Stable solitons in the 1D cubic-quintic NLS with a delta-function potential

François Genoud TU Delft

Joint work with Boris A. Malomed and Rada M. Weishäupl

CIRM, June 15, 2017

The cubic-quintic NLS with a δ -potential

We consider the nonlinear Schrödinger equation

$$i\psi_z + \psi_{xx} + \epsilon \delta(x)\psi + 2|\psi|^2\psi - |\psi|^4\psi = 0, \qquad (NLS)$$

for $\psi = \psi(x, z) : \mathbb{R} \times \mathbb{R} \to \mathbb{C}$.

This combination of nonlinearities is well known in nonlinear waveguides, including colloidal waveguides.

The delta-function models the interaction of a broad beam with a narrow trapping potential, with coupling constant $\epsilon > 0$.

The Cauchy problem for (NLS) is globally well-posed in $H^1(\mathbb{R})$.

(NLS) is the paraxial approximation of the nonlinear Helmholtz equation governing TE/TM modes in the waveguide.

Solitons

We look for standing waves of the form $\psi(x, z) = e^{ikz}u(x)$, with k > 0 and a real-valued soliton profile $u \in H^1(\mathbb{R})$. This ansatz leads to the stationary equation

$$u'' - ku + \epsilon \delta(x)u + 2u^3 - u^5 = 0, \quad x \in \mathbb{R}.$$
 (SNLS)

Orbital stability of standing waves relies on properties of the solutions of (SNLS) with respect to the wavenumber k (Vakhitov–Kolokolov '73 ... Grillakis–Shatah–Strauss '87).

Our approach here is twofold:

- First determine all localised solutions u_k of (SNLS) explicitly.
- Then combine this information with spectral and bifurcation-theoretic properties to prove their stability.

A priori properties of solutions

Functions in $H^1(\mathbb{R})$ satisfying

$$u'' - ku + \epsilon \delta(x)u + 2u^3 - u^5 = 0$$
 (SNLS)

in the sense of distributions have the following properties:

 $\epsilon = 0$

Figure: For $\epsilon = 0$, plot of $||u||_{L^2}$ against $k \in (0, \frac{3}{4})$.

For $\epsilon = 0$ the solutions u_k are given by (Pushkarov *et al.* '79)

$$u_k(x) = \sqrt{rac{2k}{1 + \sqrt{1 - rac{4k}{3}}\cosh\left(2\sqrt{k}x
ight)}}, \quad 0 < k < rac{3}{4}$$

$0 < \epsilon < \sqrt{3}$

Figure: For $\epsilon = 0.5 \cdot \sqrt{3}$, plot of $||u||_{L^2}$ against $k \in (\frac{\epsilon^2}{4}, \frac{3}{4} + \frac{\epsilon^2}{4}]$.

Two solutions coexist for each given wavenumber $k > \frac{3}{4}$, with a fold bifurcation occuring at $\overline{k}_{\epsilon} = \frac{3}{4} + \frac{\epsilon^2}{4}$. As we will see, the explicit formulas for the solitons are much more involved than for $\epsilon = 0$...

Figure: Soliton profiles for $\epsilon = 0.5 \cdot \sqrt{3}$.

$\epsilon \approx \sqrt{3}$

Figure: For $\epsilon = 0.9 \cdot \sqrt{3}$, plot of $||u||_{L^2}$ against $k \in (\frac{\epsilon^2}{4}, \frac{3}{4} + \frac{\epsilon^2}{4}]$.

We will show that all solutions on the curve are orbitally stable.

Literature

Nonlinear optics:

Gisin–Driben–Malomed (2004)

Birnbaum-Malomed (2008)

Mathematical stability analysis:

Fukuizumi–Ohta–Ozawa (2008)

Jeanjean-Fukuizumi (2008)

Le Coz-Fukuizumi-Fibich-Ksherim-Sivan (2008)

Explicit form of the solutions for $0 < \epsilon < \sqrt{3}$

For
$$\frac{\epsilon^2}{4} < k < \frac{3}{4}$$
: only one soliton for each k , given by

$$u_{-,k,\epsilon}(x) = \frac{2k}{1 + \frac{\epsilon + \epsilon \sqrt{1 + (4k/\epsilon^2 - 1)(1 - 4k/3)}}{4(\sqrt{k} - \epsilon/2)}} e^{2\sqrt{k}|x|} + \frac{(1 - 4k/3)(\sqrt{k} - \epsilon/2)}{\epsilon + \epsilon \sqrt{1 + (4k/\epsilon^2 - 1)(1 - 4k/3)}} e^{-2\sqrt{k}|x|}}.$$

