Impact of a sample procedure on a Gibbs tree

Stéphane Seuret, Université Paris-Est Créteil

Workshop on Probabilistic Aspects of Multiple Ergodic Averages

joint work with J. Barral

Notations: $\Sigma_j = \{0,1\}^j$ is the set of finite words of length j, and $\Sigma = \{0,1\}^{\mathbb{N}}$. The word $w \in \Sigma_j$ is written $w = (w_1, w_2, ..., w_j)$, and |w| = j.

Notations: $\Sigma_j = \{0,1\}^j$ is the set of finite words of length j, and $\Sigma = \{0,1\}^{\mathbb{N}}$.

The word $w \in \Sigma_j$ is written $w = (w_1, w_2, ..., w_j)$, and |w| = j.

For $w \in \Sigma_j$, the dyadic interval I_w is $I_w = \left[x_w := \sum_{k=1}^J w_k 2^{-k}, x_w + 2^{-j}\right]$.

For $x \in [0,1]$, $I_j(x) = I_w$ where w is the unique word j such that $x \in I_w$.

Notations: $\Sigma_j = \{0, 1\}^j$ is the set of finite words of length j, and $\Sigma = \{0, 1\}^{\mathbb{N}}$.

The word $w \in \Sigma_j$ is written $w = (w_1, w_2, ..., w_j)$, and |w| = j.

For $w \in \Sigma_j$, the dyadic interval I_w is $I_w = \left[x_w := \sum_{j=1}^{J} w_k 2^{-k}, x_w + 2^{-j}\right]$.

For $x \in [0, 1]$, $I_j(x) = I_w$ where w is the unique word j such that $x \in I_w$.

Lebesgue

Notations: $\Sigma_j = \{0,1\}^j$ is the set of finite words of length j, and $\Sigma = \{0,1\}^{\mathbb{N}}$. The word $w \in \Sigma_j$ is written $w = (w_1, w_2, ..., w_j)$, and |w| = j.

For $w \in \Sigma_j$, the dyadic interval I_w is $I_w = \left[x_w := \sum_{j=1}^{J} w_k 2^{-k}, x_w + 2^{-j}\right]$.

For $x \in [0,1]$, $I_j(x) = I_w$ where w is the unique word j such that $x \in I_w$.

Notations: $\Sigma_j = \{0,1\}^j$ is the set of finite words of length j, and $\Sigma = \{0,1\}^{\mathbb{N}}$. The word $w \in \Sigma_j$ is written $w = (w_1, w_2, ..., w_j)$, and |w| = j.

For
$$w \in \Sigma_j$$
, the dyadic interval I_w is $I_w = \left[x_w := \sum_{k=1}^{5} w_k 2^{-k}, x_w + 2^{-j}\right]$.

For $x \in [0,1]$, $I_j(x) = I_w$ where w is the unique word j such that $x \in I_w$.

Gibbs reconstruction

 $\mu = \text{Lebesgue measure on } [0, 1]$

Lebesgue

Take any measure μ on [0, 1], and build the associated dyadic tree:

 $\mu = \text{Binomial measure with parameter } p \in (0,1)$

Gibbs reconstruction

Multifractal analysis: Study of the local dimensions of μ at $x \in [0, 1]$:

$$\underline{\dim}(\mu, x) := \liminf_{j \to +\infty} \frac{\log_2 \mu(I_j(x))}{-j}$$

Lebesgue

Multifractal analysis: Study of the local dimensions of μ at $x \in [0, 1]$:

$$\underline{\dim}(\mu,x) := \liminf_{j \to +\infty} \frac{\log_2 \mu(I_j(x))}{-j}$$

Lebesgue

Multifractal analysis: Study of the local dimensions of μ at $x \in [0, 1]$:

$$\underline{\dim}(\mu,x) := \liminf_{j \to +\infty} \frac{\log_2 \mu(I_j(x))}{-j} \ \to \ \mathbf{Idea:} \ \mu(I_j(x)) \sim |I_j(x)| \\ \underline{\dim}(\mu,x) = 2^{-j\underline{\dim}(\mu,x)}$$

Multifractal analysis: Study of the local dimensions of μ at $x \in [0, 1]$:

$$\underline{\dim}(\mu,x) := \liminf_{j \to +\infty} \frac{\log_2 \mu(I_j(x))}{-j} \ \to \ \mathbf{Idea:} \ \mu(I_j(x)) \sim |I_j(x)|^{\underline{\dim}(\mu,x)} = 2^{-j\underline{\dim}(\mu,x)}$$

Multifractal analysis: Study of the local dimensions of μ at $x \in [0, 1]$:

$$\underline{\dim}(\mu,x) := \liminf_{j \to +\infty} \frac{\log_2 \mu(I_j(x))}{-j} \ \to \ \mathbf{Idea:} \ \mu(I_j(x)) \sim |I_j(x)| \\ \underline{\dim}(\mu,x) = 2^{-j\underline{\dim}(\mu,x)}$$

Multifractal analysis: Study of the local dimensions of μ at $x \in [0,1]$:

$$\underline{\dim}(\mu,x) := \liminf_{j \to +\infty} \frac{\log_2 \mu(I_j(x))}{-j} \ \to \ \mathbf{Idea:} \ \mu(I_j(x)) \sim |I_j(x)|^{\underline{\dim}(\mu,x)} = 2^{-j\underline{\dim}(\mu,x)}$$

Multifractal analysis: Study of the local dimensions of μ at $x \in [0, 1]$:

$$\underline{\dim}(\mu,x) := \liminf_{j \to +\infty} \frac{\log_2 \mu(I_j(x))}{-j} \ \to \ \mathbf{Idea:} \ \mu(I_j(x)) \sim |I_j(x)| \\ \underline{\dim}(\mu,x) = 2^{-j\underline{\dim}(\mu,x)}$$

One tries to "understand" the level sets

$$E_{\mu}(h) = \{x \in [0,1] : \underline{\dim}(\mu, x) = h\}$$

and to compute the multifractal spectrum

$$D_{\mu}(h) = \dim E_{\mu}(h).$$

Lebesgue

Take any measure μ on [0, 1], and build the associated dyadic tree:

Multifractal analysis: Study of the local dimensions of μ at $x \in [0,1]$:

$$\underline{\dim}(\mu, x) := \liminf_{j \to +\infty} \frac{\log_2 \mu(I_j(x))}{-j} \to \mathbf{Idea:} \ \mu(I_j(x)) \sim |I_j(x)| \underline{\dim}(\mu, x) = 2^{-j\underline{\dim}(\mu, x)}$$

One tries to "understand" the level sets $E_{\mu}(h) = \{x \in [0,1] : \dim(\mu, x) = h\}$

and to compute the multifractal spectrum $D_{\mu}(h) = \dim E_{\mu}(h).$

Lebesgue

Multifractal analysis: Study of the local dimensions of μ at $x \in [0, 1]$:

$$\underline{\dim}(\mu,x) := \liminf_{j \to +\infty} \frac{\log_2 \mu(I_j(x))}{-j} \quad \to \quad \text{ Idea: } \mu(I_j(x)) \sim |I_j(x)|^{\underline{\dim}(\mu,x)} = 2^{-j\underline{\dim}(\mu,x)}$$

One tries to "understand" the level sets $E_{\mu}(h) = \{x \in [0,1] : \dim(\mu, x) = h\}$

and to compute the multifractal spectrum $D_{\mu}(h) = \dim E_{\mu}(h).$

Gibbs reconstruction

Fix a sampling index $0 < \eta < 1$.

Apply the following (random) operation:

Gibbs reconstruction

Fix a sampling index $0 < \eta < 1$.

Apply the following (random) operation:

For each $w \in \Sigma_j$, let p_w a Bernoulli r.v. $B(2^{-j(1-\eta)})$.

If $p_w = 1$, keep the value $\mu(I_w)$, and one says that w survives.

Fix a sampling index $0 < \eta < 1$.

Apply the following (random) operation:

For each $w \in \Sigma_i$, let p_w a Bernoulli r.v. $B(2^{-j(1-\eta)})$.

If $p_w = 1$, keep the value $\mu(I_w)$, and one says that w survives.

If $p_w = 0$, replace it by the value 0 at the vertex w.

Fix a sampling index $0 < \eta < 1$.

Apply the following (random) operation:

For each $w \in \Sigma_i$, let p_w a Bernoulli r.v. $B(2^{-j(1-\eta)})$.

