CoqInterval: A Toolbox for Proving Non-linear Univariate Inequalities in Coq

Érik Martin-Dorel erik.martin-dorel@irit.fr

Équipe ACADIE, Laboratoire IRIT Université Toulouse III - Paul Sabatier

Joint work with Guillaume Melquiond, Inria

with special thanks to the members of the TaMaDi-CoqApprox project

12 January 2016 MAP 2016 – Effective Analysis: Foundations, Implementations, Certification CIRM, Luminy

Érik Martin-Dorel (IRIT)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000
Agenda				

- **1** Motivation: Formal proof of approximation errors
- 2 The Coq proof assistant: computation and proof reflection
- **3 CoqInterval:** Methodology, Architecture, and Examples
- 4 Related works: Comparison with existing tools
- 5 Conclusion and perspectives

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Accuracy of floating-point elementary functions

- \bullet elementary functions (exp, $\cos,$ etc.) are ubiquitous in today's software
- the IEEE 754–2008 std for floating-point arithmetic gives recommendation on their accuracy
- it is crucial that libms (libraries of mathematical functions) document the accuracy of the computed values!

Motivation	Coq	CoqInterval	Related works	Conclusion
○●○	00	000000000	00000	000

Example of correctness claim

• Proving the implementation of exp in CRlibm¹ relies on the claim:

$$\forall x \in \mathbb{R}, \ |x| \le 355 \cdot 2^{-22} \implies \left| \frac{x + 0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1} \right| \le 2^{-62} \quad (1)$$

with $c_3 = 6004799504235417 \cdot 2^{-55}$ and $c_4 = 1501199876148417 \cdot 2^{-55}$.

¹http://lipforge.ens-lyon.fr/www/crlibm/

Érik Martin-Dorel (IRIT)

CogInterval: A Toolbox for Proving Non-linear Univariate Inequalities in Cog

4/25

Motivation	Coq	CoqInterval	Related works	Conclusion
○●○	00	000000000	00000	000

Example of correctness claim

• Proving the implementation of exp in CRlibm¹ relies on the claim:

$$\forall x \in \mathbb{R}, \ |x| \le 355 \cdot 2^{-22} \implies \left| \frac{x + 0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1} \right| \le 2^{-62} \quad (1)$$

- with $c_3 = 6004799504235417 \cdot 2^{-55}$ and $c_4 = 1501199876148417 \cdot 2^{-55}$.
- Tedious and error-prone to prove by hand!

¹http://lipforge.ens-lyon.fr/www/crlibm/

Érik Martin-Dorel (IRIT)

CogInterval: A Toolbox for Proving Non-linear Univariate Inequalities in Cog

¹/25

Motivation	Coq	CoqInterval	Related works	Conclusion
00●	00	000000000	00000	000

• Attempt to verify (1) by plotting $f: x \mapsto \frac{x+0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1}$:

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

• Attempt to verify (1) by plotting $f: x \mapsto \frac{x+0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1}$:

• On the left, the graph of f, as plotted by the Gnuplot tool.

• Attempt to verify (1) by plotting $f: x \mapsto \frac{x+0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1}$:

- On the left, the graph of *f*, as plotted by the Gnuplot tool.
- On the right, its actual graph, as plotted by Sollya.

• Attempt to verify (1) by plotting $f: x \mapsto \frac{x+0.5 \cdot x^2 + c_3 x^3 + c_4 x^4 - \exp x + 1}{\exp x - 1}$:

- $\bullet\,$ On the left, the graph of f, as plotted by the Gnuplot tool.
- On the right, its actual graph, as plotted by Sollya.
- Need to use dedicated tools, e.g. proof assistants, to verify statements like (1) that are critical for the correctness of libms' implementations

Motivation	Coq	CoqInterval	Related works	Conclusion
000	•0	000000000	00000	000

The Coq formal proof assistant

We use Coq for

- programming
 - pure functional language
 - specify algorithms and theorems
 - perform computations

Motivation	Coq	CoqInterval	Related works	Conclusion
000	•0	000000000	00000	000

The Coq formal proof assistant

We use Coq for

- programming
 - pure functional language
 - specify algorithms and theorems
 - perform computations
- proving
 - build proofs interactively
 - develop automatic tactics
 - use reflection
 - check proofs

