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Physical setup

* Propagation of intense laser beams in homogeneous
medium (air, water, glass, ...
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Mathematical model

= Propagation governed by nonlinear Maxwell's egs.
= Approximate by nonlinear Schrodinger eq. (NLS)

i (zox,y)+ Mo +plly=0. M=y, +v,

r=(x.y) = z"="t (evolution variable)

InEutBeam 7 lﬂ(z:O,an/):Z//o(XaY)

* [Initial value problem in z

Kerr Medium

z=0




Finite-time singularity
A
iy, (t,%,9)+ Ay +lp[ =0, p(1=0,x)=y,(x,y)

= Kelley (1965) : NLS Solutions can become singular (blowup) in
finite distance/time T
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Optical collapse
= Kelley (1965)

Applied Mathematical Sciences

Gadi Fibich
The Nonlinear Schradinger Equation
Singular Solutions and Optical Collapse

This book is an interdis ciplinary introduction to optical collapse of 1aser beams, which is
mcdelled by singular (blow-uwp) solutions of the nonlinear Schridinger equation. With
great care and detail, it develops the subject including the mathernatical and physical
background and the history of the subject. [t combines rigorous analysis, asymptotic
analysis, informal arguments, numerical simulations, physical modelling, and physical
enxperiments. It repeatedly emphasizes the relations between these approaches, and the

R Gadi Fibich

The Nonlinear

in applied mathematics who are interested in singular solutions of partial differential
equations, nonlinear optics and nonlinear waves, and to graduste students and
researchers in physics and engineering who are interested in nonlinear optics and
Bose-Einstein condensates. It can be used for courses on partial differential equations,
nonlinear waves, and nonlinear optics.

‘Gadi Fibich is a Professor of Applied Mathematics at Tel Am\-'Unmny

I

'Thlshmkpmwdssﬂdsw of the i quation and
from various persp (rigorous awalysis, informal analysis, and -8 ™

piyslcsj It will be extremely useful for students and researchers who enter this field.” —_

e Schrodlnger
=
(=]
= ]
:  Equation
(n-]
il
(¥l q
=
S Singular Solutions and Optical Collapse
g-
P
m
=]

Mathematics §

I8BN 978-3-319-12747-7 =]
=

I

il

IUUH 2 Springer



XXX Contents

38 Continuations Beyond the Singularity 7 . .. ... .. .. ... ... 793 [P T———
i i BT« @ e e e 794 -
38.1.1  Merle’s Explicit Continuation of Y5 o« .. ... ... 794
38.1.2  Continuation of Bourgain-Wang Solutions . ... ... 797 Gadi
38.1.3 Tao’s Continuation .. .. ................... 799 2 The Nonlinear
38.1.4  Vanishing Nonlinear-Saturation Continuation . . . . . 9 7 Schrbdinger
38.2  Sub-threshold Power Continuation. . . .. ............... T99 % Equation
38.2.1  Proof of Proposition 38.1 . ... ... ... ........ 801 % St Oy Gl
38.2.2  Comparison of Proposition 38.1 =
and Theorem 10.2. ... ... ................. 803 — £
383  Reversible Continuations . . . .. .. ................... 804 i ] Bsproge
384  Vanishing Nonlinear-Saturation Continuation . .. ... ... ... 806
384.1 Merle’s Rigorous Analysis . . ... ............. 206 Il
38.4.2  Malkin's Asymptotic Analysis .. .. ........... 8207
38.4.3  Importance of Power Radiation. . .. .. ... ...... 208
385  Shrinking-Hole Continuation ... .................... 809
38.5.1 Theory Review.......... e 809
385.2  Explicit Continuation of ¢& ™" ... ... ... ... 809
38.6  Vanishing Nonlinear-Damping Continuation. . .. ... ...... 812
38.6.1 Physical Motivation. . . . .. ... ... 0. 812
38.6.2  Arrest of Collapse by Nonlinear
Damping—Review .. ....... ... ... ........ 812
38.6.3  Explicit Continuation of /8"
with Critical Nonlinear Damping. . . .. ... ... ... 813
38.6.4 Proofof Proposition 38.3 . ... ... ... .. ... ... 815
38.6.5 Nonlinear Damping and the Hamiltonian . . ... ... 823
386.6  Continuations of 5" with Suberitical
and Supercritical Nonlinear Damping. . . .. ... ... 825
38.6.7  Continuation of Loglog Collapse. . . . ... ....... 826
38.6.8  Continuation of the Supercritical NLS . .. . ... ... 827
387  Complex Ginzburg-Landau Continuation .. .. ........... 828
38.8  Vanishing-Diffraction Continuation of the Linear
Schrodinger Equation . ... ... .. ... .. . L o .. 829
3B9  Summary. .. ... e e e 831
39 Loss of Phase and Chaotic Interactions .. .. ... .......... 833
39.1  Phase-Loss Property ... ...... ... ... ... 833
39.1.1  Physical Perspective ..................... 833
39.1.2  Smulations ... Lo o 834
39.1.3  Experiments ... ..... ... 834
39.2  Chaotic Interactions . .. .. ... ... .. .i it 336
3921 Simulations ... 236
39.2.2  Experiments . ... ... ... a . 839
393 Summary ... .. e e e e e 340



