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Introduction: Kendall’s problem

m Poisson line process in R?, stationary and isotropic
m Stationary, isotropic line tessellation
m Crofton cell or zero cell Z;: containing the origin
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Kendall’s Conjecture (1940s, 1987)
David George Kendall (1918 - 2007):

“The conditional law for the shape of Zj, given
the area A(Z) of Z, converges weakly, as
A(Zy) — oo, to the degenerate law concen-
trated at the spherical shape.”

m R. Miles (1995)

m |. N. Kovalenko (1997, 1999)

A. Goldman (1998)

Calka (2002;°10, ’13 (surveys))

D. Hug, M. Reitzner, R. Schneider (2004)
D. Hug, R. Schneider (2007)

G. Bonnet (2016)




Random tessellations in R?

Let X be a stationary and isotropic Poisson hyperplane process in RY with
intensity v > 0. The intensity measure of X is

EX() = 7/Su1 /OOO ot + 1 e -} dtag (o).
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Random tessellations in R?

Let X be a stationary and isotropic Poisson hyperplane process in RY with
intensity v > 0. The intensity measure of X is

EX() = 7/ / Hut + e -} dtogs(du).
si-1.Jo
Let Hk := {H : HN K # 0}. The hitting functional of X is
K — EX(Hk) ~ Vi(K)  forK € K°,

Vi is the mean width.
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Random tessellations in R?

Let X be a stationary and isotropic Poisson hyperplane process in RY with
intensity v > 0. The intensity measure of X is

o0
EX() = 'y/ / Hut + e -} dtogs(du).
se-1 Jo
Let Hk := {H : HN K # 0}. The hitting functional of X is
K — EX(Hk) ~ Vi(K)  forK € K°,
Vi is the mean width.
Let Z, be the zero cell of the tessellation induced by X.

What is the limit shape of Z; - if it exists — given V,(Z)) — o0?



Kendall’s problem in R: a deviation result

Needed: a deviation functional

9(Zy) = “scaling, translation, rotation invariant distance of Z, from B9”.
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Kendall’s problem in RY: a deviation result

Needed: a deviation functional

9¥(Zy) = “scaling, translation, rotation invariant distance of Z, from B?”.

Theorem (Hug, Reitznel’, SChne|der (2004), a special case . « )

If X is stationary and isotropic in R, ¢ € (0,1), and a!/d ~ > 1, then
P(9(2) > €| Va(Z) > a) < c exp (—01 5d+1a1/d7> ’

where ¢ = ¢(d, ¢) and ¢y = ¢1(d).
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Kendall’s problem in R?: a deviation result

Needed: a deviation functional

9(Zy) = “scaling, translation, rotation invariant distance of Z, from B9”.

Theorem (Hug, Reitznel’, SChnelder (2004), a special case . « )

If X is stationary and isotropic inR?, ¢ € (0,1), and a'/?~ > 1, then
P(9(Z) > e | Va(Z) > a) < c exp (—01 5‘”131/"7) ,

where ¢ = ¢(d, ¢) and ¢y = ¢1(d).

Extensions (with Rolf Schneider): no isotropy assumption, relaxed

stationarity assumption, typical cells, Voronoi and Delaunay tessellations,

lower-dimensional weighted typical faces, various other size functionals,
axiomatic approach, asymptotic distributions
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Kendall’s problem in R?: asymptotic distribution

Recall: V4(K) denotes the mean width of K.

Theorem (Hug, Schneider (2007))

lim a "9InP(Vy(Z) > a) = —77,

a—oo

where
7 ~min{V4(K) : Vg(K) = 1}.
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Kendall’s problem in R?: asymptotic distribution

Recall: V4(K) denotes the mean width of K.

Theorem (Hug, Schneider (2007))

lim a "9InP(Vy(Z) > a) = —77,

a—oo

where
7 ~min{V4(K) : Vg(K) = 1}.

Isoperimetric and stability problems!



Isoperimetry and stability

Urysohn inequality:

Vi(K) > c(d) Va(K)'/4.

Equality holds if and only if K is a ball.
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Isoperimetry and stability

Urysohn inequality:

Vi(K) > c(d) Va(K)'/4.

Equality holds if and only if K is a ball.

