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Problem of Furstenberg (1969): intersections of Cantor sets

Dynamical system (X , f ): X compact metric space, f : X → X .

Principal example : X = [0, 1], f : x 7→ 2x mod 1.

f -invariant sets:

{A ⊂ X : A compact , f (A) ⊂ A} .

→ display dynamical properties of f .

(X , f ), (X , g): compare the two systems → compare their invariant
sets.

Particularly: when f et g are “independent” → few common
dynamical structures → the intersections of their invariant sets should
be “as small as possible”.

independence: arithmetical or geometrical

Ex: f : x → 2x mod 1, f : x → 3x mod 1
(log 2/ log 3 /∈ Q → multiplicatively independent)
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Transversality of dynamical systems (Furstenberg 1969)

(X , f ), (X , g); dim → a dimension function (ex. dimH)

Furstenberg: f et g are called transverse if for all A = f -invariant et
B = g -invariant, we have

dimA ∩ B ≤ max{0, dimA + dimB − dimX}

Furstenberg: for p, q ∈ N≥2 which are multiplicatively independent,
the dynamics ×p et ×q are transverse.

Conjecture 1 (Furstenberg 1969)

Let p, q ∈ N≥2 with log p/ log q /∈ Q. If A ⊂ [0, 1] is ×p-invariant and
B ⊂ [0, 1] is ×q-invariant, then for all u, v ∈ R, we have

dimH(uA + v) ∩ B ≤ max{0, dimH A + dimH B − 1}.

Object of this talk.
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Landmark paper of Furstenberg (1967):
”Disjointness in ergodic theory, minimal sets, and a problem in Diophantine

approximation”

Disjointness of dynamical systems.

The celebrated ×2,×3-rigidity result: if A ⊂ [0, 1] is simultaneously
×2 and ×3-invariant and ]A =∞, then A = [0, 1].

→ if x ∈ [0, 1] \Q, then {2n3mx mod 1}n,m∈N is dense in [0, 1].

The famous ×2,×3 conjecture: if µ is a non-atomic measure, ergodic
and simultaneously ×2 and ×3-invariant, then µ = L.
(Partial solution: Rudolph; influenced: homogeneous dynamics and

diophantine questions (e.g. Einsiedler-Katok-Lindenstrauss work))

Problem 1967 → “intersections of invariant measures”;
Problem 1969 → “intersections des invariant sets”.
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Known results about Conjecture 1 (intersection Conjecture)

Observation: for A,B ⊂ R, u, v ∈ R, we have

(uA + v) ∩ B
affine copy−−−−−−→ (A× B) ∩ `u,v ,

where `u,v = {(x , y) : y = ux + v}.
Classical result of Marstrand on the sections of fractals:

Theorem (Marstrand, 1954)

Let E ⊂ R2 be a Borel set. Then for each u ∈ R,

dimH(E ∩ `u,v ) ≤ max{0, dimH E − 1} for L-almost every v .

Consequence: if A = ×p-inv and B = ×q-inv, then for each u

dimH(uA + v) ∩ B ≤ max{0, dimH A + dimH B − 1} for L-a.e. v

Proof: E = A× B; dimH A× B = dimH A + dimH B.

Marstrand: Furstenberg is true for “almost all” sections.
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Dual problem of slices: Projection of fractals

Heuristically: small slices/fibers ←→ large projections.

Conjectured by Furstenberg (late 60’), proved by Hochman-Shmerkin
(2011) (special cases by Peres-Shmerkin, 2008)

If A is ×2-invariant and B is ×3-invariant, then

dimH π(A× B) = min{1, dimH A + dimH B}

for any π ∈ Π2,1 \ {πx , πy}.
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Partial results concerning all sections: Furstenberg

Theorem (Furstenberg, 1969)

Under the hypothesis of Conjecture 2, if there exist u0, v0 such that
dimB(u0A + v0) ∩ B = γ > 0, then for L-a.e. u, ∃ v such that

dimH(uA + v) ∩ B ≥ γ.

As a (simple) corollary, for all u, v , we have

dimB(uA + v) ∩ B ≤ max{0, dimH A + dimH B − 1

2
}.

Method (Furstenberg): CP-process/CP-chain.