Beyond the singularity
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e No singularities in nature

* Laser beam propagates past T.

e NLS is only an approximate model

e Common approach: Retain effects neglected in NLS model
e Nonparaxiality, quintic nonlinearity, dispersion, ...

e Many studies, mostly numerical



Compare with hyperbolic conservation laws

= Solutions can become singular (shock waves)
* Singularity arrested in the presence of viscosity

= Huge literature on continuation of the singular inviscid
solutions:

= Riemann problem
= Vanishing-viscosity solutions
* Rankine-Hugoniot jump conditions

Goal — develop a similar’ theory for the NLS




Continuation of singular NLS solutions
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Continuation of singular NLS solutions
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Continuation of singular NLS solutions
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Continuation of singular NLS solutions
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= 2 key papers by Merle (1992)
= Less than 10 papers
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Talk plan

. Review

. Nonlinear damping continuation

. Sub threshold power continuation

. Loss of phase

. Universality of stochastic interactions
. Numerical methods

o O A W IN -
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Ground state

= NLS admits solitary waves ¢ = e'R(r)

AR(r)—R+R3=O, r=\/x2+y2

= Enumerable number of solutions
= Of most interest is the ground state: R 2 Townes
= Positive sol. with minimal power (L, norm) ", profile

0

0 5
r

= P_. - critical power/L,-norm for collapse
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Explicit blowup solutions

= Apply quasi-conformal (Talanov) transformation to ¢=€7\l't

2

((IZ/":) _ o ir(t)+i%% ~ ) _t .
Al L(t) (L(t))e - LO=a-0, 7= [1

= Width L(t)2>0ast=>T.
= g At becomes singular at T,

" Linear blowup rate
L®
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Explicit blowup solutions

= Apply quasi-conformal (Talanov) transformation to ¢=€7\l't

'5(@( r)=——R (L)e”(”*"?f, L(t) = a(T, - t), r=j'L‘2

L) | L@

= Width L(t)2>0ast=>T.
= g At becomes singular at T,

" Linear blowup rate

= 29 s unstable, since any
perturbation that reduces its power
leads to global existence

L 4

explicit

z/JRa

IRl -,
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Explicit continuation of yg &X't (Merle, 92)

Let w¢ be the NLS solution with the ic

wg(r)=(1—8)1/Jexphdt(t=0,]"), O<8= 1

R,

2 2
wil, = A=)zl <.