Motivation	Coq	CoqInterval	Related works	Conclusion
000	•0	000000000	00000	000

The Coq formal proof assistant

We use Coq for

- programming
 - pure functional language
 - specify algorithms and theorems
 - perform computations
- proving
 - build proofs interactively
 - develop automatic tactics \rightsquigarrow Ltac
 - use reflection
 - check proofs

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	0●	000000000	00000	000

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

So we can perform proofs by reflection:

• Suppose that we want to prove G.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function f.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function f.
- Then we evaluate $f(x_1, \ldots)$.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function f.
- Then we evaluate $f(x_1, \ldots)$.
- If the computation yields true:

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function f.
- Then we evaluate $f(x_1,\ldots)$.
- If the computation yields true:
 - we have proved that true = true \Rightarrow G,

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule In environment E, if p : A and if A and B are convertible, then p : B.

- Suppose that we want to prove G.
- We reify G and automatically prove that $f(x_1, \ldots) = \mathsf{true} \Rightarrow G$,
 - by using a dedicated correctness lemma,
 - where f is a computable Boolean function f.
- Then we evaluate $f(x_1, \ldots)$.
- If the computation yields true:
 - we have proved that true = true \Rightarrow G,
 - which means that G holds.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	•00000000	00000	000

• aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	●000000000	00000	000

- aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.
- [G. Melquiond (2008): Proving bounds on real-valued functions with computations]

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	•00000000	00000	000

- aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.
- [G. Melquiond (2008): Proving bounds on real-valued functions with computations]
- main data-type: intervals with floating-point numbers bounds e.g., we'll consider an interval such as [3.1415, 3.1416] in place of π

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.
- [G. Melquiond (2008): Proving bounds on real-valued functions with computations]
- main data-type: intervals with floating-point numbers bounds e.g., we'll consider an interval such as [3.1415, 3.1416] in place of π
- dependency problem: when a variable occur several times, it typically leads to an overestimation of the range e.g., for $f(x) = x \cdot (1-x)$ and $\boldsymbol{x} = [0,1]$, we get $\operatorname{eval}_{\operatorname{IA}}(f, \boldsymbol{x}) = [0,1]$, while the exact range is $f(\boldsymbol{x}) = [0, \frac{1}{4}]$

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.
- [G. Melquiond (2008): Proving bounds on real-valued functions with computations]
- main data-type: intervals with floating-point numbers bounds e.g., we'll consider an interval such as [3.1415, 3.1416] in place of π
- dependency problem: when a variable occur several times, it typically leads to an overestimation of the range e.g., for $f(x) = x \cdot (1-x)$ and x = [0,1], we get $eval_{IA}(f, x) = [0,1]$, while the exact range is $f(x) = [0, \frac{1}{4}]$
- solutions: bisection, automatic differentiation...

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- aim: (automatically) prove in Coq that the distance between f(x) and some approximation P(x) is bounded by some $\epsilon > 0$ for all $x \in I$.
- [G. Melquiond (2008): Proving bounds on real-valued functions with computations]
- main data-type: intervals with floating-point numbers bounds e.g., we'll consider an interval such as [3.1415, 3.1416] in place of π
- dependency problem: when a variable occur several times, it typically leads to an overestimation of the range e.g., for $f(x) = x \cdot (1 x)$ and $\boldsymbol{x} = [0, 1]$, we get $\operatorname{eval}_{\operatorname{IA}}(f, \boldsymbol{x}) = [0, 1]$, while the exact range is $f(\boldsymbol{x}) = [0, \frac{1}{4}]$
- solutions: bisection, automatic differentiation... or Taylor Models: [N. Brisebarre, M. Joldeş, EMD, M. Mayero, J-M. Muller, I. Paşca, L. Rideau, and L. Théry (2012): Rigorous Polynomial Approximation Using Taylor Models in Coq]

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	00000000	00000	000

Syntax:

- interval options. (* decision procedure *)
- interval_intro (*expr*) options as [H1 H2]. (* forward chaining *)
- interval_intro (*expr*) lower *options* as H1.
- interval_intro (*expr*) upper *options* as H2.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	00000000	00000	000

Syntax:

- interval options. (* decision procedure *)
- interval_intro (*expr*) options as [H1 H2]. (* forward chaining *)
- interval_intro (*expr*) lower *options* as H1.
- interval_intro (*expr*) upper *options* as H2.

options ::= $[with (option_1, option_2, ...)]$ chosen among the following:

• i_prec p: precision of radix-2 FP computations (30 bits by default)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Syntax:

