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Introduction

1 - Introduction: What is my question?

Notations: 3, = {0,1}7 is the set of finite words of length j, and = = {0, 1}

The word w € 3; is written w = (w1, w2, ...,w;), and |w| = j.
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Introduction

1 - Introduction: What is my question?

Notations: 3, = {0,1}7 is the set of finite words of length j, and = = {0, 1}
The word w € 3; is written w = (w1, w2, ...,w;), and |w| = j.

j .
For w € ¥j;, the dyadic interval Iy, is I, = [xw = Z wk27k,xw + 27J>.

k=1
For x € [0,1], Ij(x) = I, where w is the unique word j such that « € I,.
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Introduction

1 - Introduction: What is my question?

Notations: 3, = {0,1}7 is the set of finite words of length j, and = = {0, 1}

The word w € 3; is written w = (w1, w2, ...,w;), and |w| = j.

J
For w € ¥j;, the dyadic interval Iy, is I, = [xw = Z wk27k,xw + 273‘).
k=1
For x € [0,1], Ij(x) = I, where w is the unique word j such that « € I,.
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Introduction

1 - Introduction: What is my question?

Notations: ¥, = {0,1}/ is the set of finite words of length j, and ¥ = {0, 1}
The word w € 3 is written w = (w1, w2, ...,w;), and |w| = j.

j .
For w € ¥;, the dyadic interval I, is I, = [xw = Z w2~ P T + 27J).

k=1
For x € [0, 1], Ij(x) = I, where w is the unique word j such that = € I,,.
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Introduction

1 - Introduction: What is my question?

Notations: ¥, = {0,1}/ is the set of finite words of length j, and ¥ = {0, 1}

The word w € 3 is written w = (w1, w2, ...,w;), and |w| = j.

J
For w € ¥;, the dyadic interval I, is Iy = [xw = Z wk27k,a:w + 27j).
k=1
For x € [0, 1], Ij(x) = I, where w is the unique word j such that = € I,,.
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

m///“\\\h
/N /N
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Iooo Zoo1 foio Zoi1 Tioo Tior 110 Ti11
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

n(Ig)
#(Ip) ()
1(Ioo) n(Iog1) n(I10) n(I11)

AN AYNAYIA

1 (Igoon (T001A (To108 (To11 2 (T1008 (11018 (11108 (T111)

AN AN AN AN AAN AW
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

1
1/2 1/2

/N /N

1/4 1/4 1/4 1/4

/N /NN N

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

A A AN A A A

1 = Lebesgue measure on [0, 1]
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Take any measure p on [0, 1], and build the associated dyadic tree:
1 \
P / 1—p
2

(1 —p) (1 — p) (1—p)2

/\ AURANVAN

3201 _

NN AH

1 = Binomial measure with parameter p € (0,1)
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

n(Ig)
#(Ip) ()
1(Ioo) n(Iog1) n(I10) n(I11)

AN AYNAYIA

1 (Igoon (T001A (To108 (To11 2 (T1008 (11018 (11108 (T111)
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

n(Ig)
#(Ip) ()
1(Ioo) n(Iog1) n(I10) n(I11)

AN AYNAYIA

1 (Igoon (T001A (To108 (To11 2 (T1008 (11018 (11108 (T111)
Multifractal analysis: Study of the local dimensions of p at « € [0,1]:

I I;
dim(p, %) := lim inf M
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

n(Ig)
w(Ip) n(Iy)
n(Io0) #(Ip1) n(I10) n(I11)

AN AYNAYIA

#(Tooon (I0012 (To108 (To11 2 (T1009 (11018 (T1108(T111)

AN AN AN AN ANAWAEA

x

Multifractal analysis: Study of the local dimensions of p at z € [0, 1]:

1 I;
dim(p, x) := liminf M
Jj—+oo —j
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

n(Ig)
w(Ip) n(Iy)
n(Io0) #(Ip1) n(I10) n(I11)

AN AYNAYIA

#(Tooon (I0012 (To108 (To11 2 (T1009 (11018 (T1108(T111)

AN AN AN AN ANAWAEA

x

Multifractal analysis: Study of the local dimensions of p at z € [0, 1]:

1 I;
dim(p, x) := liminf M

i = Idea: p(l;(w)) ~ |1 (@)|Amlne) = 2-idimGue)
j—+oo —J
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

1
1/2 1/2

/N 7N\

1/4 1/4 1/4 1/4

/NN NN

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

ANANAAAN

Multifractal analysis: Study of the local dimensions of p at « € [0,1]:

logy u(L; (:
dim(p, &) := lim inf 128245 (*))

im i — Idea: u(Ij(z)) ~ |I; (x)|di7m(uyz) — 9—Jjdim(p,)
Jj—+oo -7
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

N

1-p
/ N / N\
(1 —p) p(1—p) (1—p)2

A A
NN A A

Multifractal analysis: Study of the local dimensions of p at x € [0,1]:

1 I; i .
dim(p, ) := lim inf M — Idea: p(Ilj(x)) ~ |I;(x )| dim () — g=jdim(p,2)
1=

+oo -
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

n(Ig)
w(Ip) (1)
n(Ioo) #(Ip1) n(I10) n(I11)

AN AYNAYA

#(Tooon (I0018 (To108 (To11 2 (T1009 (T1018 (T1108(T111)

AN AN AN AN ANAWAWA

x

Multifractal analysis: Study of the local dimensions of p at x € [0,1]:

log- I; . .
dim(p, z) := lim inf 082 KI5 \T)) “ J () — Idea: p(Ij(x)) ~|I; (x)|@(“’m) = g—Jdim(p,x)
Jj—+oo —J
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Take any measure p on [0, 1], and build the associated dyadic tree:

n(Ig)
w(Ip) (1)
n(Ioo) #(Ip1) n(I10) n(I11)

AN AYNAYA

#(Tooon (I0018 (To108 (To11 2 (T1009 (T1018 (T1108(T111)

AN AN AN AN ANAWAWA

Multifractal analysis: Study of the local dimensions of p at x € [0,1]:

log- I; . .
dim(p, z) := lim inf 082 KI5 \T)) “ J () — Idea: p(Ij(x)) ~|I; (x)|@(“’m) = g—Jdim(p,x)
Jj—+oo —J

One tries to "understand” the level sets
Ey(h) = {z € [0,1] : dim(u, ) = h}

and to compute the multifractal spectrum
D, /(h) = dim E, (h).
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

/N /N

1/4 1/4 1/4 1/4

/NN NN

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

ANANAAAN

Multifractal analysis: Study of the local dimensions of p at x € [0,1]:

logs p(1; . L
dim(p, z) := lim inf 082 15 T)) w1 (2) — Idea: p(Ij(x)) ~|I; (:1:)|dl—m(“’m) = g Jdim(p,w)

j—r+oo —J
D (H)
One tries to "understand” the level sets ! T
Eu(h) = {o € [0,1] : dim(u, ) = h} |
and to compute the multifractal spectrum :
D, (h) = dim E,, (h). = 11 .
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Introduction

Take any measure p on [0, 1], and build the associated dyadic tree:

N

1-p
/ N / N\
(1 —p) p(1—p) (1—p)2

A A
NN A A

Multifractal analysis: Study of the local dimensions of p at x € [0,1]:

It I i .
dim(p, z) := liminf 082 MAE)) 2l J (2)) —  Idea: p(Ij(x)) ~ |I;(x )\dlm(“ @) = g—Jdim(u,2)
1=

+oo -
Dy (H)

One tries to "understand” the level sets
Eu(h) = {o € [0,1] : dim(u, 2) = h} :

and to compute the multifractal spectrum
D, (h) = dim E, (h).

|

|

|

|

|

4+ h
0 ‘Hmin Hs Hmax
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Introduction

We perform a random sampling on the ”measured” tree.
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Introduction

We perform a random sampling on the ”measured” tree.