If $p_w = 1$, keep the value $\mu(I_w)$, and one says that w survives.

If $p_w = 0$, replace it by the value 0 at the vertex w.

At each generation j, there are $\sim 2^{j\eta}$ survivors amongst the 2^{j} initial vertices.

Fix a sampling index $0 < \eta < 1$.

Apply the following (random) operation:

For each $w \in \Sigma_j$, let p_w a Bernoulli r.v. $B(2^{-j(1-\eta)})$.

If $p_w = 1$, keep the value $\mu(I_w)$, and one says that w survives.

If $p_w = 0$, replace it by the value 0 at the vertex w.

At each generation j, there are $\sim 2^{j\eta}$ survivors amongst the 2^j initial vertices.

- Which vertices survive after sampling?
- Can one recover the initial tree?
- What about the structure of the survivors?

Fix a sampling index $0 < \eta < 1$.

Apply the following (random) operation:

For each $w \in \Sigma_j$, let p_w a Bernoulli r.v. $B(2^{-j(1-\eta)})$.

If $p_w = 1$, keep the value $\mu(I_w)$, and one says that w survives.

If $p_w = 0$, replace it by the value 0 at the vertex w.

At each generation j, there are $\sim 2^{j\eta}$ survivors amongst the 2^j initial vertices.

Motivations:

- Natural question, not so far from percolation theory.
- Recovering from sparse data.
- Random wavelet series.

Fix a sampling index $0 < \eta < 1$.

Apply the following (random) operation:

For each $w \in \Sigma_i$, let p_w a Bernoulli r.v. $B(2^{-j(1-\eta)})$.

If $p_w = 1$, keep the value $\mu(I_w)$, and one says that w survives.

If $p_w = 0$, replace it by the value 0 at the vertex w.

 $\mu(I_{\emptyset})$

At each generation j, there are $\sim 2^{j\eta}$ survivors amongst the 2^{j} initial vertices.

- Which vertices survive after sampling?
- Can one recover the initial tree?
- What about the structure of the survivors?

Fix a sampling index $0 < \eta < 1$.

Apply the following (random) operation:

For each $w \in \Sigma_j$, let p_w a Bernoulli r.v. $B(2^{-j(1-\eta)})$.

If $p_w = 1$, keep the value $\mu(I_w)$, and one says that w survives.

If $p_w = 0$, replace it by the value 0 at the vertex w.

At each generation j, there are $\sim 2^{j\eta}$ survivors amongst the 2^j initial coefficients.

- Which vertices survive after sampling?
- Can one recover the initial tree?
- What about the structure of the survivors?

Fix a sampling index $0 < \eta < 1$.

Apply the following (random) operation:

For each $w \in \Sigma_j$, let p_w a Bernoulli r.v. $B(2^{-j(1-\eta)})$.

If $p_w = 1$, keep the value $\mu(I_w)$, and one says that w survives.

If $p_w = 0$, replace it by the value 0 at the vertex w.

 $\mu(I_{\emptyset})$

At each generation j, there are $\sim 2^{j\eta}$ survivors amongst the 2^j initial coefficients.

- Which vertices survive after sampling? \rightarrow Description of the survivors.
- Can one recover the initial tree? \rightarrow "yes" when $\eta > 1/2$ and μ Gibbs.
- What about the structure of the survivors? \rightarrow new multifractal behavior(s).

Gibbs reconstruction

Call $\tilde{\mu}$ the new structure.

Call $\tilde{\mu}$ the new structure.

then, since there are

Recalling that the local dimension is

$$\underline{\dim}(\tilde{\mu},x) = \liminf_{j \to +\infty} \frac{\log_2 \tilde{\mu}(I_j(x))}{-j} \ ,$$

only few survivors, this quantity is not relevant since $\tilde{\mu}(I_j(x)) = 0$ very often.

Call $\tilde{\mu}$ the new structure.

Recalling that the local dimension is $\log_2 \tilde{u}(I_1(x))$

$$\underline{\dim}(\tilde{\mu},x) = \liminf_{j \to +\infty} \frac{\log_2 \tilde{\mu}(I_j(x))}{-j} \ ,$$

only few survivors, this quantity is not relevant since $\tilde{\mu}(I_j(x)) = 0$ very often.

then, since there are

We build from $\tilde{\mu}$ a random capacity M_{μ} .

Call $\tilde{\mu}$ the new structure.

then, since there are

Lebesgue

Recalling that the local dimension is

$$\underline{\dim}(\tilde{\mu},x) = \liminf_{j \to +\infty} \frac{\log_2 \tilde{\mu}(I_j(x))}{-j} \ ,$$

only few survivors, this quantity is not relevant since $\tilde{\mu}(I_j(x)) = 0$ very often.

We build from $\tilde{\mu}$ a random capacity M_{μ} . Observe that for any measure μ ,

$$\mu(I_W) = \sup{\{\mu(I_w) : I_w \subset I_W\}}.$$

Call $\tilde{\mu}$ the new structure.

then, since there are

Lebesgue

Recalling that the local dimension is

$$\underline{\dim}(\tilde{\mu},x) = \liminf_{j \to +\infty} \frac{\log_2 \tilde{\mu}(I_j(x))}{-j} \ ,$$

only few survivors. this quantity is not relevant since $\tilde{\mu}(I_i(x)) = 0$ very often.

Multifractals and formalism

We build from $\tilde{\mu}$ a random capacity M_{μ} .

Observe that for any measure μ ,

$$\mu(I_W) = \sup \{ \mu(I_w) : I_w \subset I_W \}.$$

Definition

For every word W, set: $M_{\mu}(I_W) := \sup \{ \mu(I_w) : I_w \subset I_W \text{ and } w \text{ survives} \}.$

Clearly M_{μ} is a capacity: if $I_w \subset I_W$, $M_{\mu}(I_w) \leq M_{\mu}(I_W)$.

- "Equivalence" between M_{μ} and $\tilde{\mu}$.
- If μ has full support in [0,1], the sup is a max (a.s, for every w).
- One always has $\mathsf{M}_{\mu}(I_w) \leq \mu(I_w)$.
- When w survives, $M_{\mu}(I_w) = \mu(I_w)$.
- M_{μ} combines dynamics and randomness \longrightarrow "phase transitions".

For every word W, set: $\mathsf{M}_{\mu}(I_W) := \sup \{ \mu(I_w) : I_w \subset I_W \text{ and } w \text{ survives} \}.$

- "Equivalence" between M_{μ} and $\tilde{\mu}$.
- If μ has full support in [0,1], the sup is a max (a.s, for every w).
- One always has $\mathsf{M}_{\mu}(I_w) \leq \mu(I_w)$.
- When w survives, $\mathsf{M}_{\mu}(I_w) = \mu(I_w)$.
- M_{μ} combines dynamics and randomness \longrightarrow "phase transitions".

Questions: - Multifractal analysis of M_{μ} ?

- Did we lose something (and what) on μ ?

(Credits: F. Vigneron - UPEC)

2D Multinomial measure at generation 7 before and after sampling $(\eta = 0.8)$

2D Gibbs measure at generation 6 before and after sampling ($\eta = 0.7$)

Outline of the rest of the talk:

- The Lebesgue case, with a proof!
- Recalls on Gibbs measures.
- Reconstruction of the tree.
- Multifractal analysis of M_{μ} .
- Main ideas of the proof.

Connections with:

- Dynamics
- Random covering questions.
- Diophantine approximation.

With $\mu = \lambda = \text{Lebesgue}$, each vertex at generation jhas a weight 2^{-j} .

The same for all survivors!

With $\mu = \lambda = \text{Lebesgue}$, each vertex at generation jhas a weight 2^{-j} .

Multifractals and formalism

The same for all survivors!

2 - The Lebesgue case

With $\mu = \lambda = \text{Lebesgue}$, each vertex at generation jhas a weight 2^{-j} .

The same for all survivors!

The value of $\mathsf{M}_{\lambda}(I_W)$ at a vertex W of length Jdepends only on the generation of the first survivor amongst the sons of W.

But $M_{\lambda}(I_W)$ does not depend on the "horizontal" location of this first survivor.

2 - The Lebesgue case

With $\mu = \lambda = \text{Lebesgue}$, each vertex at generation j has a weight 2^{-j} .

The same for all survivors!

The value of $\mathsf{M}_{\lambda}(I_W)$ at a vertex W of length Jdepends only on the generation of the first survivor amongst the sons of W.