Ye exists globally
* Merle computed the limit

limy (t,r), O=st<o

e—0+

17



Thm (Merle 92)

limy* (¢t,r) =y

e—0+

explicit
R,

(t,r)

Wi (t=0)=(1-epit =0)

L®)
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Thm (Merle 92) p =0 =(-epii" (=0

lim 'l/) (t I") z/jexphclt(t, 7")

e—0+

lim [y (T +1,7)| =y a2 (T

e—0+

Symmetry Property:
Continuation symmetric
with respect to T,

« "Jump condition”

L® 4

O<t<

-1,

19
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Thm (Merle 92) Y =0)= (-t = 0)

For any 6, there exists a sequence £, — 0+ such that

explicit *

lim (T, +t,r) =" ¢ 22 (7. ~t,7),  Vt>0

g,—0+

» Phase-loss Property: Initial phase lost at/after the singularity

20



Properties of Merle’s continuation

1. Symmetry: Continuation symmetric with respect to 7.

2. Phase loss: Initial phase is lost at/after the singularity

Are these properties universal?

21



Talk plan

. Review

. Nonlinear-damping continuation

. Sub threshold power continuation

. Loss of phase

. Universality of stochastic interactions
. Numerical methods

o O B WOIN -
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Vanishing - viscosity” continuations

» Add a small perturbation to the NLS
= Let y& be the solution of

21/J€+5F[z/f] =0

“viscosity"

iz/;f(t,x) + A+t

= |f yeexists globally for any 0<e<<1, can define the
vanishing— "viscosity” continuation

Y

continuation(t,x) - llm ng(t,x)p O <[<

c—0+

23



Vanishing - viscosity” continuations

= But, what is viscosity’ for the NLS?
= Should arrest collapse even when it is infinitesimally small

= Cannot use linear damping (Fibich, 01)
= Plenty of other candidates:

= Nonlinear saturation (Merle 92)

= Nonparaxiality (Fibich, 96)

= Dispersion

24



Nonlinear damping

= “Viscosity”’ = nonlinear damping (Fibich & Klein, 2011/2)
» Physical — multi-photon absorption

" Dissipative perturbation
= Good, same as viscosity!

25



Different continuation of LpR,anp”Cit

= 2D cubic NLS with

Impossible d'afficher I'image. Votre ordinateur manque peut-&tre de mémoire pour ouvrir Iimage ou I'image est endommagée. Redémarrez l'ordinateur, puis ouvrez & nouveau le fichier. Si le x rouge est toujours affiché, vous
” devrez peut-étre supprimer Iimage avant de la réinsérer

= Compute the limit >0+
= Vanishing nonlinear-damping continuation of yp ,&xlet

26



Proposition (Fibich & Klein, 2011) #o-#w"¢=0

explicit

lim z//(‘j) =Y.

0—0+

For any @, there exists a sequence 0, — 0+ such that

lim ¢ (T, +1,r) = e v N ~tr), K~1.614

R,xa

o A
Ai(s))

s, = —2.7 1s the first negative root of \/§Ai(s) = Bi(s)

» Asymptotic calculations (rigorous proof still needed)

27



Properties of nonlinear damping continuation

For any 6@, there exists a sequence 0, — 0+ such that

* explicit

lim (7. +t,7) =g W' (T.~t,r), K ~1.614

0,—>0+

= Continuation has phase-loss property



Properties of nonlinear damping continuation

For any 6@, there exists a sequence 0, — 0+ such that

* explicit

lim (7, +1,7) =" W (1.~ t,7), K =~1.614

0,—>0+

= Continuation has phase-loss property

Impossible d'afficher 'image. Votre ordinateur manque peut-étre de mémoire pour ouvrir image ou l'image est endommagée. Redémarrez 'ordinateur, puis ouvrez  nouveau le fichier. Si le x rouge est toujours affiché, vous devrez
' peut-étre supprimer Iimage avant de la réinsérer.

L o

= Continuation asymmetric with respect to T,



Symmetry or asymmetry?