Fix a sampling index 0 < n < 1.

u(Ig)
Apply the following (random) operation: / \
w(Ig) w(Ip)
w(Igo) w(Io1) w(I10) w(I11)

SN NN

1(Ip00)n(Too1 )k (T010)1(To11) #(T100)n(T101)H(T110)m(T111)

AW AN
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Introduction

We perform a random sampling on the ”measured” tree.

Fix a sampling index 0 < n < 1.

u(Ig)
Apply the following (random) operation: / \
For each w € Xj, let py (o) #(I)
a Bernoulli r.v. B(2=7(1=m), / \ / \

w(Igo) w(Io1) w(I10) w(I11)

If pw = 1, keep the value p(lw),
and one says that w survives. / \ / \ / \ / \

1(Ip00)n(Too1 )k (T010)1(To11) #(T100)n(T101)H(T110)m(T111)

AW AN
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Introduction

We perform a random sampling on the ”measured” tree.

Fix a sampling index 0 < n < 1.

u(Ig)
Apply the following (random) operation: / \
For each w € Xj, let py (o) #(I)
a Bernoulli r.v. B(2=7(1=m), / \ / \

w(Igo) w(Io1) w(I10) w(I11)

If pw = 1, keep the value p(lw),
and one says that w survives. / \ / \ / \ / \

1(Ip00)n(Too1 )k (T010)1(To11) #(T100)n(T101)H(T110)m(T111)

e AW AW A A A
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Introduction

We perform a random sampling on the ”measured” tree.

Fix a sampling index 0 < n < 1.
n(Igp)

Apply the following (random) operation: / \

For each w € X;, let py 0 n(I1)
a Bernoulli r.v. B(Qij(l*")). / \ / \

1 (I (1
If pw = 1, keep the value p(lw), #ilon) #iho)
and one says that w survives. / \ / \ / \ / \

11)

If pw = 0, replace it
by the value 0 at the vertex w. /\ /\

At each generation j, there are ~ 29" survivors amongst the 27 initial vertices.
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Introduction

We perform a random sampling on the ”measured” tree.

Fix a sampling index 0 < n < 1.
n(Igp)

Apply the following (random) operation: / \

For each w € X, let py n(Iy)

0
a Bernoulli r.v. B(Qij(l*")). / \ / \

1 (I W (I
If pw = 1, keep the value p(lw), nlow no)
and one says that w survives. / \ / \ / \ / \
If pw = 0, replace it
by the value 0 at the vertex w. /\ /\

At each generation j, there are ~ 29" survivors amongst the 27 initial vertices.
Questions:

o Which vertices survive after sampling?
o Can one recover the initial tree?

e What about the structure of the survivors?
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Introduction

We perform a random sampling on the ”measured” tree.

Fix a sampling index 0 < n < 1.
n(Igp)

Apply the following (random) operation: / \

For each w € X, let py n(Iy)

0
a Bernoulli r.v. B(Qij(l*")). / \ / \

1 (I W (I
If pw = 1, keep the value p(lw), nlow no)
and one says that w survives. / \ / \ / \ / \
If pw = 0, replace it
by the value 0 at the vertex w. /\ /\

At each generation j, there are ~ 29" survivors amongst the 27 initial vertices.
Motivations:

e Natural question, not so far from percolation theory.
@ Recovering from sparse data.

o Random wavelet series.
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Introduction

We perform a random sampling on the ”measured” tree.

Fix a sampling index 0 < n < 1. 1)
e

Apply the following (random) operation: / \

For each w € X, let py (1-p)

a Bernoulli r.v. B(Qij(l*")). / \ / \

p(1 —p) p(1—p)

If pw = 1, keep the value p(lw),

and one says that w survives. / \ / \ / \ / \
If pw = 0, replace it

by the value 0 at the vertex w. /\ /\

At each generation j, there are ~ 29" survivors amongst the 27 initial vertices.
Questions:

o Which vertices survive after sampling?
o Can one recover the initial tree?

o What about the structure of the survivors?
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Introduction

We perform a random sampling on the ”measured” tree.

Fix a sampling index 0 < n < 1.
n(lg)

Apply the following (random) operation: / \

For each w € X, let py

a Bernoulli r.v. B(Qij(l*")). / \ / \

If pw = 1, keep the value p(lw),

and one says that w survives. / \ / \ / \ / \
If pw = 0, replace it

by the value 0 at the vertex w. /\ /\

At each generation j, there are ~ 29" survivors amongst the 27 initial coefficients.
Questions:

o Which vertices survive after sampling?
o Can one recover the initial tree?

o What about the structure of the survivors?
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Introduction

We perform a random sampling on the ”measured” treee.

Fix a sampling index 0 < n < 1.
n(Ig)

Apply the following (random) operation: / \
0

For each w € ¥, let py

a Bernoulli r.v. B(2~7(1=m), / \ / \

If pw = 1, keep the value p(lw), N

and one says that w survives. / \ / \ / \ / \
If pw = 0, replace it

by the value 0 at the vertex w. /\ /\

At each generation j, there are ~ 277 survivors amongst the 27 initial coefficients.
Questions:

e Which vertices survive after sampling? — Description of the survivors.
e Can one recover the initial tree? — ”yes” when n > 1/2 and p Gibbs.

e What about the structure of the survivors? — new multifractal behavior(s).
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Introduction

We do not study directly the sampled tree, but an equivalent object.

VANVAN
A AN ANYAN

0 w(Igp1) O 0 0 0 0 wm(I111)

NAAAA A AR
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Introduction

We do not study directly the sampled tree, but an equivalent object.

Call i the new structure. u(Ip)
/u \/ e
0 n(Io1) #(I10) 0

0 w(Igp1) O 0 0 0 0 wm(I111)

NAAAA A AR
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Introduction

We do not study directly the sampled tree, but an equivalent object.

Call i the new structure. u(Ip)

Recalling that the local dimension is / \
I (i (x 0 Wiy
dlim(/}ﬁ x) = lim inf M , / \ / \
j—+oo —J

then, since there are n(Io1) n(I10)
only few survivors, / \ / \ / \ / \
this quantity is not relevant 0 wu(Ig 0

it =owvaten "R AR

S. Seuret Phase transitions, Gibbs, Sampling



Introduction

We do not study directly the sampled tree, but an equivalent object.

Call i the new structure. u(Ip)

Recalling that the local dimension is / \
I (i (x 0 Wiy
dlim(/}ﬁ x) = lim inf M , / \ / \
j—+oo —J

then, since there are n(Io1) n(I10)
only few survivors, / \ / \ / \ / \
this quantity is not relevant 0 wu(Ig 0

it =owvaten "R AR

We build from fi a random capacity My,.
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Introduction

We do not study directly the sampled tree, but an equivalent object.