But $M_{\lambda}(I_W)$ does not depend on the "horizontal" location of this first survivor.

This model was studied by S. Jaffard as lacunary wavelet series, (also ~ Lévy processes).

$$\underline{\dim}(\mathsf{M}_{\mu},x) = \liminf_{j \to +\infty} \frac{\log_2 \mathsf{M}_{\mu}(I_j(x))}{-j}$$

and the multifractal spectrum of M_{μ} defined by

$$D_{\mathsf{M}_{\mu}}(H) = \dim \left\{ x \in [0,1] : \underline{\dim}(\mathsf{M}_{\mu}, x) = H \right\}$$
 ?

$$\underline{\dim}(\mathsf{M}_{\mu}, x) = \liminf_{j \to +\infty} \frac{\log_2 \mathsf{M}_{\mu}(I_j(x))}{-j}$$

and the multifractal spectrum of M_{μ} defined by

$$D_{\mathsf{M}_{\mu}}(H) = \dim \left\{ x \in [0,1] : \underline{\dim}(\mathsf{M}_{\mu}, x) = H \right\}$$
 ?

• For Lebesgue $\mu = \lambda$:

For all
$$x \in [0, 1]$$
,
 $\underline{\dim}(\lambda, x) = 1$.

$$\underline{\dim}(\mathsf{M}_{\mu}, x) = \liminf_{j \to +\infty} \frac{\log_2 \mathsf{M}_{\mu}(I_j(x))}{-j}$$

and the multifractal spectrum of M_{μ} defined by

$$D_{\mathsf{M}_{\mu}}(H) = \dim \left\{ x \in [0, 1] : \underline{\dim}(\mathsf{M}_{\mu}, x) = H \right\}$$
?

• For Lebesgue $\mu = \lambda$:

For all $x \in [0, 1]$, $\dim(\lambda, x) = 1.$ So $D_{\lambda}(1) = 1$, and this is it!

$$\underline{\dim}(\mathsf{M}_{\mu}, x) = \liminf_{j \to +\infty} \frac{\log_2 \mathsf{M}_{\mu}(I_j(x))}{-j}$$

and the multifractal spectrum of M_{μ} defined by

$$D_{\mathsf{M}_{\mu}}(H) = \dim \left\{ x \in [0,1] : \underline{\dim}(\mathsf{M}_{\mu}, x) = H \right\} ?$$

• For Lebesgue $\mu = \lambda$:

For all $x \in [0, 1]$, $\dim(\lambda, x) = 1.$ So $D_{\lambda}(1) = 1$, and this is it!

Multifractals and formalism

• For the associated random capacity M_{λ} [Jaffard, 1999]:

$$\underline{\dim}(\mathsf{M}_{\mu}, x) = \liminf_{j \to +\infty} \frac{\log_2 \mathsf{M}_{\mu}(I_j(x))}{-j}$$

and the multifractal spectrum of M_{μ} defined by

$$D_{\mathsf{M}_{\mu}}(H) = \dim \left\{ x \in [0, 1] : \underline{\dim}(\mathsf{M}_{\mu}, x) = H \right\}$$
?

• For Lebesgue $\mu = \lambda$:

For all $x \in [0, 1]$, $\dim(\lambda, x) = 1.$ So $D_{\lambda}(1) = 1$, and this is it!

Multifractals and formalism

• For the associated random capacity M_{λ} [Jaffard, 1999]:

One has $D_{\mathsf{M}_{\lambda}}(H) = \eta H_{-1}$ for every $H \in [1, 1/\eta]$,

We investigate the distribution of the surviving vertices forgetting all the ε 's!

Each vertex w amongst the 2^j vertices at generation j is kept with proba $2^{-j(1-\eta)}$.

We investigate the distribution of the surviving vertices forgetting all the ε 's!

Each vertex w amongst the 2^j vertices at generation j is kept with proba $2^{-j(1-\eta)}$.

Lemma

Define $S_j(\eta) = \{w \in \Sigma_j : w \text{ survives after sampling}\}.$

Multifractals and formalism

We investigate the distribution of the surviving vertices forgetting all the ε 's!

Each vertex w amongst the 2^j vertices at generation j is kept with proba $2^{-j(1-\eta)}$.

Lemma

Define $S_j(\eta) = \{ w \in \Sigma_j : w \text{ survives after sampling} \}.$

With probability 1, for every j,

$$\#\mathcal{S}_j(\eta) \sim 2^{j\eta}$$
,

and such that for every $W \in \Sigma_{in}$,

$$\#(S_j(\eta) \cap I_W) \sim 1.$$

Multifractals and formalism

We investigate the distribution of the surviving vertices forgetting all the ε 's!

Gibbs reconstruction

Each vertex w amongst the 2^{j} vertices at generation j is kept with proba $2^{-j(1-\eta)}$.

Lemma

Define $S_j(\eta) = \{ w \in \Sigma_j : w \text{ survives after sampling} \}.$

With probability 1, for every j,

$$\#\mathcal{S}_j(\eta) \sim 2^{j\eta}$$

and such that for every $W \in \Sigma_{in}$,

$$\#(S_j(\eta) \cap I_W) \sim 1.$$

In other words, if $J = \mathbf{j}\eta$, every dyadic interval I_W of generation Jcontains at least one (and essentially only one) survivor at generation j.

Changing viewpoint: Focus on $x \in [0, 1]$, and the local behavior of M_{λ} at x.

• First, since $\mathsf{M}_{\lambda}(I) \leq \lambda(I)$, one obviously has $\underline{\dim}(\mathsf{M}_{\lambda}, x) \geq \underline{\dim}(\lambda, x) = 1$.

Changing viewpoint: Focus on $x \in [0, 1]$, and the local behavior of M_{λ} at x.

- First, since $M_{\lambda}(I) \leq \lambda(I)$, one obviously has $\underline{\dim}(M_{\lambda}, x) \geq \underline{\dim}(\lambda, x) = 1$.
- For $j \ge 1, x \in I_{|j\eta|}(x)$, which contains a survivor w at generation j. Hence, one has

$$d(x, x_w) \le 2^{-j\eta}.$$

Some ideas

- First, since $M_{\lambda}(I) \leq \lambda(I)$, one obviously has $\underline{\dim}(M_{\lambda}, x) \geq \underline{\dim}(\lambda, x) = 1$.
- For $j \geq 1, x \in I_{|j\eta|}(x)$, which contains a survivor w at generation j. Hence, one has

$$d(x, x_w) \le 2^{-j\eta}.$$

So we have proved the covering property

almost surely,
$$[0,1] = \limsup_{j \to +\infty} \bigcup_{w \in S_j(\eta)} B\left(x_w, 2^{-j\eta}\right)$$
 (ε 's are needed)

Some ideas

Focus on $x \in [0, 1]$, and the local behavior of M_{λ} at x. Changing viewpoint:

- First, since $M_{\lambda}(I) \leq \lambda(I)$, one obviously has $\underline{\dim}(M_{\lambda}, x) \geq \underline{\dim}(\lambda, x) = 1$.
- For $j \geq 1$, $x \in I_{|j\eta|}(x)$, which contains a survivor w at generation j. Hence, one has

$$d(x, x_w) \le 2^{-j\eta}.$$

So we have proved the covering property

almost surely,
$$[0,1] = \limsup_{j \to +\infty} \bigcup_{w \in S_j(\eta)} B\left(x_w, 2^{-j\eta}\right)$$
 (ε 's are needed)

Consequences on the local dimension of M_{λ} at x:

Again, the interval $I_{|j\eta|}(x)$ contains a survivor w, hence

$$\mathsf{M}_{\lambda}\Big(I_{\lfloor j\eta\rfloor}(x)\Big) \ge \lambda(I_w) = 2^{-j},$$

Focus on $x \in [0, 1]$, and the local behavior of M_{λ} at x. Changing viewpoint:

- First, since $\mathsf{M}_{\lambda}(I) \leq \lambda(I)$, one obviously has $\underline{\dim}(\mathsf{M}_{\lambda}, x) \geq \underline{\dim}(\lambda, x) = 1$.
- For $j \geq 1$, $x \in I_{|j\eta|}(x)$, which contains a survivor w at generation j. Hence, one has

$$d(x, x_w) \le 2^{-j\eta}.$$

So we have proved the covering property

almost surely,
$$[0,1] = \limsup_{j \to +\infty} \bigcup_{w \in S_j(\eta)} B\left(x_w, 2^{-j\eta}\right)$$
 (ε 's are needed)

Consequences on the local dimension of M_{λ} at x:

Again, the interval $I_{|j\eta|}(x)$ contains a survivor w, hence

$$\mathsf{M}_{\lambda}\Big(I_{\lfloor j\eta\rfloor}(x)\Big) \ge \lambda(I_w) = 2^{-j},$$

which implies that

$$\underline{\dim}(\mathsf{M}_{\lambda},x) \; = \; \liminf_{j\to\infty} \frac{\log_2 \mathsf{M}_{\lambda}\Big(I_j(x)\Big)}{-j} \; \leq \; \liminf_{j\to\infty} \frac{\log_2 2^{-j}}{-\lfloor j\eta\rfloor} \; = \; 1/\eta.$$

Changing viewpoint: Focus on $x \in [0, 1]$, and the local behavior of M_{λ} at x.

