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The general setup

This talk is concerned with the following general problem:

How much can we learn about a (nice enough) compact set
M c R? from a random sample of points X1,. .., X,?
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How much can we learn about a (nice enough) compact set
M c R? from a random sample of points X1,. .., X,?

In this talk we will consider the following aspects of this general
problem:

» To check whether M has an empty interior, M = 0: under
regularity conditions this amounts to saying that
dImH(M) <d

» Estimation of M when the sample is “noisy (around M)

» Estimation of the measure of M: more specifically, if d’ is
the dimension of M, we are interested on the d’-dimensional
Minkowski content of M.



The tools we use

» Statistical tools: definition of different sample models,
methods for analyzing stochastic convergences and
convergence rates, set estimation methodologies.

» Geometrically motivated conditions for sets: standardness,
positive reach, rolling conditions,...

» Some basic tools of differential geometry,

» Some results of stochastic geometry borrowed from Penrose
(1999, J. London Math. Soc), Walther (1997, Ann. Statist.)
among others



Hausdorff measure and Hausdorff dimension

We first recall the so-called Hausdorff measure. It is defined for
any separable metric space (M, p). Given §,r > 0 and E C M, let

HE(E) =inf $ > "(diam(B)))" : E C U2, B;, diam(Bj) <6,
j=1

where diam(B) = sup{p(x,y) : x,y € B}, inf(} = co. Now, define
H"(E) = lims_0 H5(E).

The set function H" is an outer measure. If we restrict H" to the
measurable sets (according to standard Caratheodory’s definition)
we get the r-dimensional Hausdorff measure on M.

The Hausdorff dimension of a set E is defined by

dimpy(E) =inf{r > 0: H"(E) =0} =sup({r > 0: H"(E) = co}U{0}).



Checking empty interior (low dimensionality) under the
noiseless model

Let X, = {Xi,...,X,} be a iid sample of points, drawn from a
distribution P with support M in R,

We want to detect whether or not M = 0.

First note that, if M C R? is “regular enough”, dimy(M) < d is in
fact equivalent to M = 0.

Indeed, in general dimy(M) < d implies M = ). The converse
implication is not always true, even for sets fulfilling the property
H9(OM) = 0. However it holds if M has positive reach (*), since
in this case HI~1(OM) < oo (see Ambrosio et al. (2008)).
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We want to detect whether or not M = 0.

First note that, if M C R? is “regular enough”, dimy(M) < d is in
fact equivalent to M = 0.

Indeed, in general dimy(M) < d implies M = ). The converse
implication is not always true, even for sets fulfilling the property
H9(OM) = 0. However it holds if M has positive reach (*), since
in this case HI~1(OM) < oo (see Ambrosio et al. (2008)).

(*) reach(M) = R > 0 iff R is the supremum

of those values r > 0 such that every point x with
d(x,M) < r has only one metric projection on M
This regularity condition rules out the presence

of sharp inward peaks in M. reach>0 reach=0
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A simple tool: the offset estimator

The r-offset estimator (Grenander (1981), Devroye & Wise
(1980),...) based on the sample X, is defined by

n

Sa(r) = B(Xi, r).

i=1
B(X;, r) is a boundary ball of 5,(r) if there exists a point
y € OB(Xi,r) such that y € 95,(r).

The “peeling” of Sa(r), denoted by peel(5,(r)), is the result of
removing from S,(r) all the boundary balls.

We are going to explore the following natural idea

M £ ) iff peel(5,(ra)) # 0, eventually a.s. for suitably chosen r,




N

An identification result in terms of peel(S,(r,))

Theorem 1 (Identification of empty interior, noiseless case)

Let MOC RY be a compact non-empty set. We have,
(a) if M =0, and M fulfills the outside rolling condition (**) for
some r > 0, then peel(S,(r')) =0 for any r' < r.

(b) If M # (), assume that there exists a ball B(xo, po) C M such
that B(xo, po) is standard (***) w.r.t. to Px. Then

peel(Sy(rn)) # 0 eventually, a.s., where r, is a radius sequence such
that: (/ﬁ}@)l/d < rp < min{po/2,\} for a given k > (dwg) L.

(**) The set S is said to satisfy the outside
r-rolling condition if for s € 9S

there exists some x € 5S¢

such that B(x,r)N9dS = {s}.

(%)
dA,0>0suchthat ,Vxe€ Sand 0 <e <A,
Px(B(x,e)NS) > dua(B(x,¢))
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» This is the appropriate order to use some basic Borel-Cantelli
arguments in the proof.

» Note this is also the order of the maximal multivariate
spacing, i.e., the radius of the ball containing no sample
point, Janson (1987, Ann. Prob.)



When M is a manifold

Theorem 2 (Identification of empty interior, the manifold case)

Let M be a d’-dimensional compact manifold in RY. Suppose that
the sample points Xi,...,X, are drawn from a probability measure
Px with support M which has a continuous density f with respect
the d'-dimensional Hausdorff measure on M, and f(x) > fy for all
x € M. Define, for any 3 > 69, r, = B max; min;z; | X; — Xi||.
Then,

i) ifd =d and OM is a @2 manifold then peel(S,(r,)) # 0

eventually, a.s.

i) if d’ <dandMis a €2 manifold without boundary, then
peel(5,(r)) = 0 eventually, a.s.

The proof is based upon Th. 1, using results by Walther (1997,
Ann. Stat.) and Penrose (1999, J. London Mat. Soc.)