Quantitative stability improvement:

Vi(K) > (1 + a(d) 9(K)*") c(d) Va(K)"“.
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Kendall’s problem in spherical space
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Kendall’s problem in spherical space

m Spherical tessellations
m Large cells?
m A geometric inequality
m Some results
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Spherical tessellations by great subspheres

m X isotropic Poisson process in S¢ ¢ R
m Spherical isotropic Poisson process of great subspheres
X:={x'ns?: xeX}

m Crofton cell Z
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Intensity measure and hitting functional

= Spherically convex bodies: K¢ > K
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Intensity measure and hitting functional

= Spherically convex bodies: K¢ > K

Hi: = {LeG(d+1,d)NS?: LNK # (0}
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Intensity measure and hitting functional

= Spherically convex bodies: K¢ > K

| ]
Hi: = {LeG(d+1,d)NS?: LNK # (0}

EX(Hk) = 7s /S At K £ 0} (k)
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Intensity measure and hitting functional

= Spherically convex bodies: K¢ > K

| ]
Hi: = {LeG(d+1,d)NS?: LNK # (0}

EX(Hk) = 7s /S At K £ 0} (k)

Ui(K): = (2waps)”! /S 1{xT N K # 0} og(dx)



Intensity measure and hitting functional

= Spherically convex bodies: K¢ > K

| ]
Hi: = {LeG(d+1,d)NS?: LNK # (0}

EX(Hk) = 7s /S At K £ 0} (k)

Ui(K): = (2waps)”! /S 1{xT N K # 0} og(dx)

m Void probability

P(X(Hk) = 0) = exp (—2yswa1 Ui (K))
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A spherical Urysohn inequality

Theorem (Gao, Hug, Schneider (2003))
Let K € K¢ and let C C SY be a spherical cap with 04(C) = o4(K). Then

Ui(K) > Ui(C).

Equality holds if and only if K is a spherical cap.
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A spherical Urysohn inequality

Theorem (Gao, Hug, Schneider (2003))
Let K € K¢ and let C C SY be a spherical cap with 04(C) = o4(K). Then

Ui(K) > Ui(C).
Equality holds if and only if K is a spherical cap.
Since U;(K) = § — Va(K*),
04(C) = 04(K) = on(K*) < 0,(C"),

and conversely.



11/26

A spherical Urysohn inequality

Theorem (Gao, Hug, Schneider (2003))
Let K € K¢ and let C C SY be a spherical cap with 04(C) = o4(K). Then
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Equality holds if and only if K is a spherical cap.
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We need a quantitative improvement / stability result!
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A spherical Urysohn inequality

Theorem (Gao, Hug, Schneider (2003))
Let K € K¢ and let C C SY be a spherical cap with 04(C) = o4(K). Then

Ui(K) > Ui(C).
Equality holds if and only if K is a spherical cap.
Since U;(K) = § — Va(K*),
04(C) = 04(K) = on(K*) < 0,(C"),

and conversely.

We need a quantitative improvement / stability result!

Is K close to C (in a quantitative way), if U; (K) is e-close to U(C)?



A deviation functional

For K € K¢, e € int(—K™), let a(u) = ak ¢(u) be the spherical radial
function, defined on S, := e+ N S:
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A deviation functional

For K € K¢, e € int(—K™), let a(u) = ak ¢(u) be the spherical radial
function, defined on S, := e+ N S:

a(u)
79(K) :/ / sin? 't dt 0%, (du)
Se Jo

=:D(a(u)




A deviation functional

For K € K¢, e € int(—K™), let a(u) = ak ¢(u) be the spherical radial
function, defined on S, := e+ N S:

a(u)
UO'(K):// sin "t dt ¢%_,(du)
Se /0O

=:D(a(u)

\\‘ - / 74(C) = D(a¢), ac € (0,m/2) const.
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A deviation functional

For K € K¢, e € int(—K™), let a(u) = ak ¢(u) be the spherical radial
function, defined on S, := e+ N S:

a(u)
UO'(K):// sin "t dt ¢%_,(du)
Se /0O

0

\
|
\
\

=:D(a())

\\‘\/// 74(C) = D(a¢), ac € (0,m/2) const.

Wd

A(K) :=inf{|| Doake—Doake |li2(s,) : € € —int(K*)} .
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A geometric stability result

Theorem (Hug, Reichenbacher)

Let K € K¢ and let C be a spherical cap with 04(K) = 04(C) > 0. Let
ap € (0,7/2) be such that ag < ac. Then

Ui(K) = (1 +7 A(K)?) Ui (C)



A geometric stability result

Theorem (Hug, Reichenbacher)

Let K € K¢ and let C be a spherical cap with 04(K) = 04(C) > 0. Let
ap € (0,7/2) be such that ag < ac. Then

Ui(K) = (1 +7 A(K)?) Ui (C)

with

= 2o { CRI oo B, (24752 o0))

d+d(}") (3)"tan9(ac) '\~
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A deviation result for the spherical Crofton cell

Theorem (Hug, Reichenbacher)

Let0 < a < wg+1/2 and0 < e < 1. Then there are constants ¢, ¢, > 0
such that

P(A(Z) > €| 04(Zo) > a) < ci-exp (—52 -2 L yg - 2w 4 U1(Ba)) ;

where ¢, = ¢y(a, e, d), ¢ = ¢2(a, d), By is a spherical cap of volume a.