- First, since $\mathsf{M}_{\lambda}(I) \leq \lambda(I)$, one obviously has $\underline{\dim}(\mathsf{M}_{\lambda}, x) \geq \underline{\dim}(\lambda, x) = 1$.
- For $j \ge 1, x \in I_{\lfloor j\eta \rfloor}(x)$, which contains a survivor w at generation j. Hence, one has

$$d(x, x_w) \le 2^{-j\eta}.$$

So we have proved the covering property

almost surely,
$$[0,1] = \limsup_{j \to +\infty} \bigcup_{w \in S_j(\eta)} B\left(x_w, 2^{-j\eta}\right)$$
 (ε 's are needed)

Consequences on the local dimension of M_{λ} at x:

Again, the interval $I_{|j\eta|}(x)$ contains a survivor w, hence

$$\mathsf{M}_{\lambda}\Big(I_{\lfloor j\eta\rfloor}(x)\Big) \ge \lambda(I_w) = 2^{-j},$$

which implies that

$$\underline{\dim}(\mathsf{M}_{\lambda},x) \; = \; \liminf_{j \to \infty} \frac{\log_2 \mathsf{M}_{\lambda}\Big(I_j(x)\Big)}{-j} \; \leq \; \liminf_{j \to \infty} \frac{\log_2 2^{-j}}{-\lfloor j\eta \rfloor} \; = \; 1/\eta.$$

So we just proved:

Lemma

For every $x \in [0,1]$, $\underline{\dim}(\mathsf{M}_{\lambda}, x) \in [1, 1/\eta]$.

For free, one has even more.

We have seen that
$$\mathsf{M}_{\lambda}\Big(I_{\lfloor j\eta\rfloor}(x)\Big)\geq 2^{-j}.$$

Multifractals and formalism

For free, one has even more.

We have seen that $\mathsf{M}_{\lambda}\Big(I_{\lfloor j\eta\rfloor}(x)\Big) \geq 2^{-j}$.

There may exist survivors at a generation smaller than j.

For free, one has even more.

We have seen that $\mathsf{M}_{\lambda} \left(I_{|j\eta|}(x) \right) \geq 2^{-j}$.

There may exist survivors at a generation smaller than j.

Let $\mathbf{w} \in \mathcal{S}_{i'}(\eta)$, where $j' \in [\lfloor j\eta \rfloor, j]$, be the first survivor in $I_{|in|}(x)$.

Write
$$j = j' \eta \delta_j$$
, with $\delta_j \in [1, 1/\eta]$.

Obviously
$$\mathsf{M}_{\lambda}\Big(I_{\lfloor j\eta\rfloor}(x)\Big)=2^{-j'}=2^{-j/(\eta\delta_j)}.$$

The same argument as before gives $\underline{\dim}(\mathsf{M}_{\lambda},x) \leq \liminf_{\delta \to 1} \frac{1}{m^{\delta}}$

We have seen that $\mathsf{M}_{\lambda} \left(I_{|j\eta|}(x) \right) \geq 2^{-j}$.

There may exist survivors at a generation smaller than j.

Let $\mathbf{w} \in \mathcal{S}_{j'}(\eta)$, where $j' \in [\lfloor j\eta \rfloor, j]$, be the first survivor in $I_{|in|}(x)$.

Write $j = j' \eta \delta_i$, with $\delta_i \in [1, 1/\eta]$.

Obviously
$$\mathsf{M}_{\lambda}\Big(I_{\lfloor j\eta\rfloor}(x)\Big) = 2^{-j'} = 2^{-j/(\eta\delta_j)}.$$

The same argument as before gives $\underline{\dim}(\mathsf{M}_{\lambda},x) \leq \liminf_{\delta \to \pm 0.5} \frac{1}{\pi^{\delta}}$.

Multifractals and formalism

Definition

Approximation rate of x by the random survivors: $\delta_x = \limsup \delta_i$ $i \rightarrow \infty$

For free, one has even more.

We have seen that $\mathsf{M}_{\lambda} \Big(I_{|j\eta|}(x) \Big) \geq 2^{-j}$.

There may exist survivors at a generation smaller than j.

Let $\mathbf{w} \in \mathcal{S}_{j'}(\eta)$, where $j' \in [\lfloor j\eta \rfloor, j]$, be the first survivor in $I_{\lfloor j\eta \rfloor}(x)$.

Write $j = j' \eta \delta_j$, with $\delta_j \in [1, 1/\eta]$.

Obviously
$$\mathsf{M}_{\lambda}\Big(I_{|j\eta|}(x)\Big) = 2^{-j'} = 2^{-j/(\eta\delta_j)}$$
.

The same argument as before gives $\underline{\dim}(\mathsf{M}_{\lambda},x) \leq \liminf_{\lambda \to 1} \frac{1}{x^{\lambda}}$.

Definition

Approximation rate of x by the random survivors: $\delta_x = \limsup_{j \to \infty} \delta_j$

Proposition

With probability 1, for every x, $\delta_x \in \left[1, \frac{1}{\eta}\right]$ and $\underline{\dim}(\mathsf{M}_{\lambda}, x) = \frac{1}{\eta \cdot \delta_x}$.

With probability 1, for every
$$x$$
, $\delta_x \in \left[1, \frac{1}{\eta}\right]$ and $\underline{\dim}(\mathsf{M}_{\lambda}, x) = \frac{1}{\eta \cdot \delta_x}$.

Recall that one has

$$[0,1] = \limsup_{j \to +\infty} \bigcup_{w \in \mathcal{S}_j(\eta)} B\left(x_w, 2^{-j\eta}\right).$$

Multifractals and formalism

With probability 1, for every x, $\delta_x \in \left[1, \frac{1}{n}\right]$ and $\underline{\dim}(\mathsf{M}_{\lambda}, x) = \frac{1}{n \cdot \delta_x}$.

Recall that one has

$$[0,1] = \limsup_{j \to +\infty} \bigcup_{w \in S_j(\eta)} B(x_w, 2^{-j\eta}).$$

Theorem (Dodson et al., Jaffard, Beresnevich-Velani)

If for a (deterministic) sequence of balls $(B(x_n, l_n))$ in [0, 1] one has $Leb\Big(\limsup_{n\to+\infty}B(x_n,l_n)\Big)=1,$

then for every $\delta \geq 1$, dim $\{x \in [0,1] : \delta_x = \delta\} \geq \frac{1}{\epsilon}$ (here there is equality).

Multifractals and formalism

Proposition

With probability 1, for every x, $\delta_x \in \left[1, \frac{1}{\eta}\right]$ and $\underline{\dim}(\mathsf{M}_\lambda, x) = \frac{1}{\eta \cdot \delta_x}$.

Recall that one has

$$[0,1] = \limsup_{j \to +\infty} \bigcup_{w \in \mathcal{S}_j(\eta)} B(x_w, 2^{-j\eta}).$$

Theorem (Dodson et al., Jaffard, Beresnevich-Velani)

If for a (deterministic) sequence of balls $\left(B(x_n, l_n)\right)_n$ in [0, 1] one has $Leb\left(\limsup_{n \to +\infty} B(x_n, l_n)\right) = 1,$

then for every $\delta \geq 1$, dim $\{x \in [0,1] : \delta_x = \delta\} \geq \frac{1}{\delta}$ (here there is equality).

