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Shot noise random fields

A (Poisson) shot noise random field is a random field (X(x)).cge
given by
Vx € Rda X(X) = ngi(x - Xi)7
icl

where

m {x;}ic/ is a Poisson point process of intensity A > 0 in RY,

m {m;};c/ are independent « marks » with distribution F(dm) on Rk,

and independent of {x;}c/.

m The functions g, are real-valued deterministic functions, called spot
functions, such that

/Rk /R l&m(y)l dy F(dm) < t-o0.



Shot noise random fields

There are many mathematical studies of this random field : S.0O. Rice
(1944), Papoulis (1971), Bar David and Nemirovsky (1972), Heinrich and
Schmidt (1985), Baccelli and Blaszczyszyn (2001), etc...

It is also used in texture synthesis or image modeling : J. van Wijk
(Computer Graphics, 1991), Lagae et al. (S/IGGRAPH, 2009), Galerne et
al. (SIGGRAPH, 2012) A. Srivastava, X. Liu et U. Grenander (IEEE
PAMI 2002)...

For sake of simplicity, in this talk we consider d =2, k =1 and a single
L*(IR?) function g randomly dilated : F is a probability measure on
(0, +00) and for m > 0

8m(x) = g(x/m).



Example : disk with random radius

Let d =2, g = 1p, U = (0, T)? and consider random disk g, = 1p_, of
radius m = my or m = my with 0 < m; < my (each with probability 1/2)
with intensity A > 0

m The number of centers in (—mjy, T + my)? is a Poisson random
variable of parameter A\(T +2m,)?> — n

m The centers xq, ..., X, are thrown uniformly, independently on
(—mg, T + m2)2

m The radius Ry, ..., R, are attached to each center by flipping a coin
to choose between my or mo.




Excursion set

We consider the excursion set or the level set of level t € R of X in U
defined by
Ex(t,U) = {x e U; X(x) > t}.

view 3D




Main questions

What can be said about "mean" geometry of excursion sets? Area?
Perimeter ? Euler Characteristic=# connected components — # holes?

Known results for
m Boolean model : Mecke (2001), Mecke, Wagner (1991)

m Smooth Gaussian random fields : Adler (2000), Adler, Taylor
(2007), Azais, Wschebor (2009), ...

m High levels for infinitely divisible smooth random fields : Adler,
Samorodnitsky, Taylor (2010,2013),...

Two different frameworks
Elementary : g is piecewize constant with compact support

Smooth : g is at least C?



Statistical properties of shot noise random fields

The shot noise random field is given by

X(x) =Y gmx—x)=> ¢ (Xm,x"> ,Vx € R?

icl icl !

where {x;, m;};c; is a marked Poisson point process of intensity
Adx F(dm) on R? x R* with g € L}(R?) and E(R?) < +o0 if R ~ F.

m The random field is stationary : its distribution is invariant by
translation : (X (x + x0))x < (X(x))x

m when g is radial the random field is isotropic : its distribution is

invariant by orthogonal transformation : (X(Ax))x g (X(x))x for all
Ac OQ(R)

m The expectation (mean value) of X is given by

EX(x) = EX(0) = )\/W /Rz gm(y) dy F(dm) = AE(R2)/g.



Statistical properties of shot noise random fields

m If [, g(y)?dy < +oo, then X has second-order moments

Cov(X(2) Xz ) = A [ [ anlv)enly ~ ) dy Flam)
Ap(x)

In particular
Var(X(x)) = Var(X(0)) = )\/]R+ /Rz gm(y)2 dy F(dm) = )\IE(RQ)/gQ.

m When moreover the intensity A goes to +o0, the normalized random
field
20 X0~ BX(x)
VA

converges (f.d.d.) to a stationary centered Gaussian field with
covariance p.



Statistical properties of shot noise random fields

When g = 1p, the shot noise field has integer value and for any
t € (0,1], 1x>¢ is a Boolean model. Moreover

m EX(x) = EX(0) = AE(R?)L(D) = ME(L(DR)) = \a
m Cov(X(z), X(z + x)) = Ap(x) with p(x) = E(L(Dr N Dg + x))

m Since the characteristic function of X(0) (or any X(x)) is given by :

YueR, E(e"¥©) =exp <,\ / [e™&n) — 1] dy F(dm)) :
Rd

Rn

We get that X(0) ~ P(\3).