“Noisy model”: sample data on the parallel set B(M, R;)

Theorem 3 (Estimation of the noise level)

Let M C RY be a compact set such that reach(M) = Ry > 0. Let
Yo =A{Y1,..., Ya} be an iid sample of a distribution Py with
support S = B(M, Ry) with 0 < Ry < Ry, absolutely continuous
with respect to the Lebesgue measure, whose density f, is bounded
from below by fy > 0. Let us denote =, = c(log(n)/n)*/?, with

¢ > (4/(fowq))?, and R, = maxy.cy, minjecy,, || Yi — Y;|| where
Ibb = {j : B(Y,en) is a boundary ball}.

0) if M =0, then, with probability one,

R, — Rl‘ < 2¢, for n large enough, (2)

i) if M # (), then there exists C > 0 such that, with prob. one

|R, — Ri| > C for n large enough. (3)

The proof relies on Federer (1959) and C. & R.-Casal (2004, AAP)



An index of closeness to lower dimensionality

In the noiseless case Ry = 0 the value 21%,,/@1(3\/{) (where
(@(M) = max;; || X; — Xj||) can be seen as an index of
departure from low-dimensionality . Observe that if M = M we get
2/%,,/@11(3\/() — 1, a.s. and if M has empty interior,

2R, /diam(M) — 0 a.s.



|dentifying the boundary balls

Proposition 1

Let X, = {X1,...,X,} be an iid sample of points, in R?, drawn
according to a distribution Px, absolutely continuous with respect
to the Lebesgue measure. Then, with probability one, for all
i=1,...,nandall r >0, sup{||z— Xi||,z € Vor(X;)} > r if and
only if B(X;, r) is a boundary ball for the Devroye-Wise estimator
UiB(X;, r).




An algorithm to partially “de-noise” the sample (1)
Let M C R with reach(M) = Ry > 0. Let Y, = {Y1,..., Y} be
an iid sample on S = B(M, R;) for some 0 < Ry < Ry, with
density bounded from below.

1. Take suitable auxiliary estimators for S and Ry. Let §n be an
estimator of S (based on Y,) such that dH(8§,,,85) < ap
eventually a.s., for some a, — 0. Let f?,, be an estimator of
R; such that ]f%,, — Ri1| < e, eventually a.s. for some e, — 0.

2. Select a A-subsample far from the estimated boundary of S.
Take A € (0,1) and define Y, = {Y{,..., YA} C Y, where
YA €Yy, if and only if d(Y?,05,) > AR,.

3. Projection + translation stage. For every Y,?‘ € Y2, we define
{Z1,...,Zn} = Zp as follows,

Y - 71'a_@,n(YiA)

1

, (4)
1Y = a8, (Y

Zi = 7Ta§,,(yi>\) + 'EA‘)H

being 7ra§n(Y,->‘) the metric projection of Y on 95,



An algorithm to partially “de-noise” the sample (I1)

Theorem 4 (Estimation by denoising)

Ifreach(M) = Ry > 0 and Y, = {Y1,..., Ya} is an iid sample on
S = B(M, Ry) with density f > fy > 0, there exists

b, =0 (max(a,l,/3, e,,,s,,)) such that, with probability one, for n
large enough, the de-noised sub-sample Z,, satisfies

dr(Zm, M) < by

where ¢, = c(log(n)/n)"9 with ¢ > (4/fowq)"/“.

Note that, when M = (), the result simplifies since, according to
Theorem 3 we can take e, = 2¢, and, according to C. & R.-Casal
(2004, Adv. Appl. Prob.) a, = (logn/n)*/9. Therefore, in this
case b, = O ((log n/n)1/3d). In particular, the result is true for
b, = n~9 for any g < 3%1-



Estimation of the Minkowski content

The target now is to estimate the d’-dimensional Minkowski
content, as defined by

. 1d(B(M,€))
lim —/——————* = Ly(M). 5
em) wd_d/Edfd 0( ) ( )
This is just (alongside with Hausdorff measure, among others) one
of the possible ways to measure lower-dimensional sets.

The following result shows that the denosing process allows us to

estimate the Minkowski content, even under the noisy model.
Theorem 5 (Boundary measure estimation in the noisy case)

With the hypothesis and notation of the previous denoising
theorem, assume that Lo(M) < oo. Now, take r, such that
bn/rn — 0. Then,

11d(B(Zm, rn))

lim = Lo(M) a.s. (6)

n—o00 Wd—_d’ r,‘f_d

For d’ < d the result holds with r, = n=9 for any q < 34.



Toy examples: identifying low dimensionality
200 samples of sizes n = 50, 100, 200, 300, 400, 500, 1000, 2000,
5000, 10000 on the set B(0,1+ A)\ B(0,1 — A). The width
parameter A takes the values A =0,0.01,0.05,0.1,...,0.05. Table
1 provides the minimum sample sizes to “safely decide” the correct
answer.

A | d=2 d=3 d=4

0 <50 <50 <50
0.01 | [51,100] [1001,2000] > 10000
005| <50  [201,300]  [1001,2000]
01 | <50 [51,100]  [101,200]

02 | <50 < 50 [51, 100]
03 | <50 < 50 [51, 100]
04 | <50 <50 < 50
05 | <50 <50 < 50

Table: Minimum sample sizes required to correct detection (i.e. in 190
out of 200 cases) for different values of d and A.



Denoising (Lamé curve |x|* + |y|®* = 1)
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Figure: The yellow background is made of 5000 points (left) and 50000
points (right) drawn on on B(S;,,0.3), with

St; = {(x,y),|x]> + |y|> = 1}. The blue points are the result of the
denoising process. The black line corresponds to the original set Sy,



Denoising (Trefoil knot)

Figure: The upper panel shows 5000 noisy points (left) and 50000 noisy points
(right) drawn on B(T,0.3). The lower panel shows the result of the
corresponding denoising process.
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