One concludes: Let $H \in [1, 1/\eta]$. Then

$$D_{\mathsf{M}_{\lambda}}(H) = \dim \left\{ x : \underline{\dim}(\mathsf{M}_{\lambda}, x) = H \right\}$$

Proposition

With probability 1, for every x, $\delta_x \in \left[1, \frac{1}{\eta}\right]$ and $\underline{\dim}(\mathsf{M}_\lambda, x) = \frac{1}{\eta \cdot \delta_x}$.

Recall that one has

$$[0,1] = \limsup_{j \to +\infty} \bigcup_{w \in \mathcal{S}_j(\eta)} B(x_w, 2^{-j\eta}).$$

Theorem (Dodson et al., Jaffard, Beresnevich-Velani)

If for a (deterministic) sequence of balls $\left(B(x_n, l_n)\right)_n$ in [0, 1] one has $Leb\left(\limsup_{n \to +\infty} B(x_n, l_n)\right) = 1,$

then for every $\delta \geq 1$, dim $\{x \in [0,1] : \delta_x = \delta\} \geq \frac{1}{\delta}$ (here there is equality).

One concludes: Let $H \in [1, 1/\eta]$. Then

$$D_{\mathsf{M}_{\lambda}}(H) = \dim\left\{x: \underline{\dim}(\mathsf{M}_{\lambda}, x) = H\right\} = \dim\left\{x: \frac{1}{\eta \delta_x} = H\right\}$$

Proposition

With probability 1, for every x, $\delta_x \in \left[1, \frac{1}{\eta}\right]$ and $\underline{\dim}(\mathsf{M}_\lambda, x) = \frac{1}{\eta \cdot \delta_x}$.

Recall that one has

$$[0,1] = \limsup_{j \to +\infty} \bigcup_{w \in \mathcal{S}_j(\eta)} B(x_w, 2^{-j\eta}).$$

Theorem (Dodson et al., Jaffard, Beresnevich-Velani)

If for a (deterministic) sequence of balls $\left(B(x_n, l_n)\right)_n$ in [0, 1] one has $Leb\left(\limsup_{n \to +\infty} B(x_n, l_n)\right) = 1,$

then for every $\delta \geq 1$, dim $\{x \in [0,1] : \delta_x = \delta\} \geq \frac{1}{\delta}$ (here there is equality).

One concludes: Let $H \in [1, 1/\eta]$. Then

$$\begin{split} D_{\mathsf{M}_{\lambda}}(H) &= \dim \left\{ x : \underline{\dim}(\mathsf{M}_{\lambda}, x) = H \right\} = \dim \left\{ x : \frac{1}{\eta \delta_x} = H \right\} \\ &= \dim \left\{ x : \delta_x = (\eta H)^{-1} \right\} \end{split}$$

Proposition

With probability 1, for every $x, \delta_x \in \left[1, \frac{1}{n}\right]$ and $\underline{\dim}(\mathsf{M}_{\lambda}, x) = \frac{1}{n \cdot \delta}$.

Recall that one has

$$[0,1] = \limsup_{j \to +\infty} \bigcup_{w \in \mathcal{S}_j(\eta)} B(x_w, 2^{-j\eta}).$$

Theorem (Dodson et al., Jaffard, Beresnevich-Velani)

If for a (deterministic) sequence of balls $(B(x_n, l_n))$ in [0, 1] one has $Leb\Big(\limsup_{n\to+\infty} B(x_n,l_n)\Big)=1,$

then for every $\delta \geq 1$, dim $\{x \in [0,1] : \delta_x = \delta\} \geq \frac{1}{\epsilon}$ (here there is equality).

One concludes: Let $H \in [1, 1/\eta]$. Then

$$\begin{split} D_{\mathsf{M}_{\lambda}}(H) &= \dim \left\{ x : \underline{\dim}(\mathsf{M}_{\lambda}, x) = H \right\} = \dim \left\{ x : \frac{1}{\eta \delta_x} = H \right\} \\ &= \dim \left\{ x : \delta_x = (\eta H)^{-1} \right\} = \frac{1}{(\eta H)^{-1}} = \eta H. \end{split}$$

3 - Gibbs measures, and reconstruction of the initial tree

- Consider a Hölder potential $\varphi: \Sigma \to \mathbb{R}$.
- Consider the shift σ on Σ : $\sigma(w_1w_2w_3...) = w_2w_3...$
- $$\begin{split} \bullet \text{ Look at the Birkhoff sums } S_j \varphi(t) &= \sum_{k=0}^{j-1} \varphi(\sigma^k t). \\ \bullet \text{ The pressure is } P(\varphi) &= \lim_{j \to \infty} \frac{1}{j} \log \sum_{w \in \Sigma_j} \sup_{t \in [w]} e^{S_j \varphi(t)} \ \in \mathbb{R}. \end{split}$$

3 - Gibbs measures, and reconstruction of the initial tree

- Consider a Hölder potential $\varphi: \Sigma \to \mathbb{R}$.
- Consider the shift σ on Σ : $\sigma(w_1w_2w_3...) = w_2w_3...$
- Look at the Birkhoff sums $S_j \varphi(t) = \sum_{k=0}^{j-1} \varphi(\sigma^k t)$.
- $\bullet \text{ The pressure is } P(\varphi) = \lim_{j \to \infty} \frac{1}{j} \log \sum_{w \in \Sigma_{z}} \sup_{t \in [w]} e^{S_{j} \varphi(t)} \ \in \mathbb{R}.$

Theorem

There is a Gibbs measure μ_{φ} defined on Σ , such that

$$\exists C > 1: \quad \forall x \in [0,1], \quad \forall j \ge 1, \quad C^{-1} \le \frac{\mu_{\varphi}(I_j(x))}{\exp\left(S_j\varphi(x) - jP(\varphi)\right)} \le C,$$

This measure satisfies the quasi-Bernoulli property:

$$\forall (w, w') \in \Sigma_j \times \Sigma_{j'}, \quad C^{-1}\mu(I_w)\mu(I_{w'}) \le \mu(I_{w \cdot w'}) \le C\mu(I_w)\mu(I_{w'}).$$

The multiplicativity is key in the following !!

Multifractals and formalism

Definition

A finite word u is 1-reconstructible if there exists a (finite) word w such that both w and wu survive.

Definition

A finite word u is 1-reconstructible if there exists a (finite) word w such that both w and wu survive.

Using the quasi-Bernoulli property $\mu(I_{wu}) \sim \mu(I_w)\mu(I_u)$. When u is 1-reconstructible, one deduces the value $\mu(I_u)$ up to a constant.

Definition

A finite word u is 1-reconstructible if there exists a (finite) word w such that both w and wu survive.

Using the quasi-Bernoulli property $\mu(I_{wu}) \sim \mu(I_w)\mu(I_u)$. When u is 1-reconstructible, one deduces the value $\mu(I_u)$ up to a constant.

Definition

A finite word u is k-reconstructible if there exists a decomposition $u = u_1 u_2 \cdots u_k$ such that all $u_1 \dots, u_k$ are simultaneously 1-reconstructible.

 $0\mu(I_{111})$

 $^{0}\mu(I_{001})^{0}$

Multifractals and formalism

Theorem

If $\eta > 1/2$, then a.s. the initial Gibbs tree is 1-reconstructible;

If $\eta < 1/2$, then a.s. the initial Gibbs tree not k-reconstructible, for any $k \ge 1$.

Some ideas

Multifractals and formalism

Theorem

If $\eta > 1/2$, then a.s. the initial Gibbs tree is 1-reconstructible;

If $\eta < 1/2$, then a.s. the initial Gibbs tree not k-reconstructible, for any $k \ge 1$.

It follows from the fact that, if |w| = j and |u| = k, then

$$\mathbb{P}\Big(\text{both } w \text{ and } wu \text{ survive}\Big) = 2^{-\eta k} 2^{-2(1-\eta)j}.$$

Theorem

If $\eta > 1/2$, then a.s. the initial Gibbs tree is 1-reconstructible;

If $\eta < 1/2$, then a.s. the initial Gibbs tree not k-reconstructible, for any $k \ge 1$.

It follows from the fact that, if |w| = j and |u| = k, then

$$\mathbb{P}\Big(\text{both } w \text{ and } wu \text{ survive}\Big) = 2^{-\eta k} 2^{-2(1-\eta)j}.$$

Phase transition at $\eta = 1/2$.

for
$$q \in \mathbb{R}$$
, $\tau_{\mu}(q) = \lim_{j \to \infty} \frac{-1}{j} \log_2 \sum_{w \in \Sigma_j} \mu(I_w)^q$.