- interval options. (* decision procedure *)
- interval_intro (expr) options as [H1 H2]. (* forward chaining *)
- interval_intro (*expr*) lower *options* as H1.
- interval_intro (*expr*) upper *options* as H2.

options ::= $[with (option_1, option_2, ...)]$ chosen among the following:

- i_prec p: precision of radix-2 FP computations (30 bits by default)
- i_depth n: maximum depth of bisection

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Syntax:

- interval options. (* decision procedure *)
- interval_intro (*expr*) options as [H1 H2]. (* forward chaining *)
- interval_intro (*expr*) lower *options* as H1.
- interval_intro (*expr*) upper *options* as H2.

options ::= [with ($option_1, option_2, \ldots$)] chosen among the following:

- i_prec p: precision of radix-2 FP computations (30 bits by default)
- i_depth n: maximum depth of bisection
- i_bisect x: do a bisection along variable x

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	00000000	00000	000

Syntax:

- interval options. (* decision procedure *)
- interval_intro (*expr*) options as [H1 H2]. (* forward chaining *)
- interval_intro (*expr*) lower *options* as H1.
- interval_intro (*expr*) upper *options* as H2.

options ::= [with ($option_1, option_2, \ldots$)] chosen among the following:

- i_prec p: precision of radix-2 FP computations (30 bits by default)
- i_depth n: maximum depth of bisection
- i_bisect x: do a bisection along variable x
- i_bisect_diff x: do a bisection and automatic differentiation w.r.t. x

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	00000000	00000	000

Syntax:

- interval options. (* decision procedure *)
- interval_intro (*expr*) options as [H1 H2]. (* forward chaining *)
- interval_intro (*expr*) lower *options* as H1.
- interval_intro (*expr*) upper *options* as H2.

options ::= [with ($option_1, option_2, \ldots$)] chosen among the following:

- i_prec p: precision of radix-2 FP computations (30 bits by default)
- i_depth n: maximum depth of bisection
- i_bisect x: do a bisection along variable x
- i_bisect_diff x: do a bisection and automatic differentiation w.r.t. x
- i_bisect_taylor x d: do a bisection along variable x while computing degree-d univariate Taylor models

Érik Martin-Dorel (IRIT)

Motivation	Coq	CoqInterval	Related works	Conclusion

Overview of the CoqInterval library — Proof example #1

Example taken from [John Harrison (1997): Verifying the Accuracy of Polynomial Approximations in HOL]

Require Import Reals Interval_tactic. Local Open Scope R_scope.

 $\begin{array}{l} \text{Theorem Harrison97} : \forall x: \mathbb{R}, -\frac{10831}{1000000} \leq x \leq \frac{10831}{1000000} \Longrightarrow \\ \left| (e^x - 1) - \left(x + \frac{8388676}{2^{24}} x^2 + \frac{11184876}{2^{26}} x^3 \right) \right| \leq \frac{23}{27} \times \frac{1}{2^{33}} \,. \end{array}$
Motivation	Coq	CoqInterval	Related works	Conclusion

Overview of the CoqInterval library — Proof example #1

Example taken from [John Harrison (1997): Verifying the Accuracy of Polynomial Approximations in HOL]

Require Import Reals Interval_tactic. Local Open Scope R_scope.

Theorem Harrison97 : $\forall x : \mathbb{R}, -\frac{10831}{100000} \le x \le \frac{10831}{100000} \Longrightarrow$ $|(e^x - 1) - (x + \frac{8388676}{2^{24}}x^2 + \frac{11184876}{2^{26}}x^3)| \le \frac{23}{27} \times \frac{1}{2^{33}}.$ Proof. intros x H. interval with (i_bisect_diff x, i_prec 50, i_depth 16). (* 35s *) Qed.

Érik Martin-Dorel (IRIT)

Motivation	Coq	CoqInterval	Related works	Conclusion

Overview of the CoqInterval library — Proof example #1

Example taken from [John Harrison (1997): Verifying the Accuracy of Polynomial Approximations in HOL]

Require Import Reals Interval_tactic. Local Open Scope R_scope.

Theorem Harrison97 : $\forall x : \mathbb{R}, -\frac{10831}{1000000} \le x \le \frac{10831}{1000000} \Longrightarrow$ $|(e^x - 1) - (x + \frac{8388676}{2^{24}}x^2 + \frac{11184876}{2^{26}}x^3)| \le \frac{23}{27} \times \frac{1}{2^{33}}.$ Proof. intros x H. interval with (i_bisect_taylor x 3, i_prec 50). (* 0.50s *) Qed.