Call i the new structure. u(Ip)

Recalling that the local dimension is / \
I (i (x 0 Wiy
dlim(/}ﬁ x) = lim inf M , / \ / \
j—+oo —J

then, since there are n(Io1) n(I10)
only few survivors, / \ / \ / \ / \
this quantity is not relevant 0 wu(Ig 0

it =owvaten "R AR

We build from fi a random capacity My,.

Observe that for any measure p,

pwIw) =sup{p(lw) : Iw C Iw}.
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Introduction

We do not study directly the sampled tree, but an equivalent object.

Call i the new structure. u(Ig)

Recalling that the local dimension is / \
1 (L (s 0 n(Iy)
dim(f, #) = lim inf logy ill;(@)) / \ / \
Jj—+oo -7

then, since there are n(Io1) n(I10)

/\ VANRVAN “/ \

this quantity is not relevant

e N

We build from fi a random capacity My,.

Observe that for any measure p,

pwIw) =sup{p(lw) : Iw C Iw}.

Definition

For every word W, set: My (Iy) := sup {u(lw) : Iw C Iw and w survives}.

Clearly M, is a capacity: if I, C Iy, My (Iw) < My (Iw).
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Introduction

For every word W, set: M, (I ) := sup {M([w) : Iy, C Iyy and w survives}.

N\ /N

n(Ip1) n(I10)

A\ ANVAN A\

0 w(Igo1) O 0 w(I111)

ARA AN A A
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Introduction

Definition

For every word W, set: M, (Iy) := sup {y(Iw) : Ly C Iyy and w survives}.
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Introduction

For every word W, set: M, (Iy) := sup {y(lw) : Iy C Iyy and w survives}.

n(Ig)
n(Ioo1) w(Ip)
#(Ipo1) n(Ip1) n(I10) w(I111)

/N /NN /N

w(I..) p(Too1) w(I.) p(I (I ) p(I.) p(I.) p(I111)

AR
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Introduction

For every word W, set: M, (Iy) := sup {y(lw) : Iy C Iyy and w survives}.

n(Ioo1) w(Ip)

/N /N

#(Ipo1) n(Ip1) n(I10) w(I111)

/N /NN /N

w(I..) p(Too1) w(I.) p(I (I ) p(I.) p(I.) p(I111)

AR

”Equivalence” between M, and fi.

If o has full support in [0, 1], the sup is a max (a.s, for every w).
One always has M, (Iw) < p(Iw).

When w survives, M, (Iw) = p(lw).

M,, combines dynamics and randomness —> ”phase transitions”.
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Introduction

For every word W, set: M, (Iy) := sup {y(lw) : Iy C Iyy and w survives}.

n(Ioo1) w(Ip)

/N /N

#(Ipo1) n(Ip1) n(I10) w(I111)

/N /NN /N

w(I..) p(Too1) w(I.) p(I (I ) p(I.) p(I.) p(I111)

AR

”Equivalence” between M, and fi.

If o has full support in [0, 1], the sup is a max (a.s, for every w).
One always has M, (Iw) < p(Iw).

When w survives, M, (Iw) = p(lw).

M,, combines dynamics and randomness —> ”phase transitions”.

Questions: - Multifractal analysis of M,,?

- Did we lose something (and what) on p?
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Introduction

(Credits: F. Vigneron - UPEC)

e o L

2D Multinomial measure at generation 7 before and after sampling (n = 0.8)

2D Gibbs measure at generation 6 before and after sampling (n = 0.7)
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Introduction

Outline of the rest of the talk:

o The Lebesgue case, with a proof !
@ Recalls on Gibbs measures.

o Reconstruction of the tree.

e Multifractal analysis of M.

o Main ideas of the proof.

Connections with :
@ Dynamics
e Random covering questions.

o Diophantine approximation.
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Lebesgue

2 - The Lebesgue case

/ \ With 4 = A = Lebesgue,

each vertex at generation j

/ \ / \ has a weight 277,

52
/ \ / \ The same for all survivors!
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Lebesgue

2 - The Lebesgue case

/ \ With 4 = A = Lebesgue,

NG LN, s
/ \73 / \ / \ / \73 The same for all survivors!
AR A AR
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Lebesgue

2 - The Lebesgue case

/ \ With 4 = A = Lebesgue,

each vertex at generation j
/ \ / \ has a weight 277,
0 2—2 2—2 0
/ \ / \ / \ / \ The same for all survivors!
0 923 o0 0 0 0 0 2—3
ACAA A A AT T
AP oL at a vertex W of length J
depends only on the generation
of the first survivor
1 amongst the sons of W.
22 a1
/N /N But M) (Iyy) does not depend
2—3 a—2 5—2 2—3 on the ”horizontal” location
/\ /\ /\ /\ of this first survivor.
2—8 2—3 2—4 2—15 2—4 o~ 2—) 2—3
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Lebesgue

2 - The Lebesgue case

/ \ With 4 = A = Lebesgue,

0 2t each vertex at generation j
/ \ / \ has a weight 277,
0 2—2 2—2 0
The same for all survivors!
/N /N /NN
0 923 o0 0 0 0 0 2—3
ANANANANANANANA The value of Ma (Tw)

AP oL at a vertex W of length J
depends only on the generation
of the first survivor

1 amongst the sons of W.
52 51
/N /N But M) (Iyy) does not depend
2—3 a—2 5—2 2—3 on the ”horizontal” location
/\ /\ /\ /\ of this first survivor.
2—8 2—3 2—4 2—15 2—4 o~ 2—9 2—3

4
/ \ / \ / \ / \ ! \ / \ | \ / ] This model was studied by S. Jaffard
o as lacunary wavelet series,
(also ~ Lévy processes).
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Question: can one compute the local dimension of M, at every x

1 M, (I;
dim(M,,, z) = lim inf 082 Wiy t)) M( 1(2))
Jj—+oo —J
and the multifractal spectrum of M, defined by

Dy, (H) = dim {z € [0,1] : dim(M,,z) = H} ?
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Question: can one compute the local dimension of M, at every x

1 M, (I;
dim(M,,, z) = lim inf 082 Wiy t)) M( 1(2))
Jj—+oo —J
and the multifractal spectrum of M, defined by

Dy, (H) = dim {z € [0,1] : dim(M,,z) = H} ?
e For Lebesgue p = A:

0N i For all = € [0, 1],
V2N V2N dim(\, z) = 1.
2—2 2—2 =2
/' \ /' \ /' \ /' \
9—39—35—35—3,—3,—3,—3,—3

AN AT AT AU AT AT A A
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Question: can one compute the local dimension of M, at every x

1 M, (I;
dim(M,,, z) = lim inf w
Jj—+oo —J
and the multifractal spectrum of M, defined by
Dy, (H) = dim {z € [0,1] : dim(M,,z) = H} ?

e For Lebesgue p = A:

1 Dy (H)
2,1/ \_)71 For all z € [0, 1], 1 .
V2ERN VRN dim(\, z) = 1. :
2—2 2—2 2 2 2—2 |
I\ I\ I\ I\ So Dx(1) =1, |
2739=39=35-35-35-35-35-3 fi i !
NIy andthisis it ; : "
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Question: can one compute the local dimension of M, at every x