 τ_{μ} is real analytic.

Some ideas

4- Multifractal analysis of the random capacity M_{μ}

Recall that the $L^q\text{-scaling function (free energy) of }\mu$ is :

for
$$q \in \mathbb{R}$$
, $\tau_{\mu}(q) = \lim_{j \to \infty} \frac{-1}{j} \log_2 \sum_{w \in \Sigma_j} \mu(I_w)^q$.

 τ_{μ} is real analytic. The Legendre transform of τ_{μ} is defined by

$$(\tau_{\mu})^*(H) = \inf\{Hq - \tau_{\mu}(q) : q \in \mathbb{R}\}.$$

Some ideas

4- Multifractal analysis of the random capacity M_{μ}

Recall that the L^q -scaling function (free energy) of μ is :

for
$$q \in \mathbb{R}$$
, $\tau_{\mu}(q) = \lim_{j \to \infty} \frac{-1}{j} \log_2 \sum_{w \in \Sigma_j} \mu(I_w)^q$.

 τ_{μ} is real analytic. The Legendre transform of τ_{μ} is defined by

$$(\tau_{\mu})^*(H) = \inf\{Hq - \tau_{\mu}(q) : q \in \mathbb{R}\}.$$

Theorem (Collet-Lebowitz-Porzio, '87)

Let $H_{\min} = \tau'_{\mu}(+\infty)$, $H_s = \tau'_{\mu}(0)$ and $H_{\max} = \tau'_{\mu}(-\infty)$.

- for μ -almost every x, $\underline{\dim}(\mu, x) = \dim \mu = \tau'_{\mu}(1)$.
- For every $H \in [H_{\min}, H_{\max}], \quad D_{\mu}(H) = (\tau_{\mu})^*(H) \ge 0.$
- If $H \notin [H_{\min}, H_{\max}]$, then $\{x : \underline{\dim}(\mu, x) = H\} = \emptyset$.

There exist $\widetilde{\eta} \in (0, \eta)$ and $H_{\ell}(\widetilde{\eta}) \in [H_{\min}, H_s]$ such that, with probability 1:

Gibbs reconstruction

- The free energy $\tau_{M_{\mu}}$ of M_{μ} exists as a limit.
- 2 The spectrum of singularity of M_{μ} is:

$$D_{\mathsf{M}_{\mu}}(H) = \left\{ \begin{array}{ll} D_{\mu}(H) - (1 - \eta) & \text{if} \qquad H_{\ell}(0) \leq H \leq H_{\ell}(\widetilde{\eta}), \\ \\ \dfrac{\widetilde{\eta}}{H_{\ell}(\widetilde{\eta})} \, D_{\mu}(H_{\ell}(\widetilde{\eta})) \cdot H & \text{if} \qquad H_{\ell}(\widetilde{\eta}) \leq H \leq H_{\ell}(\widetilde{\eta})/\widetilde{\eta}, \\ \\ D_{\mu}(H - \frac{1 - \widetilde{\eta}}{\widetilde{\eta}} \, H_{\ell}(\widetilde{\eta})) & \text{if} \quad H_{\ell}(\widetilde{\eta})/\widetilde{\eta} \leq H \leq H_{\max} + \frac{1 - \widetilde{\eta}}{\widetilde{\eta}} \, H_{\ell}(\widetilde{\eta}). \end{array} \right.$$

3 M_{μ} verifies the multifractal formalism: $D_{M_{\mu}} = (\tau_{M_{\mu}})^*$.

Theorem (Barral, S., 2015)

There exist $\widetilde{\eta} \in (0, \eta)$ and $H_{\ell}(\widetilde{\eta}) \in [H_{\min}, H_s]$ such that, with probability 1:

- The free energy $\tau_{M_{\mu}}$ of M_{μ} exists as a limit.
- 2 The spectrum of singularity of M_{μ} is:

$$D_{\mathsf{M}_{\mu}}(H) = \left\{ \begin{array}{ll} D_{\mu}(H) - (1 - \eta) & \text{if} \qquad H_{\ell}(0) \leq H \leq H_{\ell}(\widetilde{\eta}), \\ \\ \dfrac{\widetilde{\eta}}{H_{\ell}(\widetilde{\eta})} \, D_{\mu}(H_{\ell}(\widetilde{\eta})) \cdot H & \text{if} \qquad H_{\ell}(\widetilde{\eta}) \leq H \leq H_{\ell}(\widetilde{\eta})/\widetilde{\eta}, \\ \\ D_{\mu}(H - \frac{1 - \widetilde{\eta}}{\widetilde{\eta}} \, H_{\ell}(\widetilde{\eta})) & \text{if} \ H_{\ell}(\widetilde{\eta})/\widetilde{\eta} \leq H \leq H_{\max} + \frac{1 - \widetilde{\eta}}{\widetilde{\eta}} \, H_{\ell}(\widetilde{\eta}). \end{array} \right.$$

3 M_{μ} verifies the multifractal formalism: $D_{M_{\mu}} = (\tau_{M_{\mu}})^*$.

5 - Idea of the proof

New parameters need to be introduced:

Gibbs reconstruction

5 - Idea of the proof

New parameters need to be introduced:

Multifractals and formalism

For every $\eta' \in [0, \eta]$, one considers $H_{\ell}(\eta')$ the unique solution to

$$\mathbf{D}_{\mu}\Big(\mathbf{H}_{\ell}(\eta')\Big) = rac{\mathbf{1} - \eta}{\mathbf{1} - \eta'}.$$

$$\mathcal{E}_{\mu}(j,H) = \{w \in \Sigma_j : \mu(I_w) \sim 2^{-jH}\}.$$

One has $\#\mathcal{E}_{\mu}(j,H) \sim 2^{jD_{\mu}(H)}$.

Multifractals and formalism

For a given H, set

$$\mathcal{E}_{\mu}(j,H) = \{ w \in \Sigma_j : \mu(I_w) \sim 2^{-jH} \}.$$

One has $\#\mathcal{E}_{\mu}(j,H) \sim 2^{jD_{\mu}(H)}$.

Lebesgue

At a given generation j, one keeps only $\sim 2^{j\eta}$ coefficients amongst the 2^{j} .

Multifractals and formalism

$$\mathcal{E}_{\mu}(j, H) = \{ w \in \Sigma_j : \mu(I_w) \sim 2^{-jH} \}.$$

One has $\#\mathcal{E}_{\mu}(j,H) \sim 2^{jD_{\mu}(H)}$.

Lebesgue

At a given generation j, one keeps only $\sim 2^{j\eta}$ coefficients amongst the 2^{j} . $D_{\mu}(H)$

Multifractals and formalism

By a counting argument, one gets

Lemma

With probability 1:

• Only those words w such that

$$2^{-jH_r(0)} < \mu(I_w) < 2^{-jH_\ell(0)}$$

may survive.

For a given H, set

$$\mathcal{E}_{\mu}(j, H) = \{ w \in \Sigma_j : \mu(I_w) \sim 2^{-jH} \}.$$

One has $\#\mathcal{E}_{\mu}(j,H) \sim 2^{jD_{\mu}(H)}$.

Lebesgue

 $\begin{array}{c}
D_{\mu}(H) \\
1 \\
0
\end{array}$

At a given generation j, one keeps only $\sim 2^{j\eta}$ coefficients amongst the $2^{j}.$

By a counting argument, one gets

Lemma

With probability 1:

• Only those words w such that

$$2^{-jH_r(0)} \le \mu(I_w) \le 2^{-jH_\ell(0)}$$

may survive.

• For $H \in [H_{\ell}(0), H_r(0)]$, one has $\#\mathcal{E}_{\mu}(j, H) \cap \mathcal{S}_i(\eta) \sim 2^{j\left(D_{\mu}(H) - (1 - \eta)\right)}.$

Immediate consequence:

Lemma

With probability 1, the capacity M_{μ} satisfies:

- for every x, $\underline{\dim}(\mathsf{M}_{\mu}, x) \geq H_{\ell}(0)$.
- there exists x such that $\underline{\dim}(\mathsf{M}_{\mu},x) = H_{\ell}(0)$.

Immediate consequence:

Lemma

With probability 1, the capacity M_{μ} satisfies:

- for every x, $\underline{\dim}(\mathsf{M}_{\mu}, x) \geq H_{\ell}(0)$.
- there exists x such that $\underline{\dim}(\mathsf{M}_{\mu},x) = H_{\ell}(0)$.

