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Motivations

PDE (Partial Differential Equation) ⇒ weather forecast
⇒ nuclear simulation
⇒ optimal control
⇒ . . .

Usually too complex to solve by an exact mathematical formula
⇒ approximated by numerical scheme over discrete grids

⇒ mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the grids size
decreases)

⇒ C program implementing the scheme

Let us machine-check this kind of programs!
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Numbers

Babylonian clay tablet (1800–1600 BC)

= (1, 24, 51, 10)

= 1 +
24

60
+

51

602
+

10

603
= 30547/21600

≈ 1,41421296 ≈
√

2

⇒ representation of a real number with a finite precision
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Floating-Point Number

Using a finite number of bits (the precision p) and based on scientific
notation, computers use floating-point (FP) numbers.

A FP number is only a string of bits.

11100011010010011110000111000000
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Floating-Point Number

Using a finite number of bits (the precision p) and based on scientific
notation, computers use floating-point (FP) numbers.

A FP number is only a string of bits.

11100011010010011110000111000000

We interpret it depending on the respective values of s (sign), e
(exponent) and f (fraction).

1 11000110 10010011110000111000000

1 11000110 10010011110000111000000
s e f
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Floating-Point Number

We associate a real value:

1 11000110 10010011110000111000000
s e f
↓ ↓ ↓

(−1)s× 2e−B × 1 • f

(−1)1× 2198−127 ×1.100100111100001110000002

−254 × 206727 ≈ −3.724× 1021

except for the special values of e: ±0, ±∞, NaN, subnormals.
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Floating-Point Number Repartition

0 R
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Floating-Point Number Repartition

0 R

subnormals binade (common exponent)
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Floating-Point Number Repartition

0 R

subnormals binade (common exponent)ulp(f )

f
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Floating-Point Computation

For the +, −, ×, ÷,
√

, the result is the same as if the infinitely precise
mathematical result was computed and then rounded to the nearest
floating-point number.

⇒ guaranteed by the IEEE-754 standard (1985 & 2008).

⇒ portability & accuracy

⇒ if x ∈ R is not too small, |x − ◦double(x)| ≤ 2−53|x |
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Floating-Point Computations

More than one FP operation may lead to incorrect results.

Floating-point evaluations of (x − 4)4 around 4.
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Annotation language: ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

⇒ For the programmer, the specification is easy to understand.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51



Annotation language: ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

⇒ For the programmer, the specification is easy to understand.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51



Annotation language: ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

⇒ For the programmer, the specification is easy to understand.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51



Annotation language: ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

⇒ For the programmer, the specification is easy to understand.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51



Annotation language: ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

⇒ For the programmer, the specification is easy to understand.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51



Annotation language: ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

⇒ For the programmer, the specification is easy to understand.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51



Annotation language: ACSL

ANSI/ISO C Specification Language

behavioral specification language for C programs

pre-conditions and post-conditions to functions
(and which variables are modified).

variants and invariants of the loops.

assertions

In annotations, all computations are exact.

⇒ For the programmer, the specification is easy to understand.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51



ACSL and floating-point numbers

A floating-point number is a triple:

the floating-point number, really computed by the program,
x → xf floating-point part

the value that would have been obtained with exact computations,
x → xe exact part

the value that we ideally wanted to compute
x → xm model part
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ACSL and floating-point numbers

A floating-point number is a triple:

the floating-point number, really computed by the program,
x → xf floating-point part 1+x+x*x/2

the value that would have been obtained with exact computations,
x → xe exact part 1 + x + x2

2

the value that we ideally wanted to compute
x → xm model part exp(x)
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ACSL and floating-point numbers

A floating-point number is a triple:

the floating-point number, really computed by the program,
x → xf floating-point part 1+x+x*x/2

the value that would have been obtained with exact computations,
x → xe exact part 1 + x + x2

2

the value that we ideally wanted to compute
x → xm model part exp(x)

⇒ easy to split into method error and rounding error
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Methodology for the verification of C programs

C Program

Annotated C Program
(specification, invariant)

Human

Theorem statements
Frama-C

Jessie

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Coq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← HumanCoq ← Human

Proved Theorems

Coq ← Human

The program is correct with
respect to its specifications
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The wave equation

Looking for u : R2 → R regular enough such that:

∂2u(x , t)

∂t2
− c2∂

2u(x , t)

∂x2
= s(x , t)

with given values for the initial position u0(x) and the initial velocity u1(x).