At k = 3/4, this reduces to

$$u_{-,3/4,\epsilon}(x) = \sqrt{rac{3}{2}} \sqrt{rac{1}{1+rac{\epsilon}{\sqrt{3}-\epsilon} \mathrm{e}^{\sqrt{3}|x|}}}.$$

For
$$\frac{3}{4} < k < \frac{3}{4} + \frac{\epsilon^2}{4}$$
: two solitons for each k , given by

$$u_{\pm,k,\epsilon}(x) = 2\sqrt{\frac{k}{\left(e^{\sqrt{k}(|x|-c)} + e^{-\sqrt{k}(|x|-c)}\right)\left(\left(2\sqrt{\frac{k}{3}} + 1\right)e^{\sqrt{k}(|x|-c)} - \left(2\sqrt{\frac{k}{3}} - 1\right)e^{-\sqrt{k}(|x|-c)}\right)}},$$

where the integration constants $c = c_{\pm,k,\epsilon} \in \mathbb{R}$ can be determined from the values $u_{\pm,k,\epsilon}(0)$, which yields

$$e^{\sqrt{k}c_{-,k,\epsilon}} = \sqrt{\frac{3-\sqrt{3}\sqrt{3+\epsilon^2-4k}+2\epsilon\sqrt{k}-4k}{-3+\sqrt{3}\sqrt{3}+\epsilon^2-4k}+2\sqrt{3}\sqrt{k}-2\sqrt{k}\sqrt{3+\epsilon^2-4k}}}$$

and

$$e^{\sqrt{k}c_{+,k,\epsilon}} = \sqrt{\frac{-3-\sqrt{3}\sqrt{3+\epsilon^2-4k}-2\epsilon\sqrt{k}+4k}{3+\sqrt{3}\sqrt{3+\epsilon^2-4k}-2\sqrt{3}\sqrt{k}-2\sqrt{k}\sqrt{3+\epsilon^2-4k}}}$$

At the fold bifurcation point $(\overline{k}_{\epsilon} = \frac{3}{4} + \frac{\epsilon^2}{4})$ the solution takes the more tractable form

$$\overline{u}_{\epsilon}(x) = \sqrt{\frac{3}{2}} \sqrt{\frac{3 + \epsilon^2}{3 + \epsilon^2 \cosh(\sqrt{3 + \epsilon^2}|x|) + \epsilon \sqrt{3 + \epsilon^2} \sinh(\sqrt{3 + \epsilon^2}|x|)}}$$

We will see that this expression is useful in the local spectral analysis at the fold bifurcation point $(\overline{k}_{\epsilon}, \overline{u}_{\epsilon})$.

Bifurcation and spectral properties

We call lower curve, respectively upper curve, the sets

$$S_{-,\epsilon} = \left\{ (k, u_{-,k,\epsilon}) : k \in \left(\frac{\epsilon^2}{4}, \overline{k}_{\epsilon}\right) \right\},$$
$$S_{+,\epsilon} = \left\{ (k, u_{+,k,\epsilon}) : k \in \left(\frac{3}{4}, \overline{k}_{\epsilon}\right) \right\}.$$

We then define

$$\mathcal{S}_\epsilon := \mathcal{S}_{-,\epsilon} \cup \{(\overline{k}_\epsilon, \overline{u}_\epsilon)\} \cup \mathcal{S}_{+,\epsilon}.$$

We also let $F_{\epsilon}:\mathbb{R} imes H^1(\mathbb{R}) o H^{-1}(\mathbb{R})$,

$$F_{\epsilon}(k,u) = -u'' + ku - \epsilon \delta(x)u - 2u^3 + u^5,$$

so that (SNLS) reads $F_{\epsilon}(k, u) = 0$.

Theorem 1

(i) The set S_{ϵ} is a smooth curve in $\mathbb{R} \times H^1(\mathbb{R})$, and we have

$$\lim_{k\downarrow\frac{\epsilon^2}{4}}\|u_{-,k,\epsilon}\|_{H^1}=0 \quad and \quad \lim_{k\downarrow\frac{3}{4}}\|u_{+,k,\epsilon}\|_{L^2}=\infty.$$

(ii) The linearised operator

$$D_u F_{\epsilon}(k,u) = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + k - \epsilon \delta(x) - 6u^2(x) + 5u^4(x),$$

is non-singular along $S_{\pm,\epsilon}$, and singular at $(k, u) = (\overline{k}_{\epsilon}, \overline{u}_{\epsilon})$, with

$$\ker D_u F_{\epsilon}(\overline{k}_{\epsilon}, \overline{u}_{\epsilon}) = \operatorname{span}\{|\overline{u}_{\epsilon}'|\}.$$

(iii) Furthermore, $D_u F_{\epsilon}(k, u)$ has a strictly positive continuous spectrum, and

- exactly one negative eigenvalue along S_{-,ε};
- no negative eigenvalues along $S_{+,\epsilon}$.