Proof: For every x and $J \ge 1$, in the interval $I_J(x)$, there exists a survivor $w \in \mathcal{S}_j(\eta)$ with $j \ge J$ such that $I_w \subset I_J(x)$ and $\mu(I_w)$ realizes the maximum. Jence

$$\mathsf{M}_{\mu}\Big(I_J(x)\Big) = \mu(I_w)$$

Immediate consequence:

Lemma

With probability 1, the capacity M_{μ} satisfies:

- for every x, $\underline{\dim}(\mathsf{M}_{\mu}, x) \geq H_{\ell}(0)$.
- there exists x such that $\underline{\dim}(\mathsf{M}_{\mu}, x) = H_{\ell}(0)$.

Proof: For every x and $J \ge 1$, in the interval $I_J(x)$, there exists a survivor $w \in \mathcal{S}_j(\eta)$ with $j \ge J$ such that $I_w \subset I_J(x)$ and $\mu(I_w)$ realizes the maximum. Jence

$$\mathsf{M}_{\mu}\Big(I_J(x)\Big) = \mu(I_w) \le 2^{-jH_{\ell}(0)} \le 2^{-JH_{\ell}(0)}.$$

Immediate consequence:

Lemma

With probability 1, the capacity M_{μ} satisfies:

- for every x, $\underline{\dim}(\mathsf{M}_{\mu}, x) \geq H_{\ell}(0)$.
- there exists x such that $\underline{\dim}(\mathsf{M}_{\mu}, x) = H_{\ell}(0)$.

Proof: For every x and $J \ge 1$, in the interval $I_J(x)$, there exists a survivor $w \in \mathcal{S}_j(\eta)$ with $j \ge J$ such that $I_w \subset I_J(x)$ and $\mu(I_w)$ realizes the maximum. Jence

$$\mathsf{M}_{\mu}\Big(I_J(x)\Big) = \mu(I_w) \le 2^{-jH_{\ell}(0)} \le 2^{-JH_{\ell}(0)}.$$

So for every
$$J$$
, $\frac{\log_2 \mathsf{M}_{\mu}(I_J(x))}{-J} \ge H_{\ell}(0)$.

and $\underline{\dim}(\mathsf{M}_{\mu}, x) \geq H_{\ell}(0)$.

Some ideas

Immediate consequence:

Lemma

With probability 1, the capacity M_{μ} satisfies:

- for every x, $\underline{\dim}(\mathsf{M}_{\mu}, x) \geq H_{\ell}(0)$.
- there exists x such that $\underline{\dim}(\mathsf{M}_{\mu}, x) = H_{\ell}(0)$.

Proof: For every x and $J \ge 1$, in the interval $I_J(x)$, there exists a survivor $w \in \mathcal{S}_j(\eta)$ with $j \ge J$ such that $I_w \subset I_J(x)$ and $\mu(I_w)$ realizes the maximum. Jence

$$\mathsf{M}_{\mu}\Big(I_J(x)\Big) = \mu(I_w) \le 2^{-jH_{\ell}(0)} \le 2^{-JH_{\ell}(0)}.$$

So for every
$$J$$
, $\frac{\log_2 \mathsf{M}_{\mu}(I_J(x))}{-J} \ge H_{\ell}(0)$.

and
$$\underline{\dim}(\mathsf{M}_{\mu}, x) \geq H_{\ell}(0)$$
.

For the existence of points x with local dimension $H_{\ell}(0)$, arguments of random coverings and "nice" distribution of random points are involved.

Immediate consequence:

Lemma

With probability 1, the capacity M_{μ} satisfies:

- for every x, $\underline{\dim}(\mathsf{M}_{\mu}, x) \geq H_{\ell}(0)$.
- there exists x such that $\underline{\dim}(\mathsf{M}_{\mu}, x) = H_{\ell}(0)$.

Proof: For every x and $J \ge 1$, in the interval $I_J(x)$, there exists a survivor $w \in \mathcal{S}_j(\eta)$ with $j \ge J$ such that $I_w \subset I_J(x)$ and $\mu(I_w)$ realizes the maximum. Jence

$$\mathsf{M}_{\mu}\Big(I_J(x)\Big) = \mu(I_w) \le 2^{-jH_{\ell}(0)} \le 2^{-JH_{\ell}(0)}.$$

So for every
$$J$$
, $\frac{\log_2 \mathsf{M}_{\mu}(I_J(x))}{-J} \ge H_{\ell}(0)$.

and $\underline{\dim}(\mathsf{M}_{\mu}, x) \geq H_{\ell}(0)$.

For the existence of points x with local dimension $H_{\ell}(0)$, arguments of random coverings and "nice" distribution of random points are involved.

Much more difficult to find an upper bound for $\underline{\dim}(\mathsf{M}_{\mu},x)$.

This upper bound is
$$H_{\text{max}} + \frac{1-\eta}{\eta} H_{\ell}(\tilde{\eta}) \gg H_{\text{max}} \gg H_r(0) !!$$

We arrive at the core of the problem:

5 - Idea of the proof

We arrive at the core of the problem:

The "first" survivor In the interval $I_{\lfloor j\eta \rfloor}(x)$ is probably not the one that contributes most to the value of $\mathsf{M}_{\mu}(I_{\lfloor j\eta \rfloor}(x))$!

5 - Idea of the proof

We arrive at the core of the problem:

The "first" survivor In the interval $I_{|i\eta|}(x)$ is probably not the one that contributes most to the value of $\mathsf{M}_{\mu}(I_{|j\eta|}(x))$!

Multifractals and formalism

We arrive at the core of the problem:

The "first" survivor In the interval $I_{|i\eta|}(x)$ is probably not the one that contributes most to the value of $\mathsf{M}_{\mu}(I_{|j\eta|}(x))$!

5 - Idea of the proof

We arrive at the core of the problem:

The "first" survivor

In the interval $I_{|i\eta|}(x)$

is probably not

the one that contributes most

to the value of $\mathsf{M}_{\mu}(I_{|j\eta|}(x))$!

 \longrightarrow There is a **competition** between survivors: generation + local behavior of μ .

5 - Idea of the proof

We arrive at the core of the problem:

The "first" survivor

In the interval $I_{|i\eta|}(x)$

is probably not

the one that contributes most

to the value of $M_{\mu}(I_{|in|}(x))$!

Multifractals and formalism

- \longrightarrow There is a **competition** between survivors: $\stackrel{\blacktriangledown}{}_{\text{Generations}}$ generation + local behavior of μ .
- --- One needs to describe more precisely which local dimensions may survive, within an interval $I_{|in|}(x)$.

Theorem

If for a (deterministic) sequence of balls $(B(x_n, l_n))_n$ in [0, 1] one has

$$Leb\Big(\limsup_{n\to+\infty} B(x_n,l_n)\Big)=1,$$

then for every $\delta \ge 1$, dim $\{x \in [0,1] : \delta_x = \delta\} \ge \frac{1}{s}$.

5 - Idea of the proof

We arrive at the core of the problem:

The "first" survivor

In the interval $I_{|i\eta|}(x)$

is probably not

the one that contributes most

to the value of $M_{\mu}(I_{|in|}(x))$!

Multifractals and formalism

- \longrightarrow There is a **competition** between survivors: ${}^{\blacktriangledown}_{\text{Generations}}$ generation + local behavior of μ .
- --- One needs to describe more precisely which local dimensions may survive, within an interval $I_{|in|}(x)$.

Theorem (Barral-S. 2004)

If for a (deterministic) sequence of balls $(B(x_n, l_n))$ in [0, 1] one has

$$\mu\Big(\limsup_{n\to+\infty}B(x_n,l_n)\Big)=1,$$

then for every $\delta \geq 1$, dim $\{x \in [0,1] : \delta_x = \delta\} \geq \frac{\dim \mu}{s}$.

Gibbs reconstruction

Recall that σ is the shift, then

$$\mu(I_w) \sim \mu(I_{w_{\mid j\eta}}) \, \mu\big(I_{\sigma^{j\eta}w}\big),$$

where $w_{|j\eta}$ of length $j\eta$ is the η -root of w, and $\sigma^{j\eta}w$ of length $j-j\eta$ is the η -tail of w.

