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Shot noise random �elds

A (Poisson) shot noise random �eld is a random �eld (X (x))x∈Rd

given by

∀x ∈ Rd , X (x) =
∑
i∈I

gmi (x − xi ),

where

{xi}i∈I is a Poisson point process of intensity λ > 0 in Rd ,

{mi}i∈I are independent � marks � with distribution F (dm) on Rk ,
and independent of {xi}i∈I .

The functions gm are real-valued deterministic functions, called spot
functions, such that∫

Rk

∫
Rd

|gm(y)| dy F (dm) < +∞.
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Shot noise random �elds

There are many mathematical studies of this random �eld : S.O. Rice
(1944), Papoulis (1971), Bar David and Nemirovsky (1972), Heinrich and
Schmidt (1985), Baccelli and Blaszczyszyn (2001), etc...

It is also used in texture synthesis or image modeling : J. van Wijk
(Computer Graphics, 1991), Lagae et al. (SIGGRAPH, 2009), Galerne et
al. (SIGGRAPH, 2012) A. Srivastava, X. Liu et U. Grenander (IEEE
PAMI 2002)...

For sake of simplicity, in this talk we consider d = 2, k = 1 and a single
L1(R2) function g randomly dilated : F is a probability measure on
(0,+∞) and for m > 0

gm(x) = g(x/m).
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Example : disk with random radius

Let d = 2, g = 1D , U = (0,T )2 and consider random disk gm = 1Dm of
radius m = m1 or m = m2 with 0 < m1 < m2 (each with probability 1/2)
with intensity λ > 0

The number of centers in (−m2,T +m2)
2 is a Poisson random

variable of parameter λ(T + 2m2)
2 −→ n

The centers x1, . . . , xn are thrown uniformly, independently on
(−m2,T +m2)

2

The radius R1, . . . ,Rn are attached to each center by �ipping a coin
to choose between m1 or m2.
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Excursion set

We consider the excursion set or the level set of level t ∈ R of X in U
de�ned by

EX (t,U) := {x ∈ U;X (x) ≥ t}.

view 3D view 2D level lines

t = 0.5 t = 1.5 t = 2.5
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Main questions

What can be said about "mean" geometry of excursion sets ? Area ?
Perimeter ? Euler Characteristic=# connected components � # holes ?

Known results for

Boolean model : Mecke (2001), Mecke, Wagner (1991)

Smooth Gaussian random �elds : Adler (2000), Adler, Taylor
(2007), Azaïs, Wschebor (2009), ...

High levels for in�nitely divisible smooth random �elds : Adler,
Samorodnitsky, Taylor (2010,2013),...

Two di�erent frameworks

1 Elementary : g is piecewize constant with compact support

2 Smooth : g is at least C 2
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Statistical properties of shot noise random �elds

The shot noise random �eld is given by

X (x) =
∑
i∈I

gmi (x − xi ) =
∑
i∈I

g

(
x − xi
mi

)
,∀x ∈ R2

where {xi ,mi}i∈I is a marked Poisson point process of intensity
λdx F (dm) on R2 × R+ with g ∈ L1(R2) and E(R2) < +∞ if R ∼ F .

The random �eld is stationary : its distribution is invariant by

translation : (X (x + x0))x
d
= (X (x))x

when g is radial the random �eld is isotropic : its distribution is

invariant by orthogonal transformation : (X (Ax))x
d
= (X (x))x for all

A ∈ O2(R)

The expectation (mean value) of X is given by

EX (x) = EX (0) = λ

∫
R+

∫
R2

gm(y) dy F (dm) = λE(R2)

∫
g .
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Statistical properties of shot noise random �elds

If
∫
R2 g(y)

2dy < +∞, then X has second-order moments

Cov(X (z),X (z + x)) = λ

∫
R+

∫
R2

gm(y)gm(y − x) dy F (dm)

= λρ(x).

In particular

Var(X (x)) = Var(X (0)) = λ

∫
R+

∫
R2

gm(y)
2 dy F (dm) = λE(R2)

∫
g2.

When moreover the intensity λ goes to +∞, the normalized random
�eld

Z (x) =
X (x)− E(X (x))√

λ

converges (f.d.d.) to a stationary centered Gaussian �eld with
covariance ρ.
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Statistical properties of shot noise random �elds

When g = 1D , the shot noise �eld has integer value and for any
t ∈ (0, 1], 1X≥t is a Boolean model. Moreover

EX (x) = EX (0) = λE(R2)L(D) = λE(L(DR)) = λa

Cov(X (z),X (z + x)) = λρ(x) with ρ(x) = E (L(DR ∩ DR + x))

Since the characteristic function of X (0) (or any X (x)) is given by :

∀u ∈ R, E(e iuX (0)) = exp

(
λ

∫
Rd

∫
Rn

[e iugm(y) − 1] dy F (dm)

)
,

We get that X (0) ∼ P(λa).
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Geometry of excursion sets

We consider the excursion set of level t ∈ R of X in U = (0,T )2 de�ned
by

EX (t,U) := {x ∈ U;X (x) ≥ t}.
The mean area is therefore (by stationarity of X )

E (L(EX (t,U))) =

∫
U

E
(
1X (x)>t

)
dx

= L(U)P(X (0) > t).