Proof

- The bifurcations from u = 0 and from infinity follow by standard bifurcation theory.
- ODE arguments show that $D_u F_{\epsilon}(k, u)$ is an isomorphism for $k \neq \overline{k}_{\epsilon}$ and that $D_u F_{\epsilon}(\overline{k}_{\epsilon}, \overline{u}_{\epsilon}) = \operatorname{span}\{|\overline{u}'_{\epsilon}|\}.$
- The smoothness of $S_{\pm,\epsilon}$ follows from the the implicit function theorem and the non-degeneracy of the solutions on $S_{\pm,\epsilon}$.
- One negative eigenvalue along $S_{-,\epsilon}$ follows from the case $\epsilon = 0$ by analytic perturbation theory.

Then it only remains to prove that:

- $S_{-,\epsilon}$ and $S_{+,\epsilon}$ meet smoothly at $(\overline{k}_{\epsilon}, \overline{u}_{\epsilon})$.

Local analysis at the fold

At the fold bifurcation point, parametrisation by k breaks down. However, following Crandall and Rabinowitz '73, the curve can be locally reparametrised about $(\overline{k}_{\epsilon}, \overline{u}_{\epsilon})$ as a smooth curve

$$ig\{(\textit{\textit{k}}(\textit{\textit{s}}),\textit{\textit{u}}(\textit{\textit{s}})):\textit{\textit{s}}\in(-\eta,\eta)ig\}\subset\mathbb{R} imes\textit{H}^1(\mathbb{R})\quad(\eta>0 ext{ small})$$

so that, at s = 0,

$$(k(0), u(0)) = (\overline{k}_{\epsilon}, \overline{u}_{\epsilon})$$
 and $(\dot{k}(0), \dot{u}(0)) = (0, |\overline{u}_{\epsilon}'|),$
where ker $D_u F_{\epsilon}(\overline{k}_{\epsilon}, \overline{u}_{\epsilon}) = \operatorname{span}\{|\overline{u}_{\epsilon}'|\}.$

Now, the first eigenvalue $\mu(s)$ of $D_u F_{\epsilon}(k(s), u(s))$ satisfies $\mu(0) = 0$, and we only need to show that $\dot{\mu}(0) \neq 0$.

Using the reparametrisation and ODE arguments, one shows that

$$\dot{\mu}_0 = \frac{4\int_{\mathbb{R}} \left(5\overline{u}_{\epsilon}^2 - 3\right)\overline{u}_{\epsilon} |\overline{u}_{\epsilon}'|^3}{\int_{\mathbb{R}} |\overline{u}_{\epsilon}'|^2}.$$

Thanks to the explicit formulas for \overline{u}_{ϵ} and $|\overline{u}'_{\epsilon}|$, a numerical computation yields

Figure: The graph of $f(\epsilon) := \int_0^\infty \left(5\overline{u}_\epsilon^2 - 3\right) \overline{u}_\epsilon |\overline{u}_\epsilon'|^3$.

Stability

Due to the U(1)-invariance of (NLS), the appropriate notion of stability in this context is that of orbital stability.

Definition

We say that the standing wave $\psi_k(x, z) = e^{ikz}u_k(x)$ is orbitally stable if

for all $\varepsilon > 0$ there exists $\delta > 0$ such that

for any solution $\varphi(x, z)$ of (NLS) with initial data $\varphi(\cdot, 0) \in H^1(\mathbb{R})$ there holds

$$\|\varphi(\cdot,0)-u_k\|_{H^1}\leqslant\delta\implies \inf_{\theta\in\mathbb{R}}\|\varphi(\cdot,z)-\mathsf{e}^{i\theta}u_k\|_{H^1}\leqslant\varepsilon\quad\text{for all }z\geqslant0.$$

Theorem 2

The whole curve S_{ϵ} consists of orbitally stable standing waves. Proof.