Geometry of excursion sets

We consider the excursion set of level t € R of X in U = (0, T)? defined
by
Ex(t,U) :={x e U; X(x) > t}.

The mean area is therefore (by stationarity of X)

AE (1X(x)>t) dx

= L(U)P(X(0) > t).

E(L(Ex(t, V)))

The mean perimeter corresponds to
E (H'(0Ex(t, U)n V)),

where 7! is the one-dimensional Hausdorff measure of the length of
plane curves.
The mean Euler characteristic corresponds to

E(x(Ex(t, U))),

where x(A) denotes the Euler characteristic of a set A.



Weak framework for function of special bounded variation

Let f be a real function piecewize constant with special bounded
variation in U and approximate discontinuity set Sr.
By Federer-Vol'pert Theorem,

m Sris a L-negligible Borel set, countably #!-rectifiable ;
m the distributional derivative of f is given by

Df == (f* — f ) weH LU,

where Jr C Sf is the H!-rectifiable set of approximate jump points
of f:3f~(x) < fF(x) and v¢(x) € S™ ! with

p—0

lim p-"/ 1(y) = FE(x)dx = 0
B, (x,v¢(x))

where BY (x,v) = {y € B,(x); (y — x) - v > 0}, resp.
B, (x,v) ={y € By(x): (y = x) - v > 0}

| HI(Sf AN Jf) =0.



Elementary function

The function f is said elementary function if f is a piecewise constant
function with special bounded variation in U taking a finite number of
values and if S¢ corresponds to the discontinuity set of f in U and can be

decomposed as
Sr = RfUCr UZf, where :

R¢ = Jr is a finite disjoint union of C? simple
= curves (possibly closed) with finite length and
finite total curvature

ie kr € L1(Rs, H'), where the signed curvature r¢(x) of R at
x = v(s) is given by

re(x) = (7"(5),7/(s)) = (4 (s), ve(x)),

for a local arc-length parametrization ~.



Case of elementary function

Cr is a finite set of corner points with turning
[ angle
af(x) € (—m,m)

simple curves in S¢ with at least 3 # values
F(x) < £ (x), F7 (%) < £(x),

Zr is a finite set of intersection points ie
points x s.t. {x} = 41 N2 with 71, 72 C?
d

an

Br(x) = ds1 (14, (x), v, (x)) € (0, 7).



Closed set via elementary function

Proposition : Let £ C U be a regular region s.t. f :=1g is an
elementary function in U. Then, S = OE and

m the perimeter of E defined by

Per(E, U) := || Df||(U) = Sup{/ fdivpdx | € C2(U,R?), [[¢lloc} < +00,
U
corresponds to
H (R¢) = H ' (OE).
m By Gauss-Bonnet Theorem, the Euler characteristic of E is given by

(E) = L TC(IE, ),
27

where the total curvature of OE is equal to

TC(OE, U) = /R re(OH () + 3 ar(x).

x€Cr



Weak framework

Let f be an elementary function in U and set
Ef(t; U) = {x € U;f(x) > t}.

Remark that when t < miny f or t > maxy f, then OE¢(t; U) N U = 0.
We consider for any h bounded continuous function on R

m the level perimeter integral of f

LP(h, U) = / h(t)Per(E(t, U), U)dt:

m the level total curvature integral of

LTCy(h, U) = / h(£)TC(IEL(, U), U)dt.

Note that LP¢(1, U) = ||Df (U)|| = V¢(U) by co-area formula and we
note LTC¢(U) = LTC¢(1, U).