= NLS is invariant under time reversal £—~—¢ and ;ﬂﬁw

L)

= Hence, Merle’s continuation is symmetric with respect to T

= Nonlinear damping breaks reversibility in time
= Hence, our continuation is asymmetric

= Symmetry property not universal

30



Phase-loss Property - Motivation

explicit
R,

explicit

lim 1/1(5) =i e

0—0+

limy =y

ce—0+

. explicit
lim arg (1//R,a ) =
t—Tc

* For t>T_, phaseis beyond infinity”
* Holds for any continuation

* Loss of phase property is universal

31



Talk plan

. Review

. Nonlinear damping continuation

. Sub threshold-power continuation
Loss of phase

Universality of stochastic interactions
. Numerical methods

» U W N =
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Sub threshold-power continuation (Fibich & Kiein, 2011)

= Let f(X)EHL, [f#R
= Let yebe the NLS solution with 240 Tc=c f(x)

= Let cth=min{c [ Yc blows up}
= y(t, x; cy,) Is  minimal-power” blowup solution

= Let y£be the NLS solution with 40 Te = (1—¢€)clth

/(%)
= By construction, no collapse for O<e<<1
= Compute the limit of y¢as >0+

= Continuation of the ""minimal-power” blowup solution y(t, x; c,,)
= Generalization of Merle’s continuation of g ,#xPlct
= Asymptotic calculation (non-rigorous) 33



Proposition (Fibich and Klein, 2011)

Wot= (1-€)Ky, f(x)

* Solution core collapses with Y &'t profile
* Blowup rate is linear
e Solution also has a nontrivial tail

34




Proposition (Fibich and Klein, 2011) [¥o= (-8, fx)

}Lt(l)lz/j t,r)=y,,(r), O<t<T,

* Solution core collapses with Y &'t profile
* Blowup rate is linear
e Solution also has a nontrivial tail

35



Proposition (Fibich and Klein, 2011) [¥o= (-8, fx)

For any 6, there exists a sequence €, — 0+ such that

lim 9 (T.+t,r) =g ¢ (Te—=t,7), O0<t= 1

g,—0+

* Continuation of B-W solution is the 'same’’ B-W solution
* Phase information is lost at the singularity

lim arg (z// - ) = lim arg (zp pp ) =

t—Tc- t—Tc—-

* Related result by Merle, Raphael, Szeftel (2014)

36



Talk plan

. Review

. Nonlinear damping continuation

. Sub threshold power continuation

. Loss of phase

. Universality of stochastic interactions
. Numerical methods

o O A~ WO N -
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Universality of loss of phase

*= Phase of all known singular NLS solutions blows up at the
singularity

" Hence, any continuation of singular NLS solutions will have
the phase-loss property

" Physically

= Collapse-arresting mechanism is small, but not zero

- filament

38



Universality of loss of phase

*= Phase of all known singular NLS solutions blows up at the
singularity

" Hence, any continuation of singular NLS solutions will have
the phase-loss property

" Physically

= Collapse-arresting mechanism is small, but not zero

Input beam filament

varies from

shot to shot After collapse is arrested,

phase is “almost lost”

39



Experiments (Shim et al., 2012)

" Phase of laser beam after propagation of 24cm in water
= “"Correct” physical continuation is not known

3n/4F
! a) 80 MW

g2t W 8
© - ] ©
(2] (2]
_(cu /4 b J _ccu
o o

0 lllllllllll ] O lllllllllll

0 20 40 60 80 100 0O 20 40 60 80 100

Laser shots Laser shots
signal beam signal beam

©

o
400 pum

40

400 pm

= Post-collapse loss-of-phase observed experimentally



Simulations of propagation in water

NLS with dispersion, space-time focusing, multiphoton
absorption, plasma, ...

Input power randomly chosen between 240 -260 MW
Compute on-axis phase after propagation of 24cm

Jo (o)

T £l 2n
On-axis phase

o
S E

41

= Post-collapse loss-of-phase observed numerically



Importance of loss of phase

= NLS solution is invariant under multiplication by e®®
= Multiplication by e'® does not affect the dynamics



Importance of loss of phase

= NLS solution is invariant under multiplication by e®®
= Multiplication by e'® does not affect the dynamics
= But, relative phase of two beams does affect the dynamics

N
oo
07 x 0
(1

collapse
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Importance of loss of phase

= NLS solution is invariant under multiplication by e®®
= Multiplication by e'® does not affect the dynamics
= But, relative phase of two beams does affect the dynamics

collapse no collapse

44



Importance of loss of phase

= NLS solution is invariant under multiplication by e®®
= Multiplication by e'® does not affect the dynamics
= But, relative phase of two beams does affect the dynamics