We use the general theory of Grillakis–Shatah–Strauss:

- (1) We know that the spectrum of $D_u F_{\epsilon}(k, u_{+,k,\epsilon})$ is strictly positive, for all $k \in (\frac{3}{4}, \overline{k}_{\epsilon})$, so the upper curve is stable.
- (II) We also know that, for all $k \in (\frac{\epsilon^2}{4}, \overline{k}_{\epsilon})$, $D_u F_{\epsilon}(k, u_{-,k,\epsilon})$ has exactly one simple negative eigenvalue, is non-singular, and the rest of its spectrum is strictly positive.

Hence, to complete the proof, we only need to verify the slope condition:

$$\frac{\mathsf{d}}{\mathsf{d}k} \| u_{-,k,\epsilon} \|_{L^2}^2 > 0 \quad \forall k \in (\frac{\epsilon^2}{4}, \overline{k}_{\epsilon}).$$

Firstly, for $k \in (\frac{3}{4}, \overline{k}_{\epsilon})$, it follows from the expression

$$u_{-,k,\epsilon}(x) = 2\sqrt{\frac{k}{\left(e^{\sqrt{k}(|x|-c)} + e^{-\sqrt{k}(|x|-c)}\right)\left(\left(2\sqrt{\frac{k}{3}} + 1\right)e^{\sqrt{k}(|x|-c)} - \left(2\sqrt{\frac{k}{3}} - 1\right)e^{-\sqrt{k}(|x|-c)}\right)}},$$

that

$$\frac{\mathsf{d}}{\mathsf{d}k} \|u_{-,k,\epsilon}\|_{L^2}^2 = \frac{\frac{2\sqrt{3\epsilon}}{\sqrt{3+\epsilon^2-4k}} - \frac{3}{\sqrt{k}}}{4k-3} > 0.$$

<u>N.B.</u> Similarly,

$$\frac{\mathsf{d}}{\mathsf{d}k} \|u_{+,k,\epsilon}\|_{L^2}^2 = -\frac{\frac{2\sqrt{3\epsilon}}{\sqrt{3+\epsilon^2-4k}} + \frac{3}{\sqrt{k}}}{4k-3} < 0 \quad \forall k \in (\frac{3}{4}, \overline{k}_{\epsilon}).$$

For k < 3/4, a straightforward (but painful) calculation using

$$u_{-,k,\epsilon}(x) = \frac{2k}{1 + \frac{\epsilon + \epsilon \sqrt{1 + (4k/\epsilon^2 - 1)(1 - 4k/3)}}{4(\sqrt{k} - \epsilon/2)}} e^{2\sqrt{k}|x|} + \frac{(1 - 4k/3)(\sqrt{k} - \epsilon/2)}{\epsilon + \epsilon \sqrt{1 + (4k/\epsilon^2 - 1)(1 - 4k/3)}} e^{-2\sqrt{k}|x|}}$$

shows that

$$\|u_{-,k,\epsilon}\|_{L^2}^2 = \sqrt{3}\log\varphi_{\epsilon}(k)$$

where

$$\varphi_{\epsilon}(k) := \frac{\sqrt{3}\epsilon + \sqrt{3}\epsilon^2 + (4k - \epsilon^2)(3 - 4k)} + \left(\sqrt{3} + 2\sqrt{k}\right)\left(2\sqrt{k} - \epsilon\right)}{\sqrt{3}\epsilon + \sqrt{3}\epsilon^2 + (4k - \epsilon^2)(3 - 4k)} + \left(\sqrt{3} - 2\sqrt{k}\right)\left(2\sqrt{k} - \epsilon\right)}$$

Finally,
$$\frac{\mathsf{d}}{\mathsf{d}k}\varphi_{\epsilon}(k) = \frac{\sqrt{3}\sqrt{3\epsilon^{2} + (4k - \epsilon^{2})(3 - 4k)} + 2\sqrt{k}(3 + \epsilon^{2} - 2\epsilon\sqrt{k})}{\sqrt{3\epsilon^{2} + (4k - \epsilon^{2})(3 - 4k)}\left(\sqrt{3}\epsilon + \sqrt{3\epsilon^{2} + (4k - \epsilon^{2})(3 - 4k)} + (\sqrt{3} - 2\sqrt{k})(2\sqrt{k} - \epsilon)\right)^{2}}$$

which is strictly positive since

$$k < rac{3}{4} \implies 3 + \epsilon^2 - 2\epsilon\sqrt{k} > \left(\sqrt{3} - \epsilon\right)^2 + \sqrt{3}\epsilon > 0.$$

Thank you!