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The cubic-quintic NLS with a δ-potential

We consider the nonlinear Schrödinger equation

iψz + ψxx + εδ(x)ψ + 2|ψ|2ψ − |ψ|4ψ = 0, (NLS)

for ψ = ψ(x , z) : R× R→ C.

This combination of nonlinearities is well known in nonlinear
waveguides, including colloidal waveguides.

The delta-function models the interaction of a broad beam with a
narrow trapping potential, with coupling constant ε > 0.

The Cauchy problem for (NLS) is globally well-posed in H1(R).

(NLS) is the paraxial approximation of the nonlinear Helmholtz
equation governing TE/TM modes in the waveguide.



Solitons

We look for standing waves of the form ψ(x , z) = eikzu(x), with
k > 0 and a real-valued soliton profile u ∈ H1(R). This ansatz
leads to the stationary equation

u′′ − ku + εδ(x)u + 2u3 − u5 = 0, x ∈ R. (SNLS)

Orbital stability of standing waves relies on properties of the
solutions of (SNLS) with respect to the wavenumber k
(Vakhitov–Kolokolov ’73 . . . Grillakis–Shatah–Strauss ’87).

Our approach here is twofold:

I First determine all localised solutions uk of (SNLS) explicitly.

I Then combine this information with spectral and
bifurcation-theoretic properties to prove their stability.



A priori properties of solutions

Functions in H1(R) satisfying

u′′ − ku + εδ(x)u + 2u3 − u5 = 0 (SNLS)

in the sense of distributions have the following properties:

(i) u′′ − ku + 2u3 − u5 = 0, x 6= 0;

(ii) ±u > 0 on R;

(iii) u is even on R;

(iv) u ∈ C (R) ∩ C 2(R \ {0}) ∩ H2(R \ {0});

(v) u′(0±) = ∓ ε
2u(0);

(vi) u(x), u′(x)→ 0 as |x | → ∞.
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Figure: For ε = 0, plot of ‖u‖L2 against k ∈ (0, 34 ).

For ε = 0 the solutions uk are given by (Pushkarov et al. ’79)

uk (x) =

√√√√ 2k

1 +
√

1− 4k
3
cosh

(
2
√
kx
) , 0 < k < 3

4
.
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Figure: For ε = 0.5 ·
√

3, plot of ‖u‖L2 against k ∈ ( ε2

4 ,
3
4 + ε2

4 ].

Two solutions coexist for each given wavenumber k > 3
4 , with a

fold bifurcation occuring at kε = 3
4 + ε2

4 . As we will see, the explicit
formulas for the solitons are much more involved than for ε = 0...
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We will show that all solutions on the curve are orbitally stable.
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Explicit form of the solutions for 0 < ε <
√

3

For ε2

4 < k < 3
4 : only one soliton for each k , given by

u−,k,ε(x) =√√√√√ 2k

1 +
ε+ε
√

1+(4k/ε2−1)(1−4k/3)

4(
√

k−ε/2)
e2
√
k|x| + (1−4k/3)(

√
k−ε/2)

ε+ε
√

1+(4k/ε2−1)(1−4k/3)
e−2
√
k|x|

.

At k = 3/4, this reduces to

u−,3/4,ε(x) =

√
3

2

√
1

1 + ε√
3−εe

√
3|x |

.



For 3
4 < k < 3

4 + ε2

4 : two solitons for each k , given by

u±,k,ε(x) =

2

√√√√ k(
e
√

k(|x|−c) + e−
√

k(|x|−c)
)((

2
√

k
3
+ 1
)
e
√
k(|x|−c) −

(
2
√

k
3
− 1
)
e−
√

k(|x|−c)
) ,

where the integration constants c = c±,k,ε ∈ R can be determined
from the values u±,k,ε(0), which yields

e
√
kc−,k,ε =

√
3−
√
3
√
3 + ε2 − 4k + 2ε

√
k − 4k

−3 +
√
3
√
3 + ε2 − 4k + 2

√
3
√
k − 2

√
k
√
3 + ε2 − 4k

and

e
√
kc+,k,ε =

√
−3−

√
3
√
3 + ε2 − 4k − 2ε

√
k + 4k

3 +
√
3
√
3 + ε2 − 4k − 2

√
3
√
k − 2

√
k
√
3 + ε2 − 4k

.



At the fold bifurcation point (kε = 3
4 + ε2

4 ) the solution takes the
more tractable form

uε(x) =

√
3

2

√
3 + ε2

3 + ε2 cosh(
√

3 + ε2|x |) + ε
√

3 + ε2 sinh(
√

3 + ε2|x |)
.

We will see that this expression is useful in the local spectral
analysis at the fold bifurcation point (kε, uε).



Bifurcation and spectral properties

We call lower curve, respectively upper curve, the sets

S−,ε =
{

(k, u−,k,ε) : k ∈ ( ε
2

4 , kε)
}
,

S+,ε =
{

(k , u+,k,ε) : k ∈ (34 , kε)
}
.

We then define

Sε := S−,ε ∪ {(kε, uε)} ∪ S+,ε.

We also let Fε : R× H1(R)→ H−1(R),

Fε(k, u) = −u′′ + ku − εδ(x)u − 2u3 + u5,

so that (SNLS) reads Fε(k , u) = 0.



Theorem 1

(i) The set Sε is a smooth curve in R× H1(R), and we have

lim
k↓ ε2

4

‖u−,k,ε‖H1 = 0 and lim
k↓ 3

4

‖u+,k,ε‖L2 =∞.