Asymptotic distribution

Theorem (Hug, Reichenbacher)
Let0 < a < wg+1/2. Then

im vg' - In P(og(Z) > @) = —2wa1 - Us(Ba),

Ys— 00

where B, is a spherical cap of volume a.
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Asymptotic distribution

Theorem (Hug, Reichenbacher)
Let0 < a < wg+1/2. Then

im vg' - In P(og(Z) > @) = —2wa1 - Us(Ba),

Ys— 00

where B, is a spherical cap of volume a.

Similar results have been obtained for binomial processes and for the
spherical inradius as the size functional.



lllustration
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lllustration

vs = 2 (31 great subspheres)
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lllustration
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lllustration
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Typical cell

With a given isotropic tessellation X’ of S? with intensity vy, we can
associate particular spherical random polytopes. For a fixed point
(spherical origin) © € S9, one of these is the Crofton cell Z, > o.

The typical cell Z is a spherical random polytope, centred at o0, with
distribution

1
P(Ze:)= E
X Wd+1

—1 ‘tk(Cq ,do
K;//S%J{a K € Vi(cs(K), do)

It is invariant wrt rotations fixing o.
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Crofton cell and typical cell

Lemma

Letf: K¢ — [0,00) be measurable and rotation invariant. Let X' be an
isotropic tessellation of S? with intensity vy > 0, Crofton cell Zy and
typical cell Z. Then

E[f(2)] = v E[f(Z) - 04(2Z)].

If X is the tessellation induced by a Poisson point process X with intensity
s, then ~vx: is an explicitly known function of s.
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Typical cells of tessellations by great subspheres

The preceding Lemma and the deviation result for the Crofton cell can be
combined to give a result for the typical cell.

Theorem (Hug, Reichenbacher)

Let0 < a < wgt+1/2 ande € (0, 1]. Let Z be the typical cell of an
isotropic spherical Poisson tessellation of great subspheres. Then

P(A(Z) > e | 04(Z) > a) < c3-exp (—04 - ) -73) :

where c3 = c3(a,d, ) and ¢4 = ca(a, d).
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Spherical Poisson-Voronoi cells

Let X be an isotropic Poisson process on S9 with intensity s, and let
X' = {C(x, X) : x € X} be the associated Poisson—Voronoi tessellation.

The distribution of the typical cell Z then satisfies

P(Z € ) =P(C(8, X + &) € -).
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Hitting and deviation functional

Hence Z is equal in distribution to the Crofton cell of a (non-isotropic)
Poisson process Y of great subspheres with hitting functional

EY(Hk) = vsU(K), ©0eKek?,

U(K) = 2 / / sin (20s(8y, ) 1{t- N K # 0} 0y (dt) 01 ()

5LNSY As(u)

with S, = {—0, u} and As(u) = arc(—0, u).
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Hitting and deviation functional

Hence Z is equal in distribution to the Crofton cell of a (non-isotropic)
Poisson process Y of great subspheres with hitting functional

EY(Hk) = vsU(K), ©0eKek?,

U(K) = 2 / / sin?" (205(8,, 1)) 1{t" N K £ 0} 0 (a) 09+ (cu)
01NS9 As(u)
with S, = {—0, u} and As(u) = arc(—0, u).
Define
rs(K) := max{r>0:Bso,r) C K}
Rs(K) = min{r>0:Bs(0o,r) D K}
HK) = Rs(K)— rs(K).



Geometric stability

Theorem (Hug, Reichenbacher)
Letac (0,7/2),0 € K € K with rs(K) > a and C := Bs(0, a). Then

U(K) > U(C) = 04(Bs(0, 2a)).

Equality holds if and only if K = C.

More generally,

U(K) > (1 + cs(a, d) 9(K)9) U(C).
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Shape deviation

Theorem (Hug, Reichenbacher)

Leta e (0,7/2) ande € (0, 1]. Let Z be the typical cell of the Voronoi
tessellation associated with an isotropic Poisson point process with
intensity vs on S%. Then

P(Rs(Z) —rs(2) > €| rs(Z2) > a) < cs - exp (—07 g9 ’78) )

where cs = cs(a, d, ) and ¢; = ¢;(a, d).

Davies, J. https://www.jasondavies.com/maps/voronoi
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