Érik Martin-Dorel (IRIT)

Require Import Reals Interval_tactic. Local Open Scope R_scope.

```
Lemma xkcd217 : exp PI - PI <> 20.
Proof.
interval. (* 0.05s *)
Qed.
```

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000●000	00000	000
Bisection				

- Idea: Split x into sub-intervals $x = a \cup b$, so we get $f(x) \subset f(a) \cup f(b)$ (which is a tighter inclusion than $f(x) \subset f(x)$)
- Then: Iterate the process recursively on a and b.
- Drawback: Proving something like $\forall x \in [0,1], |x-x| \le 2^{-40}$ with this technique alone yields a huge number of sub-intervals
- And it will not succeed in proving $\forall x \in [0,1], x x = 0.$
- Advantage: Can be combined with other approaches to reduce the dependency effect (cf. i_bisect_diff and i_bisect_taylor)

Motivation	Co	oq	CoqInterval	Related works	Conclusion
000		O	0000000●00	00000	000

Automatic differentiation

• Based on the interval version of Taylor-Lagrange's formula at order 0,

$$\forall x \in \boldsymbol{x}, \ \exists \xi \in \boldsymbol{x}, \ f(x) = f(x_0) + (x - x_0) \cdot f'(\xi), \\ \forall x \in \boldsymbol{x}, \ f(x) \in \boldsymbol{f}([x_0, x_0]) + (\boldsymbol{x} - [x_0, x_0]) \cdot \boldsymbol{f'}(\boldsymbol{x}).$$

• Rely on automatic differentiation to compute f'(x)

- Work with pairs of intervals (u, , u') enclosure enclosure of f(x) of f'(x)
 Example of rule: (u, u') × (v, v') = (uv, u'v + uv')
- For the toy example f(x) = x x over $\boldsymbol{x} = [0, 1]$ (cf. previous slide), we get $\boldsymbol{f'}(\boldsymbol{x}) = [0, 0]$, so f is a constant function $f \equiv f(x_0) = 0$. QED.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	0000000000	00000	000

A Taylor model is a pair (polynom, error interval) and we will say that (P, Δ) represents a function f over I if we have $\forall x \in I$, $f(x) - P(x) \in \Delta$

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	0000000000	00000	000

A Taylor model is a pair (polynom, error interval) and we will say that (P, Δ) represents a function f over I if we have $\forall x \in I$, $f(x) - P(x) \in \Delta$ Goal : find some Δ as small as possible.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

A Taylor model is a pair (polynom, error interval) and we will say that (P, Δ) represents a function f over I if we have $\forall x \in I$, $f(x) - P(x) \in \Delta$ Goal : find some Δ as small as possible.

Methodology in 2 steps

- For "basic functions", compute an enclosure of the Taylor-Lagrange remainder at order n;
- For "composite functions", use a dedicated algorithm for addition, multiplication, composition, and division.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	0000000000	00000	000

A Taylor model is a pair (polynom, error interval) and we will say that (P, Δ) represents a function f over I if we have $\forall x \in I$, $f(x) - P(x) \in \Delta$ Goal : find some Δ as small as possible.

Methodology in 2 steps

- For "basic functions", compute an enclosure of the Taylor-Lagrange remainder at order n;
- For "composite functions", use a dedicated algorithm for addition, multiplication, composition, and division.

Within CoqApprox: certified computation of Taylor models for functions $\sqrt{\cdot}$, $\frac{1}{\sqrt{\cdot}}$, $x \mapsto x^n$ ($n \in \mathbb{Z}$), exp, sin, cos, ln and operations +, -, ×, ÷, \circ . Support for tan and arctan TMs in the upcoming release of CoqInterval!

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

• Add support for tan and arctan (formalizing Sollya's algorithm)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Add support for tan and arctan (formalizing Sollya's algorithm)
- Depend on the Coquelicot library

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Add support for tan and arctan (formalizing Sollya's algorithm)
- Depend on the Coquelicot library
- From polynomials over ℝ ∪ {NaN} to polynomials over ℝ and separated proofs for NaN propagation (+ changes in IntervalOps)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Add support for tan and arctan (formalizing Sollya's algorithm)
- Depend on the Coquelicot library
- From polynomials over ℝ ∪ {NaN} to polynomials over ℝ and separated proofs for NaN propagation (+ changes in IntervalOps)
- No more need to give explicit formulas of n^{th} derivatives over $\mathbb{R} \cup \{\text{NaN}\}$ and verify them, instead we just need to instantiate: Hypothesis Hder_n : $\forall n r$, der $r \rightarrow \text{ex_derive_n f n r}$.