1 M, (I;
dim(M,,, z) = lim inf 082 Wiy t)) M( 1(2))
Jj—+oo —J

and the multifractal spectrum of M, defined by
D, (H) =dim {z € [0,1] : dim(M,,,z) = H} ?

e For Lebesgue p = A:

1 D (H)
2,1/ \,,71 For all z € [0, 1], 1 .
V2ERN VRN dim(\, z) = 1. :
2—2 2—2 2—2 2—2 |
SN N I So DA(1) =1, |
2732—32—-32—33-32—33—-32-3 cia) I
NN and i s o 1 #
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Question: can one compute the local dimension of M, at every x

1 M, (I;
dim(M,,, z) = lim inf 082 Wiy t)) M( 1(2))
Jj—+oo —J

and the multifractal spectrum of M, defined by
D, (H) =dim {z € [0,1] : dim(M,,,z) = H} ?

e For Lebesgue p = A:

. Dy (H)
271/ \,,—1 For all = € [0, 1], 1 )
2N 2N dim(A, z) = 1. :
—2 —2 2 —2 |
IR So Dy(1) =1, |
2732732732735 39—39—35—3 cia) !
NV A and thisis i ol T H
e For the associated random capacity My [Jaffard, 1999]:
! Dwm, (H)
/ \ A
2—2 2—1 One has D H)=nH
s FaN ne has Dy, (H) =nH 1 ‘
2=3  9=2 22 -3 forevery H € [1,1/n], |
/\ /\ /\ /\ n !
5—85—85—45-Ty—45-4,-9,—3 almost surely. U !
AN AN AN AR ARNARNARNAY : + H

Doe o] 1 1/n
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Lebesgue

Main ideas of the proof in the Lebesgue case

We investigate the distribution of the surviving vertices forgetting all the &’s!

Each vertex w amongst the 27 vertices at generation j is kept with proba 2=7(1=71),
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Lebesgue

Main ideas of the proof in the Lebesgue case

We investigate the distribution of the surviving vertices forgetting all the &’s!

Each vertex w amongst the 27 vertices at generation j is kept with proba 2=3(1=m)

Lemma

Define S;(n) ={w € ¥; : w survives after sampling}.
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Lebesgue

Main ideas of the proof in the Lebesgue case

We investigate the distribution of the surviving vertices forgetting all the &’s!
Each vertex w amongst the 27 vertices at generation j is kept with proba 2=3(1=m)

Lemma

Define S;(n) ={w € ¥; : w survives after sampling}.
With probability 1, for every j,

#8;(n) ~ 27,
and such that for every W € ¥,

#(S;(m) N Iw) ~ L.
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Lebesgue

Main ideas of the proof in the Lebesgue case

We investigate the distribution of the surviving vertices forgetting all the &’s!

Each vertex w amongst the 27 vertices at generation j is kept with proba 2=3(1=m)

Lemma

Define S;(n) ={w € ¥; : w survives after sampling}.
With probability 1, for every j,

#8;(n) ~ 277,
and such that for every W € ¥,
#(S;(m) N Iw) ~ 1.

Interval Ty,
In other words,

J o~ gn
if J =jn,
every dyadic interval Iy
of generation J j H
contains at least one
(and essentially only one) i H
survivor at generation j. Generations
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Changing viewpoint: Focus on z € [0, 1], and the local behavior of M at x.

e First, since My (I) < A(I), one obviously has dim(My, z) > dim(\, z) = 1.
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Changing viewpoint: Focus on z € [0, 1], and the local behavior of M at x.
e First, since My (I) < A(I), one obviously has dim(My, z) > dim(\, z) = 1.

e For j > 1, z € I} ;) (), which contains a survivor w at generation j. Hence, one
has .
d(z, xw) < 2777,
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Changing viewpoint: Focus on z € [0, 1], and the local behavior of M at x.
e First, since My (I) < A(I), one obviously has dim(My, z) > dim(\, z) = 1.

e For j > 1, z € I} ;) (), which contains a survivor w at generation j. Hence, one
has .
d(z, xw) < 2777,

So we have proved the covering property

almost surely, [0, 1] = limsup U B<xw, 27”> (e’s are needed)
J=r oo weS;(n)
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Changing viewpoint: Focus on z € [0, 1], and the local behavior of M at x.
e First, since My (I) < A(I), one obviously has dim(My, z) > dim(\, z) = 1.

e For j > 1, z € I} ;) (), which contains a survivor w at generation j. Hence, one
has .
d(z, xw) < 2777,

So we have proved the covering property

almost surely, [0, 1] = limsup U B<xw, 27”> (e’s are needed)
Jj—+oo weS; ()

Consequences on the local dimension of M, at z:

Again, the interval I|;,| (x) contains a survivor w, hence

Ma (I3 (8)) > ATw) =277,
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Changing viewpoint: Focus on z € [0, 1], and the local behavior of M at x.
e First, since My (I) < A(I), one obviously has dim(My, z) > dim(\, z) = 1.

e For j > 1, z € I} ;) (), which contains a survivor w at generation j. Hence, one
has .
d(z, xw) < 2777,

So we have proved the covering property
almost surely, [0, 1] = lim sup U B<xw, 27”> (e’s are needed)
Jj—+oo weS; ()
Consequences on the local dimension of M, at z:

Again, the interval I|;,| (x) contains a survivor w, hence

M (ILJ'UJ (a:)) > AMw) = 277,
which implies that
logy M (;() )

dim(My,z) = liminf : < liminf
J—o0 —J j—oo —Ljn]

log, 277
B2y,
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Changing viewpoint: Focus on z € [0, 1], and the local behavior of M at x.
e First, since My (I) < A(I), one obviously has dim(My, z) > dim(\, z) = 1.

e For j > 1, z € I} ;) (), which contains a survivor w at generation j. Hence, one
has .
d(z, xw) < 2777,

So we have proved the covering property

almost surely, [0, 1] = limsup U B<xw, 27”> (e’s are needed)
Jj—+oo weS; ()

Consequences on the local dimension of M, at z:

Again, the interval I|;,|(z) contains a survivor w, hence

M (ILJ'UJ (a:)) > AMw) = 277,
which implies that
logy M (;() )
dim(My,z) = liminf ———= < i -
j—oo —J j—=oe —[jn]

So we just proved:

For every z € [0,1], dim(My,z) € [1,1/7].
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Lebesgue

For free, one has even more.
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Lebesgue

For free, one has even more.
Interval TLjnj ()

We have seen that M (IUM (x)) >277. n

Generations *
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Lebesgue

For free, one has even more.
Interval TLjnj ()

We have seen that M (IUM (x)) >277. n
There may exist survivors N
at a generation smaller than j. ! H
i H
HIH

Generations *
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For free, one has even more.

We have seen that My (IUM (x)) >279,
There may exist survivors

at a generation smaller than j.

Let w € S;/(n), where j' € [|jn], j], be

the first survivor in 1|, (z).

Write j = j'nd;, with 6; € [1,1/n].

Obviously M (1| (2)) =277 = 279/(1%),

Interval TLjnj ()

Generations *

1
The same argument as before gives dim(My, z) < lim inf —

J—+o0 no,

Ky
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For free, one has even more.
We have seen that My (IU,U (x)) >279,

There may exist survivors

at a generation smaller than j.

