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The general setup

This talk is concerned with the following general problem:

How much can we learn about a (nice enough) compact set
M ⊂ Rd from a random sample of points X1, . . . ,Xn?

In this talk we will consider the following aspects of this general
problem:

I To check whether M has an empty interior, M̊ = ∅: under
regularity conditions this amounts to saying that
dimH(M) < d

I Estimation of M when the sample is “noisy (around M)

I Estimation of the measure of M: more specifically, if d ′ is
the dimension of M, we are interested on the d ′-dimensional
Minkowski content of M.
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The tools we use

I Statistical tools: definition of different sample models,
methods for analyzing stochastic convergences and
convergence rates, set estimation methodologies.

I Geometrically motivated conditions for sets: standardness,
positive reach, rolling conditions,...

I Some basic tools of differential geometry,

I Some results of stochastic geometry borrowed from Penrose
(1999, J. London Math. Soc), Walther (1997, Ann. Statist.)
among others



Hausdorff measure and Hausdorff dimension

We first recall the so-called Hausdorff measure. It is defined for
any separable metric space (M, ρ). Given δ, r > 0 and E ⊂M, let

Hr
δ(E ) = inf


∞∑
j=1

(diam(Bj))r : E ⊂ ∪∞j=1Bj , diam(Bj) ≤ δ

 ,

where diam(B) = sup{ρ(x , y) : x , y ∈ B}, inf ∅ =∞. Now, define
Hr (E ) = limδ→0H

r
δ(E ).

The set function Hr is an outer measure. If we restrict Hr to the
measurable sets (according to standard Caratheodory’s definition)
we get the r -dimensional Hausdorff measure on M.
The Hausdorff dimension of a set E is defined by

dimH(E ) = inf{r ≥ 0 : Hr (E ) = 0} = sup({r ≥ 0 : Hr (E ) =∞}∪{0}).



Checking empty interior (low dimensionality) under the
noiseless model

Let ℵn = {X1, . . . ,Xn} be a iid sample of points, drawn from a
distribution P with support M in Rd .

We want to detect whether or not M̊ = ∅.
First note that, if M ⊂ Rd is “regular enough”, dimH(M) < d is in
fact equivalent to M̊ = ∅.
Indeed, in general dimH(M) < d implies M̊ = ∅. The converse
implication is not always true, even for sets fulfilling the property
Hd(∂M) = 0. However it holds if M has positive reach (*), since
in this case Hd−1(∂M) <∞ (see Ambrosio et al. (2008)).

(*) reach(M) = R > 0 iff R is the supremum
of those values r > 0 such that every point x with
d(x ,M) < r has only one metric projection on M

This regularity condition rules out the presence

of sharp inward peaks in M.



Checking empty interior (low dimensionality) under the
noiseless model

Let ℵn = {X1, . . . ,Xn} be a iid sample of points, drawn from a
distribution P with support M in Rd .

We want to detect whether or not M̊ = ∅.
First note that, if M ⊂ Rd is “regular enough”, dimH(M) < d is in
fact equivalent to M̊ = ∅.
Indeed, in general dimH(M) < d implies M̊ = ∅. The converse
implication is not always true, even for sets fulfilling the property
Hd(∂M) = 0. However it holds if M has positive reach (*), since
in this case Hd−1(∂M) <∞ (see Ambrosio et al. (2008)).

(*) reach(M) = R > 0 iff R is the supremum
of those values r > 0 such that every point x with
d(x ,M) < r has only one metric projection on M

This regularity condition rules out the presence

of sharp inward peaks in M.

antoniocuevasgonzalez
Pencil

antoniocuevasgonzalez
Typewritten Text
reach>0

antoniocuevasgonzalez
Typewritten Text

antoniocuevasgonzalez
Typewritten Text

antoniocuevasgonzalez
Typewritten Text

antoniocuevasgonzalez
Typewritten Text

antoniocuevasgonzalez
Typewritten Text
reach=0



A simple tool: the offset estimator
The r-offset estimator (Grenander (1981), Devroye & Wise
(1980),...) based on the sample ℵn is defined by

Ŝn(r) =
n⋃

i=1

B(Xi , r).

B(Xi , r) is a boundary ball of Ŝn(r) if there exists a point
y ∈ ∂B(Xi , r) such that y ∈ ∂Ŝn(r).

The “peeling” of Ŝn(r), denoted by peel(Ŝn(r)), is the result of
removing from Ŝn(r) all the boundary balls.