⇒ rope oscillation, sound, radar, oil prospection. . .
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Scheme?

We want uk
j ≈ u(j∆x , k∆t).

uk
j − 2uk−1

j + uk−2
j

∆t2
− c2

uk−1
j+1 − 2uk−1

j + uk−1
j−1

∆x2
= sk−1

j

And other horrible formulas to initialize u0
j and u1

j .

t

k∆t

(k − 1)∆t

(k − 2)∆t

xj∆x
(j − 1)∆x (j + 1)∆x

Three-point scheme: uk
j depends on uk−1

j−1 , uk−1
j , uk−1

j+1 and uk−2
j .
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Program

// i n i t i a l i z a t i o n o f p [ i ] [ 0 ] and p [ i ] [ 1 ]
f o r ( k=1; k<nk ; k++) {

p [ 0 ] [ k+1] = 0 . ;
f o r ( i =1; i<n i ; i ++) {

dp = p [ i +1] [ k ] − 2 .∗ p [ i ] [ k ] + p [ i −1] [ k ] ;
p [ i ] [ k+1] = 2 .∗ p [ i ] [ k ] − p [ i ] [ k−1] + a∗dp ;
}

p [ n i ] [ k+1] = 0 . ;
}

Two different errors:

round-off errors
due to floating-point roundings

method errors
the scheme only approximates the exact solution
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Rounding error

Remainder:

dp = p [ i +1] [ k ] − 2 .∗ p [ i ] [ k ] + p [ i −1] [ k ] ;
p [ i ] [ k+1] = 2 .∗ p [ i ] [ k ] − p [ i ] [ k−1] + a∗dp ;

If we use a naive technique to bound the rounding errors, we get

|pk
i − exact(pk

i )| ≤ O
(

2k2−53
)

This is too much because the errors do compensate.
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Definition of εk
i

Remainder:

dp = p [ i +1] [ k ] − 2 .∗ p [ i ] [ k ] + p [ i −1] [ k ] ;
p [ i ] [ k+1] = 2 .∗ p [ i ] [ k ] − p [ i ] [ k−1] + a∗dp ;

Let εk+1
i be the rounding error made during these two lines of computations.

We assume a, pk
i−1, pk

i , pk
i+1 and pk−1

i are exact and we look into the

rounding error of these two lines. It is called εk+1
i .

We know (from initializations) that the model values of the |pm
n | are

bounded by 1. We assume that the floating-point values of the |pm
n | are

bounded by 2.

|εmn | ≤ 78× 2−52
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Rounding error

pki − exact(pki ) =
k∑

l=0

l∑
j=−l

αl
j ε

k−l
i+j

1 We have an analytical expression of the rounding error with known
constants αk

i .

2 It is not that complicated!
(we cannot get rid of the pyramidal double summation)

3 The rounding error is bounded by ©(k2 2−53):∣∣∣pk
i − exact

(
pk

i

)∣∣∣ ≤ 78× 2−53 × (k + 1)× (k + 2)
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Method error

We measure that u and uk
j are close when (∆x ,∆t)→ 0.

We define ekj
def
= ūk

j − uk
j : convergence error

where ūk
j is the value of u at the (j , k) point of the grid.

We want to bound
∥∥∥e

k∆t(t)
h

∥∥∥
∆x

: the average of the convergence error on

all points of the grid at a given time k∆t(t) =
⌊

t
∆t

⌋
∆t.

We want to prove: ∥∥∥e
k∆t(t)
h

∥∥∥
∆x

= O[0,tmax](∆x2 + ∆t2)
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Big O = big pain

Usually, the big O uses one variable and f (x) = O‖x‖→0(g(x)) means

∃α,C > 0, ∀x ∈ Rn, ‖x‖ ≤ α⇒ |f (x)| ≤ C · |g(x)|.

