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- Plan

1. Introduction
2. What happens for (NLS) posed on RY and MK ?

3. What happens in “mixed” settings ?

4. Same questions for the Klein-Gordon equation.

In this talk, total dimension = 3.
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I

(NLS): idru+ Axu = +|ulu ; u(0,.) = up € H(X)

he equations

Onu — Axu+ u= +|ul®u,

(NLKG): { (u(0,.), 8:u(0,.)) = (uo, tr) € H*(X) x L3(X).

3/17



I

(NLS): idru+ Axu = +|ulu ; u(0,.) = up € H(X)

he equations

Onu — Axu+ u= +|ul®u,

(NLKG): {
(u(0,.),0:u(0,.)) = (ug, u1) € H*(X) x L2(X).

Question 1: According to the choices of X and «, do we have global
solutions 7

3/17



I

(NLS): idru+ Axu = +|ulu ; u(0,.) = up € H(X)

he equations

Onu — Axu+ u= +|ul®u,

(NLKG): { [ . ,
(u(0,.), 0:u(0,.)) = (ug, u1) € H(X) x L2(X).

Question 1: According to the choices of X and «, do we have global
solutions 7

Question 2: For the global solutions, what is the behaviour when
|t| = +o0 ?

Aim: compare solutions to (NLS) or (NLKG) with “linear” solutions.

3/17



_ The Schrédinger equation on R®

<a<4

Wl

i0iu + Agau = £xlul/®u ; u(0,.) = up € HY(R?),

Study of the equation thanks to Strichartz estimates: Consider
admissible pairs: 0 < 2/q; =3/r; —3/2 < 1. Then

1. ||eitAf||L;7L)r< < C(r)HfHL)z(a
2. HeitA *t f”L‘t’lLf} < C(rlu r2)||fHLq’2L”2‘
t X

“Symptoms of dispersive nature of the equation”.
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_ The Schrédinger equation on R®

<a<4

Wl

i0iu + Agau = £xlul/®u ; u(0,.) = up € HY(R?),

Study of the equation thanks to Strichartz estimates: Consider
admissible pairs: 0 < 2/q; =3/r; —3/2 < 1. Then
L [le®Afll g < C(NIIFlle2,

2. \|eitA *¢ f”L‘tVl/_;l < C(rla rz)”fH

L9212
“Symptoms of dispersive nature of the equation”.
Used to prove local existence with fixed point argument.

Also used to prove “scattering”.
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I

() fim _lu(e) = €2 u .

Every up in H' gives a unique global solution u to (NLS), with
u,Vu e C(R,[2)NLI(R, L"), for some (g, r).

Moreover

Asymptotic completeness: For all ug € H, one can produce a u+ € H*
s.t. (xx) is satisfied.

Existence of the wave operator: For all uy € H!, one can associate a
solution u(t) to (NLS), satisfying (s:).
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I

() fim _(e) = € 2u

is equivalent to

(o) lim le™" A u(t) — ux |,

and e~ A y(t) has to converge in H*.
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() fim _(e) = € 2u

is equivalent to _
() fim_[le7*®u(e) ~ us 1,

and e~ A y(t) has to converge in H*.

Duhamel —

t
u(t) = ePuy — i / e/ (t=9)A | y|@y(s) ds
0
. t .
et (1) = 1 — m/ e 15B [y (s) ds.
0
o
H! —scattering if and only if K/ e *A|u|®u(s) ds converges in H'.
0

One needs a bound of |u|*u in some functional space; global-in-time

Strichartz estimates are crucial !
6/17



———i
On (M* g)

See works done by J. Bourgain, N. Burg-P.Gérard-N.Tzvetkov...
Ex.: MK is the flat torus, the sphere...

i0cu + Ayu = wlu/®u ; u(0,-) = up € HY(MF);

Basis of L2(Mk) given by (ij(y))jeN, —AMkd)j = )\J'(Dj.
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On (M* g)

See works done by J. Bourgain, N. Burg-P.Gérard-N.Tzvetkov...
Ex.: MK is the flat torus, the sphere...

i0cu + Ayu = wlu/®u ; u(0,-) = up € HY(MF);
Basis of L2(Mk) given by (ij(y))jeN, —AMkd)j = )\J'(Dj.

Existence of linear periodic solutions s.t.: forall K compact subset,

1k uiin(t)|l 2 = C, whereas ; lim ||1xuyn(t)||;2 =0 on R3.
|t|] =00

One cannot expect scattering.
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I

On a product space

What we expect for d + k = 3,
i0eu + Dgas et = Klulu 5 u(0,.) = up € HY(RY x MF);

Natural restrictions on «:

scattering on R? x M*!

[ e
p Lol

N
Vv

scattering on R3 scattering on R X M?
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On a product space

What we expect for d + k = 3,
i0eu + Dgas et = Klulu 5 u(0,.) = up € HY(RY x MF);

Natural restrictions on «:

scattering on R? x Mt

[ e
p Lol

N
Vv

scattering on R3 scattering on R X M?

Can we prove Strichartz estimates estimates for
i0u+ Agapeu=F 5 w(0,-) = wo(-) ?
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IPe= =

Key argument: Use of the L2(Mk) basis, with —A \xk®y = A Dy.
Then: u(t,x,y) = > uk(t,x)Pr(y).

dea of proof
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- |dea of proof

Key argument: Use of the L2(Mk) basis, with —A \xk®y = A Dy.
Then: u(t,x,y) = > uk(t,x)Pr(y).

each uy is solution to (NLS) posed on RY:

i(?tuk + ARdUk — )\kuk = Fk, Uk(O, ) = Uk70(-)

Consequence: Strichartz for each uy since e(A—A) — g~ itAkgitA.
oy < € [lacollz + IFil ] -
t X
Summing in k (¢2—norm), one has:

el < € [z, + 1FlLga,gags
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Consider one of the following situations

1
(1)R% x M? and « € [2,4], Xgats = H*, Xowp = LILHZ "
(2)R x T? and o = 4, Xgat, = H', Xewp = " modified atomic space”

(3)R x M? and a = 4, Xgara = LiH); T, Xewp = LILIH)T
Then, there exists 0 > 0 s.t. every data ug satisfying ||uo| x,,,, < 0
produces a unique global solution in u € CO(R, H*) N Xgwp that scatters
to a linear solution in H?.