We are going to explore the following natural idea

M̊ 6= ∅ iff peel(Ŝn(rn)) 6= ∅, eventually a.s. for suitably chosen rn



An identification result in terms of peel(Ŝn(rn))

Theorem 1 (Identification of empty interior, noiseless case)

Let M ⊂ Rd be a compact non-empty set. We have,
(a) if M̊ = ∅, and M fulfills the outside rolling condition (**) for
some r > 0, then peel(Ŝn(r ′)) = ∅ for any r ′ < r .

(b) If M̊ 6= ∅, assume that there exists a ball B(x0, ρ0) ⊂ M̊ such
that B(x0, ρ0) is standard (***) w.r.t. to PX . Then
peel(Ŝn(rn)) 6= ∅ eventually, a.s., where rn is a radius sequence such

that: (κ log(n)
n )1/d ≤ rn ≤ min{ρ0/2, λ} for a given κ > (δωd)−1.

(**) The set S is said to satisfy the outside
r -rolling condition if for s ∈ ∂S
there exists some x ∈ Sc

such that B(x , r) ∩ ∂S = {s}.

(***)

∃ λ, δ > 0 such that , ∀x ∈ S and 0 < ε ≤ λ,
PX (B(x , ε) ∩ S) ≥ δµd(B(x , ε))
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Why
(

log n
n

)1/d

?

I This is the appropriate order to use some basic Borel-Cantelli
arguments in the proof.

I Note this is also the order of the maximal multivariate
spacing, i.e., the radius of the ball containing no sample
point, Janson (1987, Ann. Prob.)



When M is a manifold

Theorem 2 (Identification of empty interior, the manifold case)

Let M be a d ′-dimensional compact manifold in Rd . Suppose that
the sample points X1, . . . ,Xn are drawn from a probability measure
PX with support M which has a continuous density f with respect
the d ′-dimensional Hausdorff measure on M, and f (x) > f0 for all
x ∈M. Define, for any β > 61/d , rn = βmaxi minj 6=i ‖Xj − Xi‖.
Then,

i) if d ′ = d and ∂M is a C2 manifold then peel(Ŝn(rn)) 6= ∅
eventually, a.s.

ii) if d ′ < d and M is a C2 manifold without boundary, then
peel(Ŝn(rn)) = ∅ eventually, a.s.

The proof is based upon Th. 1, using results by Walther (1997,
Ann. Stat.) and Penrose (1999, J. London Mat. Soc.)



“Noisy model”: sample data on the parallel set B(M ,R1)

Theorem 3 (Estimation of the noise level)

Let M ⊂ Rd be a compact set such that reach(M) = R0 > 0. Let
Yn = {Y1, . . . ,Yn} be an iid sample of a distribution PY with
support S = B(M,R1) with 0 < R1 < R0, absolutely continuous
with respect to the Lebesgue measure, whose density f , is bounded
from below by f0 > 0. Let us denote εn = c(log(n)/n)1/d , with
c > (4/(f0ωd))1/d , and R̂n = maxYi∈Yn minj∈Ibb ‖Yi − Yj‖ where
Ibb = {j : B(Yj , εn) is a boundary ball}.

i) if M̊ = ∅, then, with probability one,∣∣∣R̂n − R1

∣∣∣ ≤ 2εn for n large enough, (2)

ii) if M̊ 6= ∅, then there exists C > 0 such that, with prob. one

|R̂n − R1| > C for n large enough. (3)

The proof relies on Federer (1959) and C. & R.-Casal (2004, AAP)



An index of closeness to lower dimensionality

In the noiseless case R1 = 0 the value 2R̂n/d̂iam(M) (where

d̂iam(M) = maxi 6=j ‖Xi − Xj‖) can be seen as an index of

departure from low-dimensionality . Observe that if M = M̊ we get

2R̂n/d̂iam(M)→ 1, a.s. and if M has empty interior,

2R̂n/d̂iam(M)→ 0 a.s.



Identifying the boundary balls

Proposition 1

Let Xn = {X1, . . . ,Xn} be an iid sample of points, in Rd , drawn
according to a distribution PX , absolutely continuous with respect
to the Lebesgue measure. Then, with probability one, for all
i = 1, . . . , n and all r > 0, sup{‖z − Xi‖, z ∈ Vor(Xi )} ≥ r if and
only if B(Xi , r) is a boundary ball for the Devroye-Wise estimator
∪iB(Xi , r).



An algorithm to partially “de-noise” the sample (I)
Let M ⊂ Rd with reach(M) = R0 > 0. Let Yn = {Y1, . . . ,Yn} be
an iid sample on S = B(M,R1) for some 0 < R1 < R0, with
density bounded from below.