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Add support for tan and arctan (formalizing Sollya's algorithm)
- Depend on the Coquelicot library
- From polynomials over ℝ ∪ {NaN} to polynomials over ℝ and separated proofs for NaN propagation (+ changes in IntervalOps)
- No more need to give explicit formulas of n^{th} derivatives over $\mathbb{R} \cup \{\text{NaN}\}$ and verify them, instead we just need to instantiate: Hypothesis Hder_n : $\forall n r$, der $r \rightarrow \text{ex_derive_n f n r}$.
- Remove the dependency on the excluded-middle axiom

iviotivation Coq	Cogintervai	Related works	Conclusion
000 00	000000000	00000	000

- Add support for tan and arctan (formalizing Sollya's algorithm)
- Depend on the Coquelicot library
- From polynomials over $\mathbb{R} \cup \{NaN\}$ to polynomials over \mathbb{R} and separated proofs for NaN propagation (+ changes in IntervalOps)
- No more need to give explicit formulas of n^{th} derivatives over $\mathbb{R} \cup \{\text{NaN}\}$ and verify them, instead we just need to instantiate: Hypothesis Hder_n : $\forall n r$, der $r \rightarrow \text{ex_derive_n f n r}$.
- Remove the dependency on the excluded-middle axiom
- Remove degree constraints in TM_add_correct, TM_mul_correct, and so on → no more side-conditions nor padding (→ better perf. expected for multiplying TMs with heterogeneous sizes)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Add support for tan and arctan (formalizing Sollya's algorithm)
- Depend on the Coquelicot library
- From polynomials over $\mathbb{R} \cup \{NaN\}$ to polynomials over \mathbb{R} and separated proofs for NaN propagation (+ changes in IntervalOps)
- No more need to give explicit formulas of n^{th} derivatives over $\mathbb{R} \cup \{\text{NaN}\}$ and verify them, instead we just need to instantiate: Hypothesis Hder_n : $\forall n r$, der $r \rightarrow \text{ex_derive_n f n r}$.
- Remove the dependency on the excluded-middle axiom
- Remove degree constraints in TM_add_correct, TM_mul_correct, and so on → no more side-conditions nor padding (→ better perf. expected for multiplying TMs with heterogeneous sizes)
- Architecture: Remove/merge several Modules

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Add support for tan and arctan (formalizing Sollya's algorithm)
- Depend on the Coquelicot library
- From polynomials over $\mathbb{R} \cup \{NaN\}$ to polynomials over \mathbb{R} and separated proofs for NaN propagation (+ changes in IntervalOps)
- No more need to give explicit formulas of n^{th} derivatives over $\mathbb{R} \cup \{\text{NaN}\}$ and verify them, instead we just need to instantiate: Hypothesis Hder_n : $\forall n r$, der $r \rightarrow \text{ex_derive_n f n r}$.
- Remove the dependency on the excluded-middle axiom
- Remove degree constraints in TM_add_correct, TM_mul_correct, and so on → no more side-conditions nor padding (→ better perf. expected for multiplying TMs with heterogeneous sizes)
- Architecture: Remove/merge several Modules
- Misc improvements (new helper tactics, naming convention, ...)

Érik Martin-Dorel (IRIT)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

• Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	•0000	000

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)
- NLCertify: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (quadratic-forms approx + SDP)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)
- NLCertify: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (quadratic-forms approx + SDP)
- PVS/Bernstein: decision procedure for multivariate polynomial inequalities (Bernstein polynomials + global optimization)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)
- NLCertify: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (quadratic-forms approx + SDP)
- PVS/Bernstein: decision procedure for multivariate polynomial inequalities (Bernstein polynomials + global optimization)
- PVS/interval: decision procedure for multivariate ineqs with elementary functions (Interval Arithmetic + Branch & Bound)

Érik Martin-Dorel (IRIT)