Let w € S;(n), where j' € [|jn], j], be

the first survivor in 1|, (z).
Write j = j'nd;, with 6; € [1,1/n].

Obviously M (1| (2)) =277 = 279/(1%),

1
The same argument as before gives dim(My, z) < lim inf — .
J—+o0 no,

Interval ILjT/J (x)

Generations *

Ky

Approximation rate of z by the random survivors: §; = limsupé;

j—o0
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For free, one has even more.
Interval IL]'T/J (x)

We have seen that M (IU,U (x)) >277. n

There may exist survivors "

at a generation smaller than j. ! H
i H

Let w € S;(n), where j' € [|jn], j], be

the first survivor in 1|, (z). H H

Write j = j'nd;, with 6; € [1,1/n].

Generations *

Obviously M (1| (2)) =277 = 279/(1%),

1
The same argument as before gives dim(My, z) < lim inf — .
Jj—+oo 776]'

Approximation rate of z by the random survivors: §; = limsupé;
Jj—oo

1
77'51"

1
With probability 1, for every x, 6, € {17 7} and dim(My, z) =
n
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1
With probability 1, for every x, 6, € {1, 7} and dim(My, z) =
n

Recall that one has

[0,1] = lim sup U B(a:w,27j").
I=F0 wes;(n)
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1
With probability 1, for every x, 6, € {1, 7} and dim(My, z) =
n

77‘51.

Recall that one has

[0,1] = lim sup U B(a:w,27j").
I=F0 wes;(n)

Theorem (Dodson et al., Jaffard, Beresnevich-Velani)

If for a (deterministic) sequence of balls (B(acn,ln)> wn [0, 1] one has

n

Leb(limsup B(zn, ln)> =1,

n—-+oo

1
then for every § > 1, dim {z € [0,1] : 6z =6} > 3 (here there is equality).
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1
With probability 1, for every x, 6, € {1, 7} and dim(My, z) =
n

77‘51.

Recall that one has

[0,1] = lim sup U B(a:w,27j").
I=F0 wes;(n)

Theorem (Dodson et al., Jaffard, Beresnevich-Velani)

If for a (deterministic) sequence of balls (B(acn,ln)> wn [0, 1] one has

n

Leb(limsup B(zn, ln)> =1,

n—-+oo

1
then for every § > 1, dim {z € [0,1] : 6z =6} > 3 (here there is equality).

One concludes: Let H € [1,1/n]. Then

D, (H) :dim{m:@(MA,z) :H}
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1
With probability 1, for every x, 6, € {1, 7} and dim(My, z) =
n

77‘51.

Recall that one has

[0,1] = lim sup U B(a:w,27j").
I=F0 wes;(n)

Theorem (Dodson et al., Jaffard, Beresnevich-Velani)

If for a (deterministic) sequence of balls (B(acn,ln)> wn [0, 1] one has

Leb(limsup B(zn, ln)> =1,

n—-+oo

1
then for every § > 1, dim {z € [0,1] : 6z =6} > 3 (here there is equality).

One concludes: Let H € [1,1/n]. Then
1
Dy, (H) = dim {z : dim(M,z) = H} = dim {x P = H}
N0z
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1
With probability 1, for every x, 6, € {1, 7} and dim(My, z) =
n

77‘51.

Recall that one has

[0,1] = lim sup U B(a:w,27j").
I=F0 wes;(n)

Theorem (Dodson et al., Jaffard, Beresnevich-Velani)

If for a (deterministic) sequence of balls (B(acn,ln)> wn [0, 1] one has

Leb(limsup B(zn, ln)> =1,

n—-+oo

1
then for every § > 1, dim {z € [0,1] : 6z =6} > 3 (here there is equality).

One concludes: Let H € [1,1/n]. Then
1
Dy, (H) = dim {z : dim(M,z) = H} = dim {x P = H}
N0z

=dim{z: 6, = (nH)fl}
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1
With probability 1, for every x, 6, € {1, 7} and dim(My, z) =
n

77‘51.

Recall that one has

[0,1] = lim sup U B(a:w,27j").
I=F0 wes;(n)

Theorem (Dodson et al., Jaffard, Beresnevich-Velani)

If for a (deterministic) sequence of balls (B(acn,ln)> wn [0, 1] one has

Leb(limsup B(zn, ln)> =1,

n—-+oo

1
then for every § > 1, dim {z € [0,1] : 6z =6} > 3 (here there is equality).

One concludes: Let H € [1,1/n]. Then

D, (H) :dim{m:@(MA,z) :H} :dim{x: n% :H}
=dim{z: 6, = (nH)fl}: W =nH.
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Gibbs reconstruction

3 - Gibbs measures, and reconstruction of the initial tree

e Consider a Hélder potential ¢ : ¥ — R.

e Consider the shift o on 3: o(wiwaws...) = waws....

j—1
e Look at the Birkhoff sums S;p(t) = Z (o).
k=0
1
e The pressure is P(¢) = lim - log Z sup e R,
ivee T S telu]
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Gibbs reconstruction

3 - Gibbs measures, and reconstruction of the initial tree

e Consider a Hélder potential ¢ : ¥ — R.

e Consider the shift o on 3: o(wiwaws...) = waws....
j—1

e Look at the Birkhoff sums S;p(t) = Z (o).
k=0

1
e The pressure is P(¢) = lim - log Z sup eSiet) c R,
J—o0 g wes; te[w]

Theorem

There is a Gibbs measure ju, defined on 3, such that

)

. = . -1 po (L ()
IC>1: Vzelol], Vji>1, C Sexp(Sjcp(x)ij(@))*

This measure satisfies the quasi-Bernoulli property:

v(w7w,) € E] X Zj’! Cilﬂ([w)ﬂ([w/) < N’(['u:-w’) < O#(IIU)M(['LU/)'

The multiplicativity is key in the following !!
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Gibbs reconstruction

Fix a Gibbs measure p, a sampling index 0 < < 1. Reconstruction of ;7

u(lg) w(ly)
n(Ig) n(Iy) 0 n(I1)
VRN VRN /N / N\
n(Igo) n(Io1) n(I10) n(I11) 0 r(Ip1) w(I10) C

/2 A A 2 Y A WA AN

r(Igook(Ioo1k(Io1od(To11 »(T100k(T101 2 (T1100(1111)  On(lgo1)0 0 0 0  0p(l111)

AR AN AN AN A AR AR A NN NN AN AW
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Gibbs reconstruction

Fix a Gibbs measure p, a sampling index 0 < < 1. Reconstruction of ;7

u(lg) w(ly)
w(Ip) n(I1) 0 n(I1)
VRN VRN /N / N\
n(Igo) n(Io1) n(I10) w(Iy1) 0 w(Io1) w(I10) 0
/\ /\ / \ / \ AN ARYA
r(Igook(Ioo1k(Io1od(To11 »(T100k(T101 2 (T1100(1111)  On(lgo1)0 0 0 0  0p(l111)

AR AN AN AN A AR AR A NN NN AN AW

A finite word u is 1-reconstructible if there exists a (finite) word w such that both
w and wu survive.
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Gibbs reconstruction

Fix a Gibbs measure p, a sampling index 0 < < 1. Reconstruction of ;7

u(lg) w(ly)
w(Ip) n(I1) 0 n(I1)
VRN VRN /N / N\
n(Igo) n(Io1) n(I10) w(Iy1) 0 w(Io1) w(I10) 0
/\ /\ / \ / \ AN ARYA
r(Igook(Ioo1k(Io1od(To11 »(T100k(T101 2 (T1100(1111)  On(lgo1)0 0 0 0  0p(l111)

AR AN AN AN A AR AR A NN NN AN AW

A finite word u is 1-reconstructible if there exists a (finite) word w such that both
w and wu survive.