1. Take suitable auxiliary estimators for S and R1. Let Ŝn be an
estimator of S (based on Yn) such that dH(∂Ŝn, ∂S) < an
eventually a.s., for some an → 0. Let R̂n be an estimator of
R1 such that |R̂n − R1| ≤ en eventually a.s. for some en → 0.

2. Select a λ-subsample far from the estimated boundary of S .
Take λ ∈ (0, 1) and define Yλm = {Y λ

1 , . . . ,Y
λ
m} ⊂ Yn where

Y λ
i ∈ Yλm if and only if d(Y λ

i , ∂Ŝn) > λR̂n.

3. Projection + translation stage. For every Y λ
i ∈ Yλm, we define

{Z1, . . . ,Zm} = Zm as follows,

Zi = π∂Ŝn(Y λ
i ) + R̂n

Y λ
i − π∂Ŝn(Y λ

i )

‖Y λ
i − π∂Ŝn(Y λ

i )‖
, (4)

being π∂Ŝn(Y λ
i ) the metric projection of Y λ

i on ∂Ŝn.



An algorithm to partially “de-noise” the sample (II)

Theorem 4 (Estimation by denoising)

If reach(M) = R0 > 0 and Yn = {Y1, . . . ,Yn} is an iid sample on
S = B(M,R1) with density f > f0 > 0, there exists

bn = O
(

max(a
1/3
n , en, εn)

)
such that, with probability one, for n

large enough, the de-noised sub-sample Zm satisfies

dH(Zm,M) ≤ bn

where εn = c(log(n)/n)1/d with c > (4/f0ωd)1/d .

Note that, when M̊ = ∅, the result simplifies since, according to
Theorem 3 we can take en = 2εn and, according to C. & R.-Casal
(2004, Adv. Appl. Prob.) an = (log n/n)1/d . Therefore, in this
case bn = O

(
(log n/n)1/3d

)
. In particular, the result is true for

bn = n−q for any q < 1
3d .



Estimation of the Minkowski content
The target now is to estimate the d ′-dimensional Minkowski
content, as defined by

lim
ε→0

µd(B(M, ε))

ωd−d ′εd−d ′ = L0(M). (5)

This is just (alongside with Hausdorff measure, among others) one
of the possible ways to measure lower-dimensional sets.
The following result shows that the denosing process allows us to
estimate the Minkowski content, even under the noisy model.

Theorem 5 (Boundary measure estimation in the noisy case)

With the hypothesis and notation of the previous denoising
theorem, assume that L0(M) <∞. Now, take rn such that
bn/rn → 0. Then,

lim
n→∞

µd(B(Zm, rn))

ωd−d ′rd−d
′

n

= L0(M) a.s. (6)

For d ′ < d the result holds with rn = n−q for any q < 1
3d .



Toy examples: identifying low dimensionality
200 samples of sizes n = 50, 100, 200, 300, 400, 500, 1000, 2000,
5000, 10000 on the set B(0, 1 + A) \ B̊(0, 1− A). The width
parameter A takes the values A = 0, 0.01, 0.05, 0.1, . . . , 0.05. Table
1 provides the minimum sample sizes to “safely decide” the correct
answer.

A d = 2 d = 3 d = 4
0 ≤ 50 ≤ 50 ≤ 50

0.01 [51, 100] [1001, 2000] > 10000
0.05 ≤ 50 [201, 300] [1001, 2000]
0.1 ≤ 50 [51, 100] [101, 200]
0.2 ≤ 50 ≤ 50 [51, 100]
0.3 ≤ 50 ≤ 50 [51, 100]
0.4 ≤ 50 ≤ 50 ≤ 50
0.5 ≤ 50 ≤ 50 ≤ 50

Table: Minimum sample sizes required to correct detection (i.e. in 190
out of 200 cases) for different values of d and A.



Denoising (Lamé curve |x |3 + |y |3 = 1)
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Figure: The yellow background is made of 5000 points (left) and 50000
points (right) drawn on on B(SL3 , 0.3), with
SL3 = {(x , y), |x |3 + |y |3 = 1}. The blue points are the result of the
denoising process. The black line corresponds to the original set SL3



Denoising (Trefoil knot)
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Figure: The upper panel shows 5000 noisy points (left) and 50000 noisy points
(right) drawn on B(T , 0.3). The lower panel shows the result of the
corresponding denoising process.



THANKS!