CoqInterval: A Toolbox for Proving Non-linear Univariate Inequalities in Coq

¹⁸/25

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)
- NLCertify: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (quadratic-forms approx + SDP)
- PVS/Bernstein: decision procedure for multivariate polynomial inequalities (Bernstein polynomials + global optimization)
- PVS/interval: decision procedure for multivariate ineqs with elementary functions (Interval Arithmetic + Branch & Bound)

Érik Martin-Dorel (IRIT)

CoqInterval: A Toolbox for Proving Non-linear Univariate Inequalities in Coq

¹⁸/25

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- Sollya: rigorous computing toolbox for the libm developer, relying on MPFI. Considered function: supnorm (otherwise checkinfnorm)
- MetiTarski: standalone tool = axioms for approximating elementary functions + decision procedure for multivariate polynomial inequalities
- HOL Light/REAL_SOS: decision procedure for multivariate polynomial inequalities (SOS certificates)
- HOL Light/verify_ineq: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (order-1 TL)
- NLCertify: born in Flyspeck, decision procedure for multivariate ineqs with elementary functions (quadratic-forms approx + SDP)
- PVS/Bernstein: decision procedure for multivariate polynomial inequalities (Bernstein polynomials + global optimization)
- PVS/interval: decision procedure for multivariate ineqs with elementary functions (Interval Arithmetic + Branch & Bound)

Érik Martin-Dorel (IRIT)

CoqInterval: A Toolbox for Proving Non-linear Univariate Inequalities in Coq

¹⁸/25

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

• approximation problems: CRlibm's exp ($|x| \ge 2^{-20}$), a Remez of $\sqrt{\cdot}$, a degree-5 approx of arctan, Earth's radius of curvature, Tang's exp

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	0000	000

- approximation problems: CRlibm's exp ($|x| \ge 2^{-20}$), a Remez of $\sqrt{\cdot}$, a degree-5 approx of \arctan , Earth's radius of curvature, Tang's exp
- degree-2 to degree-8 approximations problems of $x\mapsto\cos(1.5\cdot\cos x)$ with binary32 coefficients

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

- approximation problems: CRlibm's exp ($|x| \ge 2^{-20}$), a Remez of $\sqrt{\cdot}$, a degree-5 approx of arctan, Earth's radius of curvature, Tang's exp
- degree-2 to degree-8 approximations problems of $x\mapsto \cos(1.5\cdot\cos x)$ with binary32 coefficients
- 25 problems from MetiTarski's test-suite selected to be compatible with all provers' input

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	0000	000

- approximation problems: CRlibm's exp ($|x| \ge 2^{-20}$), a Remez of $\sqrt{\cdot}$, a degree-5 approx of arctan, Earth's radius of curvature, Tang's exp
- degree-2 to degree-8 approximations problems of $x\mapsto \cos(1.5\cdot\cos x)$ with binary32 coefficients
- 25 problems from MetiTarski's test-suite selected to be compatible with all provers' input
- 4 typical multivariate polynomial inequalities: RD, adaptiveLV, butcher, magnetism

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	0000	000

- approximation problems: CRlibm's exp ($|x| \ge 2^{-20}$), a Remez of $\sqrt{\cdot}$, a degree-5 approx of arctan, Earth's radius of curvature, Tang's exp
- degree-2 to degree-8 approximations problems of $x\mapsto\cos(1.5\cdot\cos x)$ with binary32 coefficients
- 25 problems from MetiTarski's test-suite selected to be compatible with all provers' input
- 4 typical multivariate polynomial inequalities: RD, adaptiveLV, butcher, magnetism
- System: Ubuntu 14.04.2 LTS on Intel Core i5-4460S CPU @ 2.90 GHz

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	0000	000

- approximation problems: CRlibm's exp ($|x| \ge 2^{-20}$), a Remez of $\sqrt{\cdot}$, a degree-5 approx of arctan, Earth's radius of curvature, Tang's exp
- degree-2 to degree-8 approximations problems of $x\mapsto\cos(1.5\cdot\cos x)$ with binary32 coefficients
- 25 problems from MetiTarski's test-suite selected to be compatible with all provers' input
- 4 typical multivariate polynomial inequalities: RD, adaptiveLV, butcher, magnetism
- System: Ubuntu 14.04.2 LTS on Intel Core i5-4460S CPU @ 2.90 GHz
- Output: total time in $s \mid$ Failed (\Leftrightarrow error) | Timeout ($\Leftrightarrow > 180 s$) | -