Consequence: Conjecture 2 is true under the condition

dimH A + dimH B <
1

2
.
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Some recent results (Feng-Huang-Rao, 2013)

Feng-Huang-Rao: Affine embeddings of self-similar sets.
A = p-Cantor set if ∃D ⊂ {0, · · · , p − 1} such that

A = {
∑
k≥1

p−kxk : xk ∈ D}.

Remark: A is a self-similar and ×p-invariant set.

Theorem (Feng-Huang-Rao, 2013)

Let p, q ∈ N≥2 with log p/ log q /∈ Q. If A = p-Cantor and B = q-Cantor,
then there is no affine embedding between A and B.

As a consequence, ∃ δ = δ(A,B) > 0 (non-effective) such that

dimH(uA + v) ∩ B ≤ min{dimH A, dimH B} − δ.

Remark: for the Conjecture of Furstenberg, one expects

δ = 1−max{dimH A, dimH B}.

Recent work of Feng (2015).
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The intersection conjecture of Furstenberg is true.

Theorem (M.W, 2016)

Let p, q ∈ N≥2 with log p/ log q /∈ Q. If A = p-invariant and B =
q-invariant, then for all u, v ∈ R,

dimB(uA + v) ∩ B ≤ max{0, dimH A + dimH B − 1}.

We have a more general version of the theorem on the intersections of
incommensurable homogeneous self-similar sets.

Remark: The intersection conjecture of Furstenberg has been
simultaneously and independently proved by P. Shmerkin using completely
different (additive combinatorial) methods. (inspired by work of Hochman)
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Another conjecture of Furstenberg on expansions of numbers
in different bases.

For x ∈ [0, 1], we denote the orbit of x under ×m by

Om(x) = {mkx mod 1 : k ∈ N}.
Cm(x) := dimHOm(x)→ complexity of x in base m.
The complexity of a given number (e.g. π,

√
2 ): fundamental and

widely open question!
Easy fact: if x ∈ Q⇒ dimHOm(x) = 0;
If log p/ log q ∈ Q⇒ Cp(x) = Cq(x). e.g.: C10(x) = C100(x).
How about log p/ log q /∈ Q?

Furstenberg: if log p/ log q /∈ Q, then Op(x) and Oq(x) can not both
be “simple”!

Conjecture 2 (Furstenberg, 1969)

If log p/ log q /∈ Q, then for all x ∈ [0, 1] \Q, we have

dimHOp(x) + dimHOq(x) ≥ 1.

⇒ Low complexity in one base implies high complexity in another base.ex
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Conjecture 1 vs Conjecture 2: If A = ×2-inv and B = ×3-inv, and if
dimH A + dimH B < 1, then Conjecture 1 ⇒ dimH A ∩ B = 0, while
Conjecture 2 ⇒ A ∩ B ⊂ Q.

Applying Conjecture 2 to
√

2, e, π, ln 2, . . .

Exemple : dimHO2(π) + dimHO10(π) ≥ 1 !

The conjecture goes beyond this:
instead of p-adic expansion → continued fraction.
arithmetical independence → geometrical independence.

Conjecture: For p ≥ 2 and all x ∈ [0, 1] \Q, we have

dimHOG (x) + dimHOp(x) ≥ 1.

Here OG (x) is the orbit of x under the Gauss map.

Example: for x =
√

2, OG (x) is eventually periodic, so
dimHOG (x) = 0,

Conjecture ⇒ dimHOp(
√

2) = 1!
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x =
∑

n anp
−n ↔ E (x , p) = (an)n ∈ {0, · · · , p − 1}N.

Bugeaud-Kim: if log p/logq /∈ Q et x ∈ [0, 1] \Q, then the sequences
E (x , p) and E (x , q) can not both be sturmian.

Theorem (M.W, 2016) (A recent question of Furstenberg)

Suppose log p/ log q /∈ Q. There exists a set E ⊂ [0, 1] with dimH E = 0
(dimP E = 0) such that for all x ∈ [0, 1] \ E , we have

dimHOp(x) + dimHOq(x) ≥ 1.

Recall that Q ⊂ E .
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Results on sections of self-similar sets with rotation

Self-similar set: IFS {fi (x) = λiOθi
x + bi}m

i=1 on R2, 0 < λi < 1 and
Oθi

= rotation of angle θi ,

X =
⋃

i

fi (X ).