Using the quasi-Bernoulli property p(lwu) ~ p(Iw)p(Iu). When w is
1-reconstructible, one deduces the value u([,) up to a constant.
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Gibbs reconstruction

Fix a Gibbs measure p, a sampling index 0 < < 1. Reconstruction of ;7

u(lg) w(ly)
w(Ip) n(Iy) 0 n(I1)
VRN VRN /N / N\
n(Igo) n(Io1) n(I10) w(Iy1) 0 w(Io1) w(I10) 0
/\ /\ / \ / \ AN ARYA
#(Ioook(Ioo12(To10k(To11 (T1ook(T1012(T1108(T111)  Or(Igo1)0 O 0 0  op(I111)

AR AN AN AN A AR AR A NN NN AN AW

A finite word u is 1-reconstructible if there exists a (finite) word w such that both
w and wu survive.

Using the quasi-Bernoulli property p(lwu) ~ p(Iw)p(Iu). When w is
1-reconstructible, one deduces the value u([,) up to a constant.

A finite word u is k-reconstructible if there exists a decomposition u = ujug - - - ug
such that all uj..., ug are simultaneously 1l-reconstructible.
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Gibbs reconstruction

/N

) n(Ip1)  w(I10) C

ANANAAY

op(Ipp1)0 0 0 0 op(I111)

ANAVARARAAA A

0 n(Iy)
/ N\ / N\
) w(Ip1) w(I10) (

ANVANAAY

op(Igp1)o 0 0 0  om(I111)

ANAVARAANR A
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Gibbs reconstruction

) w(Io1) w(I10) 0 ) w(Ip1) w(I10) C

AAVANANA AR

ou(Ipo1)0 0 op(I111) op(Ipp1)0 0 0 0  op(I111)

ANAVARARAAA A ANAVARAANR A

If n > 1/2, then a.s. the initial Gibbs tree is 1-reconstructible;

If n < 1/2, then a.s. the initial Gibbs tree not k-reconstructible, for any k > 1.
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Gibbs reconstruction

) w(Io1) w(I10) 0 ) w(Ip1) w(I10) C

AAVANANA AR

ou(Ipo1)0 0 op(I111) op(Ipp1)0 0 0 0  op(I111)

ANAVARARAAA A ANAVARAANR A

If n > 1/2, then a.s. the initial Gibbs tree is 1-reconstructible;

If n < 1/2, then a.s. the initial Gibbs tree not k-reconstructible, for any k > 1.

It follows from the fact that, if |w| = j and |u| = k, then

]P’(both w and wu survive) =2 nkg—2(1-m)j,
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Gibbs reconstruction

) w(Io1) w(I10) 0 ) w(Ip1) w(I10) C

AAVANANA AR

ou(Ipo1)0 0 op(I111) op(Ipp1)0 0 0 0  op(I111)

ANAVARARAAA A ANAVARAANR A

If n > 1/2, then a.s. the initial Gibbs tree is 1-reconstructible;

If n < 1/2, then a.s. the initial Gibbs tree not k-reconstructible, for any k > 1.

It follows from the fact that, if |w| = j and |u| = k, then

]P’(both w and wu survive) =2 nkg—2(1-m)j,
Phase transition at n = 1/2.
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Multifractals and formalism

4- Multifractal analysis of the random capacity M,

Recall that the L%-scaling function (free energy) of p is :

-1
forge R, 7,u(q) = lim — log, Z w(lw)d.
Jzee wEX

Ty is real analytic.
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and formalis

4- Multifractal analysis of the random capacity M,

Recall that the L%-scaling function (free energy) of p is :

-1
forge R, 7,u(q) = lim — log, Z w(lw)d.
Jzee wEX

Ty is real analytic. The Legendre transform of 7,, is defined by

(tu)*(H) = inf{Hq— 1.(q) : q € R}.
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als and formalism

4- Multifractal analysis of the random capacity M,

Recall that the L%-scaling function (free energy) of pis:

forge R, 7.(q) = llm —logz Z w(lw)?
wEX

Ty is real analytic. The Legendre transform of 7,, is defined by

(tu)*(H) = inf{Hq— 1.(q) : q € R}.

Theorem (Collet-Lebowitz-Porzio, '87)

Let Hypjn = 7 (+oo) H, = TL(O) and Hmax =
o for p-almost every x, dim(p,x) = dimy = lL
o For every H € [Humin, Hmax], Du(H) = (Ty)
o If H ¢ [Hmin, Hmax], then {z : dim(u,z) = H} = (.

T (@)

Dy (H)

. Seuret Phase transitions, Gibbs, Sampling



Multifractals and formalism

w(lg) n(Ig)
wu(Ig) n(ly) w(ly)
VRN VRN / \ /N
n(Ioo) n(Io1) n(I10) n(I11) 0 w(Ip1) m(I10) 0

/N /N /N /N AN AN

w(Ioook(Ioo1k(To1ok(Io11 (T100k(T101 0 (T1102(1111)  Or(Igp1)0 0 0 0  op(d111)

AUV VA A A

w(Ip)
/ \
n(Ioo1) n(I1)
VRN VRN
k(Ioo1) n(Io1) n(I10) w(I111)

0
0u(Ipo1)0 0

NNV

/\ /N /N /\

(I p(Too) (L) p(I o p(I.) p(I) p(I, )u(I111)

AR AR AN ANARN AR ARNAN
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Multifractals and formalism

Theorem (Barral, S., 2015)

There exist 71 € (0,n) and Hy(7) € [Hmin, Hs] such that, with probability 1:
@ The free energy T, of My exists as a limit.

@ The spectrum of singularity of My, is:

Du(H)~(1—n)  if H(0) < H < Hy (i),
Du, (H) = 3 37,y DuHe@) - H - if Ho(i) < H < H(7)/,
Du(H — 51 H(@)  if He()/7 < H < Humax + 57 He(7).

© My wverifies the multifractal formalism: Dy, = (TM“)*.
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Multifractals and formalism

Theorem (Barral, S., 2015)
There exist 71 € (0,n) and Hy(7) € [Hmin, Hs] such that, with probability 1:
@ The free energy T, of My exists as a limit.

@ The spectrum of singularity of My, is:
Dyu(H) = (1 —n) if H(0) < H < Hy(7),
Du, (H) = 3 37,y DuHe@) - H - if Hy() < H < He(@)/7,

Dyu(H — 350 Hy @) if He(@)/7i < H < Hmax + 352 He(7).

© My wverifies the multifractal formalism: Dy, = (TM“)*.