Recall that σ is the shift, then

Lebesgue

$$\mu(I_w) \sim \mu(I_{w_{|j\eta}}) \mu(I_{\sigma^{j\eta}w}),$$

where $w_{|j\eta}$ of length $j\eta$ is the η -root of w, and $\sigma^{j\eta}w$ of length $j-j\eta$ is the η -tail of w. Hence

$$\mu(I_w) = 2^{-jH_w} \sim 2^{-j\eta\alpha} \cdot 2^{-j(1-\eta)\beta},$$

where

- α describes the scaling behavior of the η -root,
- β describes the scaling behavior of the η -tail.

Recall that σ is the shift, then

$$\mu(I_w) \sim \mu(I_{w_{|j\eta}}) \, \mu(I_{\sigma^{j\eta}w}),$$

where $w_{|j\eta}$ of length $j\eta$ is the η -root of w, and $\sigma^{j\eta}w$ of length $j-j\eta$ is the η -tail of w. Hence

$$\mu(I_w) = 2^{-jH_w} \sim 2^{-j\eta\alpha} \cdot 2^{-j(1-\eta)\beta},$$

where

- α describes the scaling behavior of the η -root,
- β describes the scaling behavior of the η -tail.

This rewrites

$$H_w = \eta \alpha + (1 - \eta)\beta.$$

Recall that σ is the shift, then

Lebesgue

$$\mu(I_w) \sim \mu(I_{w_{|j\eta}}) \mu(I_{\sigma^{j\eta}w}),$$

where $w_{|j\eta}$ of length $j\eta$ is the η -root of w, and $\sigma^{j\eta}w$ of length $j-j\eta$ is the η -tail of w. Hence

$$\mu(I_w) = 2^{-jH_w} \sim 2^{-j\eta\alpha} \cdot 2^{-j(1-\eta)\beta},$$

where

- α describes the scaling behavior of the η -root,
- β describes the scaling behavior of the η -tail.

This rewrites

$$H_w = \eta \alpha + (1 - \eta)\beta.$$

Each interval I_W , where W has length $J = j\eta$, contains a survivor at generation j. Hence every $\alpha \in [H_{\min}, H_{\max}]$ is possible.

Multifractals and formalism

Recall that σ is the shift, then

$$\mu(I_w) \sim \mu(I_{w_{|j\eta}}) \mu(I_{\sigma^{j\eta}w}),$$

where $w_{|j\eta}$ of length $j\eta$ is the η -root of w, and $\sigma^{j\eta}w$ of length $j-j\eta$ is the η -tail of w. Hence

$$\mu(I_w) = 2^{-jH_w} \sim 2^{-j\eta\alpha} \cdot 2^{-j(1-\eta)\beta},$$

where

- α describes the scaling behavior of the η -root,
- β describes the scaling behavior of the η -tail.

This rewrites

$$H_w = \eta \alpha + (1 - \eta)\beta.$$

Each interval I_W , where W has length $J = j\eta$, contains a survivor at generation j. Hence every $\alpha \in [H_{\min}, H_{\max}]$ is possible.

Question: Can we describe the possible β 's?

Multifractals and formalism

One has
$$\mu(I_w) = 2^{-jH_w} \sim 2^{-j\eta\alpha} \cdot 2^{-j(1-\eta)\beta}$$
, and so $H_w = \eta\alpha + (1-\eta)\beta$.

Since the location of w is random, one could think that one exponent β is realized a.s.,

the same for all intervals $I_{w_{|in}}$.

Lebesgue

Multifractals and formalism

One has
$$\mu(I_w) = 2^{-jH_w} \sim 2^{-j\eta\alpha} \cdot 2^{-j(1-\eta)\beta}$$
, and so $H_w = \eta\alpha + (1-\eta)\beta$.

Lebesgue

Since the location of w is random, one could think that one exponent β is realized a.s., the same for all intervals $I_{w_{\parallel j_n}}$.

It is not true \longrightarrow not easy to describe.

One has
$$\mu(I_w) = 2^{-jH_w} \sim 2^{-j\eta\alpha} \cdot 2^{-j(1-\eta)\beta}$$
, and so $H_w = \eta\alpha + (1-\eta)\beta$.

Since the location of w is random, one could think that one exponent β is realized a.s.,

the same for all intervals $I_{w_{|j\eta}}$.

Lebesgue

It is not true \longrightarrow not easy to describe.

Interval $I_{w|j\eta}$ $j\eta$ j generation

One must consider all possible decompositions in tails and roots for $\eta' \in (0, \eta]$:

$$w = w_1 w_2 \cdots w_{\lfloor j\eta' \rfloor} \quad w_{\lfloor j\eta' \rfloor + 1} w_{\lfloor j\eta' \rfloor + 2} \cdots w_j$$

$$\uparrow'\text{-root of } w \qquad \qquad \uparrow'\text{-tail of } w$$

$$\log_2 \mu(I_{w_{\lfloor \lfloor \eta' j \rfloor}}) - \lfloor \eta' j \rfloor \sim \alpha$$

$$\log_2 \mu(I_{w_{\lfloor \lfloor \eta' j \rfloor}}) = 0$$

Lemma

With proba 1, for every survivor $w \in \Sigma_j$, there exists $\eta' \in [0, \eta]$ such that

$$\mu(I_w) \sim \mu(I_{w_{|j\eta'}}) \cdot 2^{-j(1-\eta')H_{\ell}(\eta')}$$
 or the same with $H_r(\eta')$.

Lemma

With proba 1, for every survivor $w \in \Sigma_j$, there exists $\eta' \in [0, \eta]$ such that

$$\mu(I_w) \sim \mu(I_{w_{|i|n'}}) \cdot 2^{-j(1-\eta')H_{\ell}(\eta')}$$
 or the same with $H_r(\eta')$.

We have $\mu(I_w) = 2^{-jH_w}$, hence for some η' ,

$$H_w = \eta' \alpha + (1 - \eta') H_{\ell}(\eta').$$

$$w = w_1 w_2 \cdots w_{\lfloor j\eta' \rfloor} \quad w_{\lfloor j\eta' \rfloor + 1} w_{\lfloor j\eta' \rfloor + 2} \cdots w_j$$

$$\uparrow' \text{-root of } w \qquad \qquad \eta' \text{-tail of } w$$

$$\log_2 \mu(I_{w_{\lfloor \lfloor \eta'j \rfloor}}) \sim \alpha \qquad \qquad \frac{\log_2 \mu(I_{\sigma_{\lfloor \eta'j \rfloor}w})}{j - \lfloor \eta'j \rfloor} \sim H_{\ell}(\eta')$$

Some ideas

$_{ m Lemma}$

With proba 1, for every survivor $w \in \Sigma_j$, there exists $\eta' \in [0, \eta]$ such that

$$\mu(I_w) \sim \mu(I_{w_{|j\eta'}}) \cdot 2^{-j(1-\eta')H_{\ell}(\eta')}$$
 or the same with $H_r(\eta')$.

We have $\mu(I_w) = 2^{-jH_w}$, hence for some η' ,

$$H_w = \eta' \alpha + (1 - \eta') H_{\ell}(\eta').$$

$$w = w_1 w_2 \cdots w_{\lfloor j\eta' \rfloor} \quad w_{\lfloor j\eta' \rfloor + 1} w_{\lfloor j\eta' \rfloor + 2} \cdots w_j$$

$$\uparrow' \text{-root of } w \qquad \qquad \uparrow' \text{-tail of } w$$

$$\log_2 \mu(I_{w|\lfloor \eta'j \rfloor}) \sim \alpha \qquad \qquad \frac{\log_2 \mu(I_{\sigma \lfloor \eta'j \rfloor_w})}{j - \lfloor \eta'j \rfloor} \sim H_{\ell}(\eta')$$

Lemma (Renewal property)

With proba 1, for every $\eta' \in [0, \eta]$ and every word W of generation $j\eta'$, there is a survivor w of generation j tel que

$$\mu(I_W) \sim \mu(I_W) \cdot 2^{-j(1-\eta')H_{\ell}(\eta')}$$

Conclusion(s):

- M_{μ} satisfies the multifractal formalism: for every H, $D_{M_{\mu}}(H) = (\tau_{M_{\mu}})^*(H)$.
- The phase transitons appear in the proof!
- Other energy models: cascades, random walks on trees.
- Other sampling procedures (less "radical") other phase transitions?
- General question: can one recover from partial information the initial "dynamics" or the original "measure".