Post-collapse
““chaotic”
Interactions

collapse no collapse

45



Experiments (Shim et al., 2012)
N

* Interaction between two " identical”
crossing beams after propagation of

24cm in water - seven consecutive shots

(a) 160 MW

(c) 280 MW

46



Experiments (Shim et al., 2012)

N
= Interaction between two identical” 5
crossing beams after propagation of - ‘

24cm in water - seven consecutive shots 4

(a) 160 MW

single beam

'\ / a

(c) 280 MW

---- { --

single beam

200 um



Experiments (Shim et al., 2012)

* Interaction between two parallel beams —_—
with initial 1 phase difference, after 4
propagation of 24cm in water - five A >

consecutive shots

(@)

48



Loss of phase — interim summary

" Collapse = blowup of phase => loss of phase
= Question 1:
Can we have loss of phase without collapse?

" Loss of phase = cannot make deterministic predictions of
interactions

= Question 2

Can we make stochastic predictions?

49



Loss of phase

= Question 1:
Can we have loss of phase without collapse?

50



NLS with random iC

Each laser shot (mw
is different S e,




NLS with random ic

Each laser shot & -
is different LASER

E,

0 K edium
] NLS model
random ic

Y0(xa) -

(' - noise parameter

random output

Y(Lxa)



Each laser shot &
is different LASER

E,

(/%))

random ic NLS model random output

Y0 (x2) -) b(tx.a)

(' - noise parameter

Distribution (over many shots) of output phase @

=arg(Y(¢/,xf;@)) mod(2r)



Each laser shot &

is different e E (l‘ f T f)
random ic NLS model random output
Y0 (x,2) d Y(txa)

(' - noise parameter

Distribution (over many shots) of output phase @

=arg(¥Y(4/,-
PDF | | PDF
0 @ 27 0 @ 27
localized U(0,27)

no loss of phase complete loss of phase



Example: 1D cubic—quintic NLS

it (LX) +yxx+ Y12 w—elyT4 =0, e=0.001
W0 (v;a)=(1+40.1a)3.4eT—xT2 ,
a~U(=1.1)
t,=0.15 t,=3 t;=11

25 55 130

p=arg(yY (¢,

. D_ 30______——-"__-_---__ _105 --
0 ,a')) =1 a 1= a 1 a

cumulative phase




Example: 1D cubic—quintic NLS

it (LX) +yxx+ Y12 w—elyT4 =0, e=0.001
W0 (v;a)=(1+40.1a)3.4eT—xT2 ,

a~U(=1.1)
t,=0.15 t,=3 t;=11
25 55 130

p=arg(yY(z

O, a’)) 0 a 1 391"'""" = 1 10§_I“" -
cumulative phase 2n me= I VD

@ =@ mod(2r) o ]
non-cumulative phase o o 0~ a
-1 o 1 -1 ! T :
]

(




Example: 1D cubic—quintic NLS

it (LX) +yxx+ Y12 w—elyT4 =0, e=0.001
W0 (v;a)=(1+40.1a)3.4eT—xT2 ,

a~U(—1.1)
t,=0.15 t,=3 t;=11
25 55 130
p=arg(y(t
0;2)) o O
cumulative phase o = ) A
g =pmod(2r) | ara
non-cumulative phase oL o 0 ———=
-1 a [ & -l : I
00 i 1 il [
PDF = | 2 | 27 T
’ of ¢ GU @ 2r 00 @ In DU' ¢ 2n
@ localized @
no loss of phase ~ [/(0 272-)
)



Numerical observations

» Phase loss builds up gradually with time/distance

No collapse necessary

= Same for 2D NLS, other nonlinearities, other noises, ...
Theoretical explanation?

58



Loss of phase - explanation

it (LX) +yxx+ Y12 w—elyT4 =0, e=0.001
W0 (v;a)=(1+40.1a)3.4eT—xT2 ,

e G
initial condition - jsssess———
Y40 .