D, (H)

O] HeOp & 1-7 ~
e Hmax + 2L H ()
Hy () /7
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Multifractals and formalism

Tu(a) ™, (2
- q - q
0 1 0
-1 -1 Phase
transitions
q / q 4
n ay, n ay
Dw,, (H)
Dy, (H)
1¢--—----=---
1

1—n

0 H,y(0)
O |
| |

Hy(n)/n 1—7 ~
Himax e/ Hiax + 2L Hy ()

S. Seuret Phase transitions, Gibb:

Sampling



Some ideas

5 - Idea of the proof

New parameters need to be introduced:

Dy (H)
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Some ideas

5 - Idea of the proof

New parameters need to be introduced:

Dy (H)
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Some ideas

5 - Idea of the proof

New parameters need to be introduced:

Dy (H)

o | Hy0) H,(0)

For every ' € [0, 7],
one considers Hy(n')
the unique solution to

1—n
D, (H(’.(n/)> = 1-—7 :

Hy(n')
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Some ide

For a given H, set
En(j, H) = {w € 5 : p(Lw) ~ 277},

One has #&,(j, H) ~ 23D (H)
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For a given H, set
En(j, H) = {w € 5 : p(Lw) ~ 277},

One has #&,,(j, H) ~ 29Pu (),

At a given generation j,

one keeps only ~ 297 coefficients amongst the 27.
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Some id

Dy (H)
For a given H, set

€., H) = {w € 5 : p(Lw) ~ 2797},

One has #&,,(j, H) ~ 29Pu (),

At a given generation j,

one keeps only ~ 297 coefficients amongst the 27.

By a counting argument, one gets

Lemma

With probability 1:

e Only those words w such that
2—3Hr(0) < w(ly) < 9—3He(0)

may survive.

R R R REERRRRRRREEEEEBEEEBEEDEBEBEESISBSwSERES
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Some id

Dy (H)

For a given H, set 1
En(G H) ={w € Z; : p(Lw) ~ 2791y,
One has #&,,(j, H) ~ 29Pu(H), . "
At a given generation j, L st~ N
one keeps only ~ 297 coefficients amongst the 27. 1ok /_\ o

/) K
By a counting argument, one gets ? 1) @
Lemma
With probability 1:
e Only those words w such that P
2-3H(0) < u(lyw) < 9—3H¢(0) L S 7/: :\7\7 --
may survive. 1/\\
e For H € [Hy(0), H-(0)], one has 0 a0 ()
#£,0, H) N1 8;(n) ~ 20 (PuD-01-m),
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Some ideas

Only the w such 27770 < 1(1,,) < 277H(0) may survive.
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Some id

Only the w such 27770 < 1(1,,) < 277H(0) may survive.

Immediate consequence:

With probability 1, the capacity M, satisfies:
o for every x, dim(M,,, z) > Hy(0).

o there exists x such that dim(M,, xz) = H,(0).
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Some id

Only the w such 27770 < 1(1,,) < 277H(0) may survive.

Immediate consequence:

With probability 1, the capacity M, satisfies:
o for every x, dim(M,,, z) > Hy(0).

o there exists x such that dim(M,, xz) = H,(0).

Proof: For every z and J > 1, in the interval I;(z), there exists a survivor
w € S;(n) with j > J such that I, C Ij(x) and p(lyw) realizes the maximum.

Jence

My (11(2)) = (1)
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Some ideas

Only the w such 27770 < 1(1,,) < 277H(0) may survive.

Immediate consequence:

With probability 1, the capacity M, satisfies:
o for every x, dim(M,,, z) > Hy(0).

o there exists x such that dim(M,, xz) = H,(0).

Proof: For every z and J > 1, in the interval I;(z), there exists a survivor
w € S;(n) with j > J such that I, C Ij(x) and p(lyw) realizes the maximum.

Jence

M (L;(z)) = p(ly) < 277He0) < 9= JH(0),
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Some ideas

Only the w such 27770 < 1(1,,) < 277H(0) may survive.

Immediate consequence:

With probability 1, the capacity M, satisfies:
o for every x, dim(M,,, z) > Hy(0).

o there exists x such that dim(M,, xz) = H,(0).

Proof: For every z and J > 1, in the interval I;(z), there exists a survivor
w € S;(n) with j > J such that I, C Ij(x) and p(lyw) realizes the maximum.
Jence

M (L;(z)) = p(ly) < 277He0) < 9= JH(0),

logy M, (1, ()

So for every J, > Hy(0).

and dim(M,,, z) > Hy(0).
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Some ideas

Only the w such 27770 < 1(1,,) < 277H(0) may survive.

Immediate consequence:

With probability 1, the capacity M, satisfies:
o for every x, dim(M,,, z) > Hy(0).

o there exists x such that dim(M,, xz) = H,(0).

Proof: For every z and J > 1, in the interval I;(z), there exists a survivor
w € S;(n) with j > J such that I, C Ij(x) and p(lyw) realizes the maximum.
Jence

M (L;(z)) = p(ly) < 277He0) < 9= JH(0),

logy M, (1, ()

So for every J, > Hy(0).

and dim(M,,, z) > Hy(0).

For the existence of points & with local dimension Hy(0), arguments of random
coverings and "nice” distribution of random points are involved.

S. Seuret Phase transitions, Gibbs, Sampling



Some id

Only the w such 2795 (0) < (I,,) < 279H¢(0) may survive.

Immediate consequence:

With probability 1, the capacity M, satisfies:
o for every x, dim(M,,, z) > Hy(0).

o there exists x such that dim(M,, xz) = H,(0).

Proof: For every z and J > 1, in the interval I;(z), there exists a survivor
w € S;(n) with j > J such that I, C Ij(x) and p(lyw) realizes the maximum.
Jence

M (IJ(Z)) = p(ly) < 277He0) < 9= JH(0),

logy M, (1, ()

and dim(M,,, z) > Hy(0).

For the existence of points & with local dimension Hy(0), arguments of random
coverings and "nice” distribution of random points are involved.

So for every J, > Hy(0).

Much more difficult to find an upper bound for dim(M,,, z).

This upper bound is Hmax + 1:77 Hy(n) >> Hmax > Hy(0) !

"
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Some ideas

5 - Idea of the proof

We arrive at the core of the problem: Interval Ty (@)
Lin]

Generations %
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Some ideas

5 - Idea of the proof

We arrive at the core of the problem: Interval Ty (@)
The ”first” survivor L]

In the interval I, (z)

is probably not

the one that contributes most g H

to the value of My, (1|, (x)) !

Generations %
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5 - Idea of the proof

We arrive at the core of the problem: Interval Ty (@)
The ”first” survivor L]

In the interval I, (z)

is probably not i’ H

the one that contributes most g H

to the value of My, (1|, (x)) !

Generations %
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5 - Idea of the proof

We arrive at the core of the problem: Interval Ty (@)
The ”first” survivor L]

In the interval I, (z)

is probably not i’ H

the one that contributes most g H

to the value of My, (1|, (x)) !

Generations %
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Some ideas

5 - Idea of the proof

We arrive at the core of the problem: Interval Ty (@)
The ”first” survivor L]

In the interval I, (z)

is probably not i’ H

the one that contributes most g H

to the value of My, (1|, (x)) !

— There is a competition between survivors:
generation + local behavior of p.

Generations %
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Some ideas

5 - Idea of the proof

We arrive at the core of the problem: Interval Ty (@)
The ”first” survivor L]

In the interval I, (z)

is probably not i’ H

the one that contributes most g H

to the value of My, (1|, (x))

— There is a competition between survivors:
generation + local behavior of p.