(Tzvetkov-Visciglia '11, Hani-Pausader '14, Tarulli '16).

Remarques:

e More general results : large data scattering available on RY x M for
4/d < a<4/(d-1).

e Several works on product spaces that will not be described here (GWP,

modified scattering...)
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N (NLKG)

Onu — Axu+ u= +|u|”u,

(NLKG): { .
(u(0,.), 0:u(0,.)) = (up, 1) € HY(X) x L2(X).

Same role of parameter a.
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» X = R? — P.Brenner, H.Pecher, C.Morawetz,
C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global
existence + scattering (use of smallness of a Strichartz norm)
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Onu — Axu+ u= +|u|”u,
(NLKG): ; X o
{ (u(0,.),0:u(0,.)) = (up, u1) € H*(X) x L=(X).

Same role of parameter a.

» X = R? — P.Brenner, H.Pecher, C.Morawetz,
C.Morawetz-W.Strauss, J.Ginibre-G.Velo, K.Nakanishi... global
existence + scattering (use of smallness of a Strichartz norm)

» X = M¥ — global existence (J.-M. Delort,
J.-M.Delort-J.Szeftel, D.Fang-Q.Zang...) but no scattering is proved.

» X = RY x MK — difficulties when one try to apply the method used
for (NLS).
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- The difficulties

» Order 2 in time: one need to work with U = <8uu>' in H x [2.
t

» The propagator is unitary on H! x L2, but not scaling invariant

sin tm)
S(t) = cos (t-v1—A) (m

—sin(t-vV1I—-A).(V1=A) cos(t-vV1-A)

We want to prove

lim HU(r) _5(1) (fi>

[t|—=Eo0 8+

=0.
Hlx L2

» Strichartz estimates on R3 exist but are stated in Besov spaces:
0<2/q;=3/rj=3/2<1, 5= s(r})

lullngs , < C(rsr) <||U0”H1 + [Ju][ 2 + HFLpiBll;J-) :
2
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- |dea of proof

We still work on the basis of L2(M¥) given by —A @k = A\ Py
u(t,x,y) = >k uk(t, x)Px(y).

Each wuy is solution to

Oret — ARauy + u + Aur = Fi, ug(0,-) = ugo(+), Oruk(0,-) = ug 1(+)
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- |dea of proof

We still work on the basis of L2(M¥) given by —A @k = A\ Py
U(t,X,y) - Zk uk(tvx)q)k(y)'

Each wuy is solution to

Ortt — ARaty + ug + At = Fie, uk(0,-) = wieo(+), Orup(0,-) = u1(+)

Problems: estimates will depend on \,. Scaling type argument needed
to quantify that dependence — homogeneous spaces are needed:
embeddings from Besov to Lebesgue.

For eack k
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I

Theorem (H'-Visciglia '17)

Consider one of the following situations

R x M? and o = 4,
2x M and o € [2,4]

then there exists § > 0 s.t. any data (u, u1) with [Juol[py  + [lualliz, <6
produces a unique global solution ’ ’

ue COR,HY) N CYR, L?) N L*TI(R, 2212,

Moreover, those solutions scatter to a linear solution in H1.

General statement k = 1,2 and d + k € [3,6], and 4 < a < 5—.
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I Scattering follow from ||U||La+1L2a+2 < 00:

v <> st (agge)
s () 0
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I Scattering follow from ||U||La+1L)2(a+2 < 00:

v <> st (agge)
s () [0

V/(t) exists/has some sense if it converges in H! x L?. We prove that

(im 1V(t) = V(T) |2 = O:
0
+|u|*u ds

)
<c [ 11 ulizds
t

ds
Hix 2

V(&) = V(T)ll

1
< ClllE e 202

which tends to zero as t, 7 tend to infinity.
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- Conclusion

Ongoing work (with L. Forcella - SNS, Pisa): what about large data 7
“simpler” case: defocusing, H!—subcritical a.

Try to exploit the “flat” variables carrying the dispersive behaviour.
Use of concentration-compactness method (“a la Kenig-Merle™).
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» Build such critical element with profile decomposition and try to
understand its particular properties (compactness of trajectory).
Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag,
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Ongoing work (with L. Forcella - SNS, Pisa): what about large data ?
“simpler” case: defocusing, H!—subcritical a.
Try to exploit the “flat” variables carrying the dispersive behaviour.
Use of concentration-compactness method (“a la Kenig-Merle™).

» Prove that for ||ug||;: < Eo small enough, H!— holds.

» Assume there is no H!—scattering for solutions above some critical
energy Ec > Eq. For those solutions ||ul|;a+12a42 = +00.
t X,y

» Build such critical element with profile decomposition and try to
understand its particular properties (compactness of trajectory).
Bahouri-Gérard, Ibrahim-Masmoudi-Nakanishi, Nakanishi-Schlag,
Banica-Visciglia.

» Exploit those properties, together with adapted “Morawetz estimates”
instead of Virial estimates, to obtain a contradiction and deduce that
E. = +o0.
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THANK YOU