(V@) ¢

solitary wave (+radiation)
Y=elixt Rix (x),

(Rlr)xx—rRin +RIkT3 —€
RIxT5 =0

59



Loss of phase - explanation

it (LX) +yxx+ Y12 w—elyT4 =0, e=0.001
W0 (v;a)=(1+40.1a)3.4eT—xT2 ,

solitary wave (+radiation)

e G
initial condition - jsssess———
Y40 .

y=elixt Rix (x), ki=x(a)

() -t
(Rlr)xx—rRin +RIkT3 —€

RlrxT5 =0

60



Loss of phase - explanation

it (LX) +yxx+ Y12 w—elyT4 =0, e=0.001
W0 (v;a)=(1+40.1a)3.4eT—xT2 ,

solitary wave (+radiation)

e G
initial condition - jsssess———
Y40 .

y=elixt Rix (x), ki=x(a)

() -t

p(ta)=argy(t,x=0;a) =tr(a)

61



Loss of phase - explanation

it (LX) +yxx+ Y12 w—elyT4 =0, e=0.001
W0 (v;a)=(1+40.1a)3.4eT—xT2 ,

=2 U(—
initial condition’: solitary wave (+radiation)
¢¢O ;ﬂ%éfl'/(l‘ﬁllf (x), K=x(a)
(va) 4

p(ta)=argy(t,x=0;a) =tr(a)
Loss of Phase Lemma (Sagiv, Ditkowski, Fibich, 2017)

Let p(t,a)=tn(a), where xK(a)E CT1 s piece-wise

monotonic and & is a random variable with an absolutely
continuous distribution. Then

Ka——t—>re0—E1 117042 ~H0-—27)
11 . . L1




Proofidea

t,=0.15 N t,=
25
{ﬂ-lj ('51)
o
0 a 7 30, a y
n 2n
) (a2) (b2)
3
0 0
-1 a 1 - o 1
PDF * i —
(a3) (b3)
I
of ¢ 0 & w0 & 2n

@ localized
no loss of phase

t3=11
130 :
(e1)
1055 -
-1 ¥ 1
2n Y
D“" 4
| 8! 1
Y p—
(c3)
0 .
0 ¥ 2n

~U(0,27)

loss of phase



Loss of phase

Loss of Phase Lemma (Sagiv, Ditkowski, Fibich, 2017)
lim-t—>o00 () mod(2m)~U(0,27)

= Phase loss occurs whenever

= ;ﬂ\[O IS noisy
= Evolves into a solitary wave
= Propagates sufficiently long time/distance
= Generic phenomena
= Any NLS that supports solitary waves
= Any noise
=  Collapse not needed
= Phase loss builds up gradually in time/distance

= Unlike in collapse

64



Loss of phase

= Question 1:
Can we have loss of phase without collapse?

YES

65



Loss of phase

" Loss of phase = cannot make deterministic predictions of
interactions

= Question 2

Can we make stochastic predictions?

66



Stochastic interactions

-5 1 -5
) ] 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
¢ \l t t

. Ir‘(§e7ractions predominantly determined by relative phase at

in&rsection
+  LQss of Phase Lemma EE) relative phase~ /(0,2 7)
* |nteractions statistics becomes universal (independent of

noise source)
 Can compute using the universal model

W0 =ywd0T(1) +elia
Even wh%‘éﬂeﬁ(&%sou%@/cﬁééﬁ%re unknown

67



Universal model bt (62)+bxa+]
W0 =Rl (x+ d)eTz’Hx+eTz’a' RIIL yfpro qPel)y| 14

—i0x, a~ [/( 72'72')




Universal model bt (62)+bxa+]
W0 =Rl (x+ d)eTz’Hx+eTz’a' RIIL yfpro qPel)y| 14

—i0x, a~ U(— 72'72')
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Universal model bt (62)+bxa+]
W0 =Rl (x+ d)eTz’Hx+eTz’a' RIIL yfpro qPel)y| 14

—i0x, a~ U(— 72'72')