Strong separation condition (SSC): fi (X ) ∩ fj (X ) = ∅, ∀i 6= j .

Homogeneous: for each 1 ≤ i ≤ m, fi (x) = λOθx + bi .

Theorem 2 (M.W, 2016)

Let X be a self-similar as above. Suppose that θ is irrational and X
satisfies the SSC. Then for each line ` ⊂ R2,

dimBX ∩ ` ≤ max{0, dimH X − 1}.

The irrationality of θ is necessary. Ex: C1/3 × C1/3.
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Strategy of proof for Theorem 2.

Overall Strategy: if there exists ` such that dimBX ∩ ` = γ > 0, then

=⇒ dimH X ≥ 1 + γ; ↔ dimB X ≥ 1 + γ.

For dimB X ≥ 1 + γ, it is sufficient to show:
∀ε > 0, ∃r0 > 0, n0 ∈ N such that: for all n ≥ n0, ∃Bn = B(x , e−n)
and a set of directions Fn ∈ S1 with Ne−n (Fn) ≥ en(1−ε) satisfying:
∀ξ ∈ Fn, ∃` = `(ξ) such that

(1) ` has direction ξ;

(2) ` ∩ Bn 6= ∅;
(3) infy Ne−n ((X ∩ `) \ B(y , r0)) ≥ en(γ−ε).
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We will show:

∀ε > 0, ∃r0 > 0, n0 ∈ N such that: for all n ≥ n0, ∃Bn ⊂ X with
Ne−n (Bn) ≤ enε and a set of directions Fn ∈ S1 with Ne−n (Fn) ≥ en(1−ε)

satisfying: ∀ξ ∈ Fn, ∃` = `(ξ) such that

(1) ` has direction ξ;

(2) ` ∩ Bn 6= ∅;
(3) infy Ne−n ((X ∩ `) \ B(y , r0)) ≥ en(γ−ε).
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Strategy of proof – dynamical system

System: (X ,T ) with T := inverse of {fi}m
i=1,

T |fi (X ) = f −1i =
1

λ
O−θ(x) + ci .

T is expanding and rotating.

T : ` ∩ X 7→ {`′j ∩ X}j ,
if the direction of ` ∩ X = ξ and the direction of `′j ∩ X = ξ′,
then ξ′ = ξ − θ for each j .
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Strategy of proof (continued)

For ` with ` ∩ X 6= ∅ and z ∈ ` ∩ X , we denote

`(n, z) = unique section de T n(` ∩ X ) contenant T n(z).

Remark: direction changes → On
θ .

Find a ` ∩ X and a z ∈ ` ∩ X such that ∃Bn satisfying:

(1) Ne−n (Bn) ≤ enε;
(2) Ne−n{nθ : T n(z) ∈ Bn} ≥ en(1−ε);
(3) For most of n ∈ {nθ : T n(z) ∈ Bn}, we have

inf
y
Ne−n (`(n, z) \ B(y , r0)) ≥ en(γ−ε).
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Ergodic methods: Construction of a ”good” T -invariant
measure

Construct a measure ν∞: T -invariant (ergodic) such that for ν∞-a.e.
z , ∃ ` ∩ X s.t. for most k , we have

inf
y
Ne−n (`(n, z) \ B(y , r0)) ≥ en(γ−ε).

Construction: two steps:

CP-process of Furstenberg: starting from one `0 with
dimBX ∩ ` = γ > 0 → a family of “good” measures supported on
sections.
a nice argument of Hochman-Shmerkin (which relates the small-scale
structure of a measure to the distribution of its T -orbits) → construct
a T -invariant measure ν∞ based on a good measure from the
CP-process of Furstenberg.
Show that the measure ν∞ satisfies the desired condition.
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Ergodic methods II

ν∞: T -invariant (ergodice), for ν∞-a.e. z , ∃ ` s.t. `(n, z) is “good”
for most n.

Third ingredient - an ergodic result (→ Sinai’s factor theorem): there

exists a family of disjoint sets {B j
n}j s.t.

ν∞(X \
⊔

j B
j
n) < ε;

Ne−n (B j
n) ≤ enε;

L({nθ : T n(z) ∈ B j
n}) ≥ 1− ε.
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Merci de votre attention!
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