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	0000	000

- approximation problems: CRlibm's exp ($|x| \ge 2^{-20}$), a Remez of $\sqrt{\cdot}$, a degree-5 approx of arctan, Earth's radius of curvature, Tang's exp
- degree-2 to degree-8 approximations problems of $x\mapsto \cos(1.5\cdot\cos x)$ with binary32 coefficients
- 25 problems from MetiTarski's test-suite selected to be compatible with all provers' input
- 4 typical multivariate polynomial inequalities: RD, adaptiveLV, butcher, magnetism
- System: Ubuntu 14.04.2 LTS on Intel Core i5-4460S CPU @ 2.90 GHz
- Output: total time in $s \mid$ Failed (\Leftrightarrow error) | Timeout ($\Leftrightarrow > 180 s$) | -

Forge: https://gforge.inria.fr/scm/browser.php?group_id=6316&extra=bench-ineqs

N 0	lotivation 00	C	Coq DO		CoqInterval	00	Related 00000	l works		Conclusion 000
E	Experimer	ntal	Resi	ults (u	nivaria	ite app	proxim	ation	probl	ems)
	Problems	CoqInterval 2.0	Sollya	MetiTarski	NLCertify (not verified)	NLCertify (verified polys)	PVS/interval	HOL Light/ verify_ineq	PVS/Bernstein	HOL Light/ REAL_SOS
	crlibm_exp	0.83*	0.02	Failed	-	-	Failed	-	-	-
	remez_sqrt	0.45	0.02	0.05	15.28*	Timeout	Failed	3.60*	-	-
	abs_err_atan	0.45	0.01	0.07	Failed	Failed	Timeout	2.36*	-	-
	rel_err_geo	3.10	2.24	l imeout	limeout	limeout	Failed	229.54*	-	-
	harrison97	0.42	0.01	0.10	-	-	Failed	-	-	-
	cos_cos_d2	0.71	0.05	Timeout	Timeout	Timeout	20.64	5.82*	-	-
	cos_cos_d3	0.79	0.05	Timeout	Timeout	Timeout	48.87	6.28*	-	-
	cos_cos_d4	0.91	0.06	Timeout	Timeout	Timeout	Timeout	8.83*	-	-
	cos_cos_d5	1.44	0.06	Timeout	Timeout	Timeout	Timeout	15.70*	-	-
	cos_cos_d6	1.54	0.07	Timeout	Timeout	Timeout	Timeout	20.92*	-	-
	cos_cos_d7	2.21	0.07	Timeout	Timeout	Timeout	Timeout	41.88*	-	-
	cos_cos_d8	2.79	0.08	Timeout	Timeout	Timeout	Timeout	87.78*	-	-

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000
F		- (NA	(2)	

Experimental Results (MetiTarski 1/2)

Problems	CoqInterval 2.0	Sollya	MetiTarski	NLCertify (not verified)	NLCertify (verified polys)	PVS/interval	HOL Light/ verify_ineq	PVS/Bernstein	HOL Light/ REAL_SOS
MT1	0.53	-	0.13	-	-	Failed	-	-	-
MT2	1.56	-	0.06	9.99*	Timeout	Failed	-	-	-
MT3	0.18	-	0.18	-	-	1.14	-	-	-
MT4	0.23	-	0.17	1.31*	18.95*	1.19	-	-	-
MT5	0.11*	-	0.05	-	-	1.24	-	-	-
MT6	0.15*	-	0.07	-	-	1.23	-	-	-
MT7	0.04	-	0.04	-	-	0.69	-	-	-
MT8	0.33	-	0.15	-	-	Timeout	-	-	-
MT9	0.52	-	0.46	-	-	Timeout	-	-	-
MT10	0.19	-	0.04	0.96	14.86	Failed	-	-	-
MT11	0.10	-	0.22	0.40	6.73	1.72	-	-	-
MT12	2.84	-	0.07	Timeout	Timeout	Timeout	-	-	-
MT13	0.98	-	0.07	11.82	137.91	Failed	-	-	-
MT14	0.07	-	0.06	-	-	0.89	-	-	-
MT15	0.15	-	0.07	-	-	0.98	-	-	-

Érik Martin-Dorel (IRIT)

