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Introduction
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(Applicd) Wathematics
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Motivations

PDE (Partial Differential Equation) = weather forecast
= nuclear simulation
= optimal control
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PDE (Partial Differential Equation) = weather forecast
= nuclear simulation
= optimal control
=

Usually too complex to solve by an exact mathematical formula
= approximated by numerical scheme over discrete grids

=- mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the grids size
decreases)
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Motivations

= weather forecast
= nuclear simulation
= optimal control
=

PDE (Partial Differential Equation)

Usually too complex to solve by an exact mathematical formula
= approximated by numerical scheme over discrete grids

=- mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the grids size
decreases)

= C program implementing the scheme

Let us machine-check this kind of programs!
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Outline

© Prerequisite
@ Floating-Point Arithmetic
@ Deductive Program Verification
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Numbers

Babylonian clay tablet (1800-1600 BC)
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Numbers

Babylonian clay tablet (1800-1600 BC)

I 7 &1 < = (1,24,51,10)
24 51 10
= 14 = 4+ == 4 —= =30547/21
0" 602 T 603 30547/21600

~ 1,41421296 ~ /2
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Numbers

Babylonian clay tablet (1800-1600 BC)

I 7 &1 < = (1,24,51,10)
24 51 10

= 1+ —+ — + —= = 30547/21600
* 60 * 602 * 603 /

~ 1,41421296 ~ /2

= representation of a real number with a finite precision
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Floating-Point Number

Using a finite number of bits (the precision p) and based on scientific
notation, computers use floating-point (FP) numbers.

A FP number is only a string of bits.

11100011010010011110000111000000
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Floating-Point Number

Using a finite number of bits (the precision p) and based on scientific

notation, computers use floating-point (FP) numbers.

A FP number is only a string of bits.

11100011010010011110000111000000

We interpret it depending on the respective values of s (sign), e
(exponent) and f (fraction).

1 11000110 10010011110000111000000

[1[1100011010010011110000111000000 |
s e f
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Floating-Point Number

We associate a real value:

[11000110] [10010011110000111000000 |

s € f
\: \: \
(-1)°x 2878 x lef

(—1)1x 2198127 »1.10010011110000111000000,

—25% % 206727 ~ —3.724 x 10%!
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Floating-Point Number

We associate a real value:

(11000110 [10010011110000111000000 |

s € f
\: \: \
(-1)°x 2878 x lef

(—1)1x 2198127 »1.10010011110000111000000,

—25% % 206727 ~ —3.724 x 10%!

except for the special values of e: £0, +00, NaN, subnormals.
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Floating-Point Number Repartition
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Floating-Point Number Repartition

subnormals
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Floating-Point Number Repartition

subnormals binade (common exponent)
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Floating-Point Number Repartition

| f :
I T \ \ \ \ \
CTTTRTTT T T T 1 1 1 1 e
subnormals  ulp(f) binade (common exponent)
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Floating-Point Computation

For the +, —, x, =, V' the result is the same as if the infinitely precise
mathematical result was computed and then rounded to the nearest
floating-point number.

= guaranteed by the IEEE-754 standard (1985 & 2008).
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Floating-Point Computation

For the +, —, x, =, V' the result is the same as if the infinitely precise
mathematical result was computed and then rounded to the nearest
floating-point number.

= guaranteed by the IEEE-754 standard (1985 & 2008).

= portability & accuracy

= if x € R is not too small, |x — ogoup1e(X)| < 2793|x|
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Floating-Point Computations

More than one FP operation may lead to incorrect results.
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Floating-Point Computations

More than one FP operation may lead to incorrect results.

3e-13 .

KO- 16,4 X410+ 96,430k 25643 +256 ——
) (x-4)*(x-4)¥(x-4)*(x-4)

26-13 e

1e-13 Fof o]

-le-13

213