Co-area formula for elementary functions

Proposition : for f an elementary function in U, writing
H(t) = [, h(s)ds we obtain

LP¢(h,U) = /R[H(f+(><))—H(f_(X))]Hl(dX)

LTCf(h,U) = Ruﬂ#un_ng@wm@HRW)
+ Z[H(f+(x)) — H(f~ (x))]ar(x)
x€Cr
+ Z [H(fT(x)) + H(f~(x)) = H(f*(x)) — H(f (x))1B#(x).
xELs

Proposition : If f, g are elementary functions with S NS, a finite set of
{x € Rr N Ry; di(vr(x),vg(x)) € (0,7)}, then f + g is an elementary
function. Surprisingly, for h =1

Vrg(U) = Vi(U) + V,(U) and LTCy 4(U) = LTCs(U) + LTC4(U).



Application to Shot Noise

Using Slivnyak-Mecke formula, Fubini and stationarity

E(LPx(h,U)) = U/R/ /gm E(A(X(0) + s))dsH (dx) F (dm)

gm gm

E(LTCx(h,U)) = AC(U) /R+(AR(m)+Ac<m>+A,(m)) F(dm)

& (x)
A(m) = /R /gm( VE(HX(O) + 5))ds g () (2)
& (x)
Ac(m) = Z/ E(h(X(0) + 5))dsarg, (x)
x€Cqp,
-5/ L. s (v (2 = x), g (2))

ZETx Rgm ﬁRg

& (2—x)
« /7 E (h(X(0) + s + g5 (2) — h(X(0) + s + g2 ())) ds ) dxF (dm).



Application to Shot Noise

Considering g = 1p we have g, = 1p,, so that R,, = 9D, Cg, =0,
gn(x) =0, g (x) = 1. Hence, writing

p=| #@D )F(dm)—27r/ mF(dm) = E(27R),

m<x>
E(LPx(h,U)) = )\L‘(U)/W/R /g h(X(0) + s))dsH (dx) F(dm)

1
— AL(U)P / E(h(X(0) + 5))ds
0
h(t)(AL(U)pP(X(0) = [t]))dt

h(t)E(H(9Ex(t, U) N U))dt.

—



Application to Shot Noise

Moreover, E(LTCx(h, U)) = AL(U) [5. (Ar(m) 4+ A;(m)) F(dm) with

/ / g (X (dm) = / TC(OD,)F(dm) = 27% = 27, s.t.
R+ JOD, R+

/]R An(m)F(dm) = 27 /0 E(h(X(0)+5))ds — /R h(£)27XP(X(0) = [¢])dt.

According to the kinematic formula we have

/ Z ds1(vg, (z — x), v, (2))dx = 2m x 27wm’s.t

zeT,0DLNOD,,

/R Au(m)F(dm) = 252 /0 E(A(X(0) + s + 1)) — E(A(X(0) + 5))ds.

It follows that
E(LTCx(h, U))

= [ e2mnc(u) (0 2o IEXO) = (1) + - P(X(0) = [e - 1) ).



[llustration

We can conclude that for all k € N and t € (k, k + 1]
_(\3)¥
E(Per(Ex(t, U),U)) = AE(U)e"\a% x p, and

E(TC(9Ex(t, U), U) = QW)\,C(U)G_AE(AZ) (5—2/( +X - %A)'

4ma
Is it far from 27E(x(Ex(t, U)))?

=

Figure — Shot noise on a domain of size 2000 x 2000 pixels, with intensity
A =0.001, and random disks of radius R = 50 or R = 100 (each with
probability 0.5). Empirical Perimeter and Euler characteristic vs "theoretical"

ones
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Figure — Critical levels



lllustration for squares

If g = 1¢ we can also compute and get that for all k € N and

te (k,k+1]
s (Aa)"
E(Per(Ex(t, U), U)) = AL(U)e™*? i~ %P and
_ _xa(Xa)* iz - Ez
E(TC(0Ex(t, U), U) = 2mAL(U)e 2= ({ =k +X = 16A)

Is it far from 27E(x(Ex(t, U)))?

Figure — Shot noise on a domain of size 2000 x 2000 pixels, with intensity
A = 0.005, and random square of side length R = 100. Empirical Perimeter and
Euler characteristic vs "theoretical" ones



[llustration
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Figure — Critical levels
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