CoqInterval: A Toolbox for Proving Non-linear Univariate Inequalities in Coq

²¹/25
	otivation 00		Coq OO		CoqInter	val 00000	Rel 00	ated works 00●		Conclusion 000
E	xperime	enta	l Res	ults	(MT 2	2 +	multiv	ariate	e probl	ems)
	Problems	CoqInterval 2.0	Sollya	MetiTarski	NLCertify (not verified)	NLCertify (verified polys)	PVS/interval	HOL Light/ verify_ineq	PVS/Bernstein	HOL Light/ REAL_S0S
	MT16	0.13	-	0.02	0.58*	8.23*	3.23	0.57*	-	-
	MT17	0.11	-	0.06	0.22	4.06	1.27	0.23	-	-
	MT18	0.16	-	0.02	0.21	2.46	0.69	0.75	-	-
	MT19	0.52	-	Failed	5.09	74.55	Failed	1.92	-	-
	MT20	3.09	-	0.05	2.63	44.21	Timeout	15.54	-	-
	MT21	0.33	-	0.38	3.69	51.94	Failed	1.37	-	-
	MT22	0.69	-	0.06	Timeout	Timeout	Failed	113.74	-	-
	MT23	1.17	-	0.12	Failed	Failed	Failed	86.90	-	-
	MT24	0.10	-	0.36	0.17	2.38	Failed	0.24	-	-
	MT25	0.29	-	0.17	-	-	1.78	-	-	-
	RD	0.25	-	0.02	1.88	66.01	1.67	0.48	3.26	Timeout
	adaptiveLV	0.16	-	0.04	0.23	3.18	1.00	1.26	4.02	3.78
	butcher	0.42	-	0.05	0.73	11.08	19.99	2.21	18.23	Timeout
	magnetism	0.17	-	0.05	1.35	20.60	Timeout	313.75	Timeout	0.24

Érik Martin-Dorel (IRIT)

CoqInterval: A Toolbox for Proving Non-linear Univariate Inequalities in Coq

²²/₂₅

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	•00
Conclusion				

• Coq tactics to automatically and formally prove numerical bounds on real-valued expressions

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	●00
Conclusion				

- Coq tactics to automatically and formally prove numerical bounds on real-valued expressions
- All computations performed in Coq's logic, using interval arithmetic

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	●○○
Conclusion				

- Coq tactics to automatically and formally prove numerical bounds on real-valued expressions
- All computations performed in Coq's logic, using interval arithmetic
- Implements bisection, automatic differentiation and Taylor models techniques to reduce the dependency effect

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	●○○
Conclusion				

- Coq tactics to automatically and formally prove numerical bounds on real-valued expressions
- All computations performed in Coq's logic, using interval arithmetic
- Implements bisection, automatic differentiation and Taylor models techniques to reduce the dependency effect
- Regarding performance, CoqInterval is competitive w.r.t state-of-the-art inequality provers

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	●00
Conclusion				

- Coq tactics to automatically and formally prove numerical bounds on real-valued expressions
- All computations performed in Coq's logic, using interval arithmetic
- Implements bisection, automatic differentiation and Taylor models techniques to reduce the dependency effect
- Regarding performance, CoqInterval is competitive w.r.t state-of-the-art inequality provers
- Reference:

http://www.irit.fr/publis/ACADIE/CoqInterval-JAR.pdf

Motivation 000		Coq 00	CoqInterval 000000000	Related works 00000	Conclusion 0●0
6	C .				

Some future directions

• Bottleneck: Horner evaluation.

Formalize alternative schemes that are amenable to formal methods?

- Certifying algorithms: Check polynomial approximations for special functions, by using certificates generated by Sollya?
- Reals/Coquelicot/CoqInterval/...: Increase automation for developing formal libraries of elementary functions more easily
- Symbolic-numeric methods: formally verify numerical solutions of differential equations \rightsquigarrow on-going works (Thomas Sibut-Pinote)

Motivation	Coq	CoqInterval	Related works	Conclusion
000	00	000000000	00000	000

Thanks for your attention!

How to install CoqInterval?

Browse http://coq-interval.gforge.inria.fr/; or follow the steps below.

1. Install OPAM (http://opam.ocaml.org/doc/Install.html)
\$ opam init # create ~/.opam and propose to update the ~/.bashrc
\$ opam switch install 4.02.3 # setup a recent version of OCaml
\$ eval \$(opam config env)

2. Enable the OPAM repository for stable Coq packages
\$ opam repo add coq-released https://coq.inria.fr/opam/released

```
# 3. Install Coq + SSReflect + Flocq + Coquelicot + CoqInterval
$ opam install --jobs=2 coq.8.4.6 coq-interval
```