Generations %

— One needs to describe more precisely which local dimensions may survive,
within an interval I ;, ().

If for a (deterministic) sequence of balls ( (a:n,ln)> wn [0, 1] one has

n—-+oo

n
Leb(hmsupB D00 Ui ) =1,
1

then for every 6 > 1, dim {z € [0,1] : 6, =6} > 5
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Some ideas

5 - Idea of the proof

We arrive at the core of the problem: Interval Ty (@)
The ”first” survivor L]

In the interval I, (z)

is probably not i’ H

the one that contributes most g H

to the value of My, (1|, (x)) !

— There is a competition between survivors:
generation + local behavior of p.

Generations %

— One needs to describe more precisely which local dimensions may survive,
within an interval I ;, ().

Theorem (Barral-S. 2004)

If for a (deterministic) sequence of balls (B(acn,ln)> wn [0, 1] one has

p(limsup B(zn, ln)> =1,

n—-+oo

lim g
then for every § > 1, dim {a: €[0,1] : 6z = 6} > %
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Some ideas

Focus on one survivor w of generation j.
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Focus on one survivor w of generation j.

Interval Iy, .
[3n

Jin

Generations T
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Some ide

Focus on one survivor w of generation j.

Interval Iy, .
[3n

Recall that o is the shift, then "
M(I’W) ~ /J'(I’W\jn) /j’(](rj'ﬂw)’
where w);,, of length jn is the n-root of w,
and o/"w of length j — jn is the 7-tail of w.
i H

Generations T
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Some id

Focus on one survivor w of generation j.

Interval Iy, .
[3n

Recall that o is the shift, then

M(I’W) ~ /J'(I’W\jn) /j’(](rj'ﬂw)’

where w);,, of length jn is the n-root of w,
and o/"w of length j — jn is the 7-tail of w.

Hence J H

p(Iy) =277 e ~ g=ina  g=i(l=mp
Generations T

where

e o describes the scaling behavior of the n-root,

e (3 describes the scaling behavior of the n-tail.
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Focus on one survivor w of generation j.

Interval Iy, .
[3n

Jin

Recall that o is the shift, then

M(I’W) ~ /J'(I’W\jn) /j’(](rj'ﬂw)’

where w);,, of length jn is the n-root of w,
and o/"w of length j — jn is the 7-tail of w.

Hence J H

p(Iy) =277 e ~ g=ina  g=i(l=mp
Generations T

where

e o describes the scaling behavior of the n-root,
e (3 describes the scaling behavior of the n-tail.

This rewrites
Hy =na+ (1 —n)B.
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Some id

Focus on one survivor w of generation j.

Interval Iy, .
[3n

Recall that o is the shift, then

/J’(Iw) ~ /“'(I’W\jn) /j’(](rjﬁu))’

where w);,, of length jn is the n-root of w,
and o/"w of length j — jn is the 7-tail of w.

Hence J H

() = 277w  g=dna. 2~ I(=mp
Generations

where

e o describes the scaling behavior of the n-root,
e (3 describes the scaling behavior of the n-tail.

This rewrites
Hy =na+ (1 —n)B.

Each interval Iy, where W has length J = jn, contains a survivor at generation j.

Hence every « € [Hyin, Hmax] 1s possible.
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Some id

Focus on one survivor w of generation j.

Interval Iy, .
[3n

Recall that o is the shift, then

/J’(Iw) ~ /“'(I’W\jn) /j’(](rjﬁu))’

where w);,, of length jn is the n-root of w,
and o/"w of length j — jn is the 7-tail of w.

Hence J H

() = 277w  g=dna. 2~ I(=mp
Generations

where

e o describes the scaling behavior of the n-root,
e (3 describes the scaling behavior of the n-tail.

This rewrites
Hy =na+ (1 —n)B.

Each interval Iy, where W has length J = jn, contains a survivor at generation j.

Hence every « € [Hyin, Hmax] 1s possible.

Question: Can we describe the possible 8’s?
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Some ideas

Interval T,

One has pi(Iy) = 27 7Hw ~ g=ine . g=i(1=mB

and so Hy = na+ (1 —n)p. o

Since the location of w is random, one could think

that one exponent 3 is realized a.s., "
J

the same for all intervals lejn'

Generationd
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Interval T,

One has pi(Iy) = 27 7Hw ~ g=ine . g=i(1=mB

and so Hy = na+ (1 —n)p. o

Since the location of w is random, one could think

that one exponent 3 is realized a.s., "
J

the same for all intervals lejn'

Generationd

It is not true — not easy to describe.
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Some

Interval T,

One has pi(Iy) = 27 7Hw ~ g=ine . g=i(1=mB

and so Hy = na+ (1 —n)p. o

Since the location of w is random, one could think

that one exponent 3 is realized a.s., "
J

the same for all intervals lejn'

Generationd

It is not true — not easy to describe.

One must consider all possible decompositions in tails and roots for 1’ € (0, n]:

W w2 e W) Wgn/ J+r Wgn/ 42 T W
n’-root of w n’-tail of w
1 1 1 1
ogo i w\LT//jJ) o og2 1 ( (,[71/]Jw) _2
—Ln’d] i—1In'"i]
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With proba 1, for every survivor w € ¥, there exists n’ € [0,m] such that

p(lw) ~ .U'(Iw‘m,) c2 A= H) o the same with Hy(n)).
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With proba 1, for every survivor w € ¥, there exists n’ € [0,m] such that

p(lw) ~ .U'(Iw‘m,) c2 A= H) o the same with Hy(n)).

We have u(I) = 277Hw  hence for some 7/,

Hy = n'a+ (1 —n")YHe(n).
w = wip wa - 1UL7‘,HIJ 1ULJT,/J+1 7ULJ77/J+2 e THj
n’-root of w n’-tail of w
1 I 1 I .
o8z 1 w]\Ln’J‘J) ~a 082 'f( aL/n_/JJw) ~ Hy(n')
—Ln’j] i—1n"3] g
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With proba 1, for every survivor w € ¥, there exists n’ € [0,m] such that

p(lw) ~ .U'(Iw‘m,) c2 A= H) o the same with Hy(n)).

We have u(I) = 277Hw  hence for some 7/,

Hy = n'a+ (1 —n")YHe(n).
w = wip wa - 1UL7‘,HIJ 1ULJT,/J+1 7ULJ77/J+2 e THj
n’-root of w n’-tail of w
1 I 1 I .
o8z 1 w]\Ln’J‘J) ~a 082 'f( aL/n_/JJw) ~ Hy(n')
—Ln’j] i—1n"3] g

Lemma (Renewal property)

With proba 1, for every n' € [0,m] and every word W of generation jn', there is a
survivor w of generation j tel que

—j(1—=n"YH,(n'
p(Iw) ~ p(Iy) - 2730=n)He(")
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Some ide

Conclusion(s) :

e M, satisfies the multifractal formalism: for every H, Dwm,, (H) = (tm,,)*(H).
e The phase transitons appear in the proof !

e Other energy models: cascades, random walks on trees.

e Other sampling procedures (less "radical”) — other phase transitions?

e General question: can one recover from partial information the initial
”dynamics” or the original ”measure”.
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