(ii) The linearised operator

DuFε(k, u) = − d2

dx2
+ k − εδ(x)− 6u2(x) + 5u4(x),

is non-singular along S±,ε, and singular at (k, u) = (kε, uε),
with

kerDuFε(kε, uε) = span{|u′ε|}.
(iii) Furthermore, DuFε(k , u) has a strictly positive continuous

spectrum, and

• exactly one negative eigenvalue along S−,ε;
• no negative eigenvalues along S+,ε.



Proof

• The bifurcations from u = 0 and from infinity follow by
standard bifurcation theory.

• ODE arguments show that DuFε(k , u) is an isomorphism for
k 6= kε and that DuFε(kε, uε) = span{|u′ε|}.
• The smoothness of S±,ε follows from the the implicit function

theorem and the non-degeneracy of the solutions on S±,ε.
• One negative eigenvalue along S−,ε follows from the case
ε = 0 by analytic perturbation theory.

Then it only remains to prove that:

I S−,ε and S+,ε meet smoothly at (kε, uε).

I The first eigenvalue crosses zero with non-zero speed (and so
doesn’t bounce back) as one passes through (kε, uε).



Local analysis at the fold

At the fold bifurcation point, parametrisation by k breaks down.
However, following Crandall and Rabinowitz ’73, the curve can be
locally reparametrised about (kε, uε) as a smooth curve{

(k(s), u(s)) : s ∈ (−η, η)
}
⊂ R× H1(R) (η > 0 small)

so that, at s = 0,

(k(0), u(0)) = (kε, uε) and (k̇(0), u̇(0)) = (0, |u′ε|),

where kerDuFε(kε, uε) = span{|u′ε|}.

Now, the first eigenvalue µ(s) of DuFε(k(s), u(s)) satisfies
µ(0) = 0, and we only need to show that µ̇(0) 6= 0.



Using the reparametrisation and ODE arguments, one shows that

µ̇0 =
4
∫
R
(
5u2ε − 3

)
uε|u′ε|3∫

R |u
′
ε|2

.

Thanks to the explicit formulas for uε and |u′ε|, a numerical
computation yields
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Stability

Due to the U(1)-invariance of (NLS), the appropriate notion of
stability in this context is that of orbital stability.

Definition
We say that the standing wave ψk(x , z) = eikzuk(x) is orbitally
stable if

for all ε > 0 there exists δ > 0 such that

for any solution ϕ(x , z) of (NLS) with initial data ϕ(·, 0) ∈ H1(R)
there holds

‖ϕ(·, 0)−uk‖H1 6 δ =⇒ inf
θ∈R
‖ϕ(·, z)−eiθuk‖H1 6 ε for all z > 0.



Theorem 2
The whole curve Sε consists of orbitally stable standing waves.

Proof.
We use the general theory of Grillakis–Shatah–Strauss:

(I) We know that the spectrum of DuFε(k , u+,k,ε) is strictly
positive, for all k ∈ (34 , kε), so the upper curve is stable.

(II) We also know that, for all k ∈ ( ε
2

4 , kε), DuFε(k , u−,k,ε) has
exactly one simple negative eigenvalue, is non-singular, and
the rest of its spectrum is strictly positive.

Hence, to complete the proof, we only need to verify the slope
condition:

d

dk
‖u−,k,ε‖2L2 > 0 ∀k ∈ ( ε

2

4 , kε).



Firstly, for k ∈ (34 , kε), it follows from the expression

u−,k,ε(x) =

2

√√√√ k(
e
√

k(|x|−c) + e−
√

k(|x|−c)
)((

2
√

k
3
+ 1
)
e
√
k(|x|−c) −

(
2
√

k
3
− 1
)
e−
√

k(|x|−c)
) ,

that

d

dk
‖u−,k,ε‖2L2 =

2
√
3ε√

3+ε2−4k −
3√
k

4k − 3
> 0.

N.B. Similarly,

d

dk
‖u+,k,ε‖2L2 = −

2
√
3ε√

3+ε2−4k + 3√
k

4k − 3
< 0 ∀k ∈ (34 , kε).



For k < 3/4, a straightforward (but painful) calculation using

u−,k,ε(x) =√√√√√ 2k

1 +
ε+ε
√

1+(4k/ε2−1)(1−4k/3)

4(
√
k−ε/2)

e2
√
k|x| + (1−4k/3)(

√
k−ε/2)

ε+ε
√

1+(4k/ε2−1)(1−4k/3)
e−2
√
k|x|

shows that
‖u−,k,ε‖2L2 =

√
3 logϕε(k)

where

ϕε(k) :=

√
3ε+

√
3ε2 + (4k − ε2)(3− 4k) +

(√
3 + 2

√
k
)(
2
√
k − ε

)
√
3ε+

√
3ε2 + (4k − ε2)(3− 4k) +

(√
3− 2

√
k
)(
2
√
k − ε

) .



Finally,
d

dk
ϕε(k) =

8
√
k

√
3
√

3ε2 + (4k − ε2)(3− 4k) + 2
√
k
(
3 + ε2 − 2ε

√
k
)

√
3ε2 + (4k − ε2)(3− 4k)

(√
3ε+

√
3ε2 + (4k − ε2)(3− 4k) +

(√
3− 2

√
k
)(
2
√
k − ε

))2
which is strictly positive since

k <
3

4
=⇒ 3 + ε2 − 2ε

√
k >

(√
3− ε

)2
+
√

3ε > 0. �

Thank you!