-3
—2
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output
profile




Universal model bt (62)+bxa+]
W0 =Rl (x+ d)eTz’Hx+eTz’a' RIIL yfpro qPel)y| 14

—i0x, a~ U(— 72'72')

-3
—2
O
2
3

output
profile

0 «a T

can compute statistics of interactions

VA4




NLS with 4 noise models

e (Lx)+ax+ [Y[T2 Y—elypf
14 1)=0

1. Perturbed profile

W0 =RIndl (x+d)elibx +
2. Perturlfet@piléxrod st Ishéa

W0 =RIndl (x+d)elibx —
3. PerturtAb{@)|ifaded)eT—i6x
W0 =Rl (x+d)elibx
4, Uniforﬁﬁl@ldfs@ribﬁﬂé@%ﬁaoﬁﬂrﬁlfé%@7(U|4'ﬁf€rsal model)

W0 =RIxll (x+d)elibx +elia Rixll (x—d)

el—=ibx, a~U(—mr)
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Universality of stochastic interactions

4 noise models universal
model

output
profile

73



Universality of stochastic interactions

4 noise models universal
model

output 5
profile

num. of
output beams

universal
21% 229 24% statistics
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Universality of stochastic interactions

4 noise models universal
model
output
profile
num. of universal
output beams 21% 20% 24% statistics
1 2 1 2 1 2
Transverse (e) - ! s | - ,(12d) |
location of ' ' ' — (12¢) universal
output beams | a2 | statistics
I — “ —_ ] ":12@,:'
r: 4 ; 0 2 s 6
standard deviation x
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Talk plan

. Review

. Nonlinear damping continuation

. Sub threshold power continuation

| oss of nhase

Universality of stochastic interactions
Numerical methods

oA WN =
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Numerical methods

= Goal: compute distributién Of @ (Z‘l a):=arg(Y(ti,

JJ
0))mod(2 ) > 3



Numerical methods

= Goal: compute distributién Of @ (Z‘l a):=arg(Y(ti,

JJ
0))mod(2 ) >

* Monte-Carfo with N=10 NLS simulati
y=11 .
. J" A . A
0 \l 0

© mod-'fﬂ) © mod(27r)2 © moﬁ%w)
N=10 simulations insufficient to determine distribution
Monter-Carlo error ~1/ vV



Numerical methods

3

= Goal: compute distributién Of @ (Z‘l a):=arg(Y(ti,
0)mod(2m) **

12 3
= PCE.with N=10 NLS simulations with {ad/TN }Nj=1TN
1 | N
¢ t | @ ¢
Ll A s [ I
0 n 2n 0 7t 27 0 n 27
QOITd(QW) cpmod(27r2 (pmodgr)

« N=10 simulations sufficient to determine distribution
» PCE has spectral accuracy



Polynomial Chaos Expansion (PCE)

Step 1 Obtain Gauss-Legendre quadrature formula {a/J/T/V )
wljTN }j=1TN

Step 2 Solve the NLS at the N quadrature points, i.e., compute
{Y(ExadjTV) Jj=1TN

Step 3 Approximate ;ﬂ( L,x 62’) with

aljTN ) pdn (aljTN), n=01,...N-1



Summary

" Vanishing nonlinear-damping continuation

Vanishing-viscosity approach
Viscosity = nonlinear damping
Explicit continuation of g exelct
Asymmetric w.r.t. T

Rigorous pf needed

= Sub threshold-power continuation

“Minimal-power” blowup solution (t, x; K, ) is B-W sol
B-W solutions are generic
Continuation of B-W solution is 'same” B-W solution
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Summary

" Loss of phase
= At blowup
= Also without blowup
* /40 is noisy
= Evolves into a solitary wave
* Propagates sufficiently long time/distance

« lim+t—>00 @g(ta)
mod(2m)~U(0,27)
= Stochastic interactions
= Cannot make deterministic predictions
=  Can make stochastic predictions using universal model
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Summary

" Numerical method
= Monte-Carlo is inefficient
= Can use Polynomial Chaos Expansion (PCE)
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