Here 2 variables: ∆x (grid sizes, tends to 0), and x (time and space).
(Think about Taylor expansions)

∀x, ∃α,C > 0, ∀∆x ∈ R2, ‖∆x‖ ≤ α⇒ |f (x,∆x)| ≤ C · |g(∆x)|

does not work.
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Uniform big O

We used a uniform big O:

∃α,C > 0, ∀x,∆x, ‖∆x‖ ≤ α⇒ |f (x,∆x)| ≤ C · |g(∆x)|.

where variables x and ∆x are restricted to subsets of R2.
(for example such that ∆t > 0)
⇒ Taylor expansions
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Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the
numerical scheme:

εk−1
j =

ūk
j − 2ūk−1

j + ūk−2
j

∆t2
− c2

ūk−1
j+1 − 2ūk−1

j + ūk−1
j−1

∆x2
− sk−1

j

The consistency is the boundedness of the truncation error:∥∥∥εk∆t(t)
h

∥∥∥
∆x

= O[0,tmax](∆x2 + ∆t2)

By Taylor series and many computations.
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ūk−1
j+1 − 2ūk−1
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Proof idea 2/3: stability

We define a discrete energy by

Eh(c)(uh)k+ 1
2

def
=

1

2

∥∥∥∥∥uk+1
h − uk

h

∆t

∥∥∥∥∥
2

∆x

+
1

2

〈
uk
h , u

k+1
h

〉
Ah(c)

kinetic energy potential energy

〈vh,wh〉Ah(c)
def
= 〈Ah(c) vh,wh〉∆x and (Ah(c) vh)j

def
= − c2 vj+1−2vj+vj−1

∆x2 .

Note that this energy is constant if f = 0.
We prove an overestimation and an underestimation of this energy.
⇒ uh does not diverge.
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Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

u0,j = 0, u1,j =
e1
j

∆t
, and skj = εk+1

j .

+ proofs about the initializations.

All these proofs require the existence of ζ and ξ in ]0, 1[ with ζ ≤ 1− ξ
and we require that ζ ≤ c∆t

∆x ≤ 1− ξ (CFL conditions).
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Convergence

We proved that:∥∥∥e
k∆t(t)
h

∥∥∥
∆x

= O t ∈ [0, tmax]

(∆x ,∆t)→ 0
0 < ∆x ∧ 0 < ∆t ∧
ζ ≤ c ∆t

∆x
≤ 1− ξ

(∆x2 + ∆t2).
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Extraction of the big O constants

The preceding result is a uniform big O defined by:

∃α,C > 0, ∀x,∆x, ‖∆x‖ ≤ α⇒ |f (x,∆x)| ≤ C · |g(∆x)|.

Let (α3,C3) be the constants for the order-3 Taylor development of the
exact solution and (α4,C4) for order-4. The initial support is [χ1;χ2].

α = min(α3, α4, 1, tmax)

s1 = max(1, 2 · C4 · (c2 + 1),C3 · (1 + c2/2) + 1)

s2 = s2
1

(
bχ2c − bχ1c+ 2 · c · tmax ·

(
1 +

1

ζ

)
+ 3

)
s3 =

1
√

2

(
C3 · (1 + c2/2) + 1

)
· (χ2 − χ1 + 1 + (2 · c + 4))

+

√
2

2
√

2ξ − ξ2
(2 · tmax · s2 + 2s2)

C =

√
2√

2ξ − ξ2
· 2 · tmax · s3
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Program verification

154 lines of annotations for 32 lines of C

150 verification conditions:

44 about the behavior
106 about the safety (runtime errors)

Prover Behavior VC Safety VC Total

Alt-Ergo 18 80 98

CVC3 18 89 107

Gappa 2 20 22

Z3 21 63 84

Automatically proved 23 94 117
Coq 21 12 33

Total 44 106 150
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Program verification

About 90 % of the safety goals (matrix access, Overflow, and so on)
are proved automatically.

33 theorems are interactively proved using Coq for a total of about
15,000 lines of Coq and 30 minutes of compilation.

Type of proofs Nb spec lines Nb lines Compilation time

Convergence 991 5 275 42 s

Round-off + runtime errors 7 737 13 175 32 min
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Motivations

http://www.ima.umn.edu/~arnold/disasters/sleipner.html
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Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.

Instead of regular 2D/3D grids, we consider meshes made of
triangles/tetrahedra.
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Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements,
to approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

⇒ mathematical proofs of the FEM
⇒ C++ library (Felisce) implementing the FEM

Let us machine-check this program!

First, let us understand/formally prove the mathematics.
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Opening a parenthesis

(
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The Coquelicot library (Boldo, Lelay, Melquiond)

We wanted to prove that

u(x , t) =
1

2
(u0(x + ct) + u0(x − ct)) +

1

2c

∫ x+ct

x−ct
u1(ξ) dξ +

1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
f (ξ, τ) dξ dτ

is regular and solution of ∂2u
∂t2 (x , t)− c2 ∂2u

∂x2 (x , t) = f (x , t).

We developed a Coq library of real analysis that is:

compatible with the Coq standard library of real numbers,

with total functions for limit, derivative, integral,

with parametric integrals, two-dimensional differentiability, asymptotic
behaviors,

with a tactic dedicated to derivative proofs.

⇒ Then, it was extended to more than real analysis.
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u1(ξ) dξ +

1
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∫ t
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Hierarchy (Lelay, Melquiond)

AbelianGroup (0, +, −)
sum n m

−→: “used to define”
99K: “parameter of”

Ring (1, ×)
pow n
Mn(C)

ModuleSpace (·)
Mn,m(C)

AbsRing (| |)
R, C

NormedModule (‖ ‖)∑
,
∫
, f ′

UniformSpace (ball)
locally

CompleteNormedModule∫
lim = lim

∫
R, R2, C

CompleteSpace (lim)
Cauchy
R→ C
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Closing a parenthesis
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Mathematicians at work

more 50 pages of mathematical proofs

very detailed!

more than 7,000 lines and 220,000 characters

with dependencies!
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Proof engineering

Let us build upon Coquelicot

+ general spaces

+ many existing theorems

- not always the space we need

Please note this is still work in progress.
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Summary of the work done

results about functional spaces, linear and bilinear mappings

fixed-point theorem in a sub-complete normed module

decide if a space (≥ NormedModule) is only zero

norm on functions (operator norm) on R ∪ {+∞}
8 equivalences of continuity of linear mappings

definitions of pre-Hilbert and Hilbert spaces inside the Coquelicot
hierarchy (and first lemmas)

define clm: the set of the continuous linear mappings

prove it is a NormedModule, to consider clm E (clm E R)

state Lax-Milgram theorem
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Hierarchy II

AbelianGroup (0, +, −)
sum n m

−→: “used to define”
99K: “parameter of”
−→: “is proved to be a”

Ring (1, ×)
pow n
Mn(C)

ModuleSpace (·)
Mn,m(C)

AbsRing (| |)
R, C

NormedModule (‖ ‖)∑
,
∫
, f ′

UniformSpace (ball)
locally

CompleteNormedModule∫
lim = lim

∫
R, R2, C

CompleteSpace (lim)
Cauchy
R→ C
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Cauchy
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Intermediate conclusion

Problems:

what is a subgroup?

dependent type: consider {g ∈ G |χ(g)}
overgroup + χ + a property of χ
. . .

canonical structures (both a help and a pain)

maths: more than 7,000 lines and 220,000 characters (50 pages)

Coq: more than 2,300 lines and 56,000 characters (117 lemmas)

still a lot to do!
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Conclusion on the 1-D wave equation discretization

Very high guarantee

interdisciplinary (formal methods / numerical analysis)

not only rounding errors:

all other errors such as pointer dereferencing or division by zero
link with mathematical properties
any property can be checked

expressive annotation language (as expressive as Coq)
⇒ exactly the specification you want

an annotated C program to convince numerical analysts
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Perspectives

go deeper into numerical analysis

⇒ proof of the finite element method

⇒ proof of the finite element method library

⇒ stability (floating-point stability / numerical analysis stability)

prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

⇒ basic blocks to build upon
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