The mean perimeter corresponds to

E
(
H1(∂EX (t,U) ∩ U)

)
,

where H1 is the one-dimensional Hausdor� measure of the length of
plane curves.
The mean Euler characteristic corresponds to

E (χ(EX (t,U))) ,

where χ(A) denotes the Euler characteristic of a set A.
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Weak framework for function of special bounded variation

Let f be a real function piecewize constant with special bounded
variation in U and approximate discontinuity set Sf .
By Federer-Vol'pert Theorem,

Sf is a L-negligible Borel set, countably H1-recti�able ;

the distributional derivative of f is given by

Df := (f + − f −)νfH1∠Jf ,

where Jf ⊂ Sf is the H1-recti�able set of approximate jump points
of f : ∃f −(x) < f +(x) and νf (x) ∈ Sn−1 with

lim
ρ→0

ρ−n
∫
B±ρ (x,νf (x))

|f (y)− f ±(x)|dx = 0.

where B+
ρ (x , ν) = {y ∈ Bρ(x); (y − x) · ν > 0}, resp.

B−ρ (x , ν) = {y ∈ Bρ(x); (y − x) · ν > 0}.

H1(Sf r Jf ) = 0.
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Elementary function

The function f is said elementary function if f is a piecewise constant
function with special bounded variation in U taking a �nite number of
values and if Sf corresponds to the discontinuity set of f in U and can be
decomposed as

Sf = Rf ∪ Cf ∪ If , where :

Rf = Jf is a �nite disjoint union of C
2 simple

curves (possibly closed) with �nite length and
�nite total curvature

ie κf ∈ L1(Rf ,H1), where the signed curvature κf (x) of Rf at
x = γ(s) is given by

κf (x) = 〈γ′′(s), γ′(s)⊥〉 = 〈γ′′(s), νf (x)〉,
for a local arc-length parametrization γ.



default

Case of elementary function

Cf is a �nite set of corner points with turning
angle

αf (x) ∈ (−π, π)

If is a �nite set of intersection points ie
points x s.t. {x} = γ1 ∩ γ2 with γ1, γ2 C 2

simple curves in Sf with at least 3 6= values

f −(x) ≤ f +− (x), f −+ (x) ≤ f +(x),

and
βf (x) := dS1(νγ1(x), νγ2(x)) ∈ (0, π).
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Closed set via elementary function

Proposition : Let E ⊂ U be a regular region s.t. f := 1E is an
elementary function in U. Then, Sf = ∂E and

the perimeter of E de�ned by

Per(E ,U) := ‖Df ‖(U) = sup{
∫
U

f divϕdx |ϕ ∈ C 1

c (U,R2), ‖ϕ‖∞} < +∞,

corresponds to
H1(Rf ) = H1(∂E ).

By Gauss-Bonnet Theorem, the Euler characteristic of E is given by

χ(E ) =
1

2π
TC(∂E ,U),

where the total curvature of ∂E is equal to

TC(∂E ,U) =

∫
Rf

κf (x)H1(dx) +
∑
x∈Cf

αf (x).



default

Weak framework

Let f be an elementary function in U and set

Ef (t;U) = {x ∈ U; f (x) ≥ t}.

Remark that when t < minU f or t > maxU f , then ∂Ef (t;U) ∩ U = ∅.
We consider for any h bounded continuous function on R

the level perimeter integral of f

LPf (h,U) =

∫
R
h(t)Per(Ef (t,U),U)dt;

the level total curvature integral of f

LTCf (h,U) =

∫
R
h(t)TC(∂Ef (t,U),U)dt.

Note that LPf (1,U) = ‖Df (U)‖ = Vf (U) by co-area formula and we
note LTCf (U) = LTCf (1,U).
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Co-area formula for elementary functions

Proposition : for f an elementary function in U, writing
H(t) =

∫ t

0
h(s)ds we obtain

LPf (h,U) =

∫
Rf

[H(f +(x))− H(f −(x))]H1(dx)

LTCf (h,U) =

∫
Rf

[H(f +(x))− H(f −(x))]κf (x)H1(dx)

+
∑
x∈Cf

[H(f +(x))− H(f −(x))]αf (x)

+
∑
x∈If

[H(f +(x)) + H(f −(x))− H(f +− (x))− H(f −+ (x))]βf (x).

Proposition : If f , g are elementary functions with Sf ∩ Sg a �nite set of
{x ∈ Rf ∩Rg ; d

1

S (νf (x), νg (x)) ∈ (0, π)}, then f + g is an elementary
function. Surprisingly, for h = 1

Vf+g (U) = Vf (U) + Vg (U) and LTCf+g (U) = LTCf (U) + LTCg (U).



default

Application to Shot Noise

Using Slivnyak-Mecke formula, Fubini and stationarity

E(LPX (h,U)) = λL(U)

∫
R+

∫
Rgm

∫ g+
m (x)

g−m (x)

E(h(X (0) + s))dsH1(dx)F (dm)

E(LTCX (h,U)) = λL(U)

∫
R+

(AR(m) + AC (m) + AI (m))F (dm)

AR(m) =

∫
Rgm

∫ g+
m (x)

g−m (x)

E(h(X (0) + s))ds κgm(x)H1(dx)

AC (m) =
∑

x∈Cgm

∫ g+
m (x)

g−m (x)

E(h(X (0) + s))dsαgm(x)

AI (m) =
λ

2

∫
R+

∫
R2

∑
z∈τxRgm∩Rg

m′

dS1(νgm(z − x), νgm′ (z))

×
∫ g+

m (z−x)

g−m (z−x)
E
(
h(X (0) + s + g+

m′(z))− h(X (0) + s + g−m′(z))
)
ds ) dxF (dm′).
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Application to Shot Noise

Considering g = 1D we have gm = 1Dm so that Rgm = ∂Dm, Cgm = ∅,
g−m (x) = 0, g+

m (x) = 1. Hence, writing

p =

∫
R+

H1(∂Dm)F (dm) = 2π

∫
R+

mF (dm) = E(2πR),

E(LPX (h,U)) = λL(U)

∫
R+

∫
Rgm

∫ g+
m (x)

g−m (x)

E(h(X (0) + s))dsH1(dx)F (dm)

= λL(U)p

∫
1

0

E(h(X (0) + s))ds

=

∫
R
h(t)(λL(U)pP(X (0) = [t]))dt

=

∫
R
h(t)E(H1(∂EX (t,U) ∩ U))dt.
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Application to Shot Noise

Moreover, E(LTCX (h,U)) = λL(U)
∫
R+ (AR(m) + AI (m))F (dm) with∫

R+

∫
∂Dm

κgm(x)H1(dx)F (dm) =

∫
R+

TC(∂Dm)F (dm) = 2πχ = 2π, s.t.

∫
R+

AR(m)F (dm) = 2πχ

∫
1

0

E(h(X (0)+s))ds =

∫
R
h(t)2πχP(X (0) = [t])dt.

According to the kinematic formula we have∫
R2

∑
z∈τx∂Dm∩∂Dm′

dS1(νgm(z − x), νgm′ (z))dx = 2πm × 2πm′s.t

∫
R+

AI (m)F (dm) =
λ

2
p2
∫

1

0

E(h(X (0) + s + 1))− E(h(X (0) + s))ds.

It follows that
E(LTCX (h,U))

=

∫
R
h(t)2πλL(U)

(
(χ− λ

4π
p2)P(X (0) = [t]) +

λ

4π
p2P(X (0) = [t − 1])

)
dt.
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Illustration

We can conclude that for all k ∈ N and t ∈ (k , k + 1]

E(Per(EX (t,U),U)) = λL(U)e−λa
(λa)k

k!
× p, and

E(TC(∂EX (t,U),U) = 2πλL(U)e−λa
(λa)k

k!
(
p2

4πa
k + χ− p2

4π
λ).

Is it far from 2πE(χ(EX (t,U))) ?
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Figure � Shot noise on a domain of size 2000× 2000 pixels, with intensity
λ = 0.001, and random disks of radius R = 50 or R = 100 (each with
probability 0.5). Empirical Perimeter and Euler characteristic vs "theoretical"
ones
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Illustration

t = 15 t = 19 t = 25

Figure � Critical levels
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Illustration for squares

If g = 1C we can also compute and get that for all k ∈ N and
t ∈ (k, k + 1]

E(Per(EX (t,U),U)) = λL(U)e−λa
(λa)k

k!
× p, and

E(TC(∂EX (t,U),U) = 2πλL(U)e−λa
(λa)k

k!
(
p2

16a
k + χ− p2

16
λ).

Is it far from 2πE(χ(EX (t,U))) ?

Figure � Shot noise on a domain of size 2000× 2000 pixels, with intensity
λ = 0.005, and random square of side length R = 100. Empirical Perimeter and
Euler characteristic vs "theoretical" ones
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Illustration

t = 3 t = 5 t = 8

Figure � Critical levels
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