stable constrained density for ® and W is

a.s. unique.

« In the stationary stable case, a.s. the territories (i.e. supports of

f(x,-) and f(-,£)) are bounded for a.e. x and &.

Examples

Example 1. Uniform on interval [0, o for a > 2. f; is {0, 1}-valued
with the following support.

Slope=(V5 —1)/2 ~_

[f i—i Z Z, then there is no balancing allocation (i.e. T'(z,-) = 0,y
for ®" and ¥’ satisfying Theorem 1.

In Examples 3 and 4, f is {0, 1}-valued. The images show some

territories.

Example 3.
®: The Lebesgue measure,
U: 1-dim Hausdorff measure on Z x R.

A non-stable constrained density:

The site-optimal density is obtained in one step (fs = A1):
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Example 4.

®: The Lebesgue measure,

U: an ergodic point process.

The site-optimal algorithm is a generalization of [1].

Figure 1: Stable marriage of Poisson and Lebesgue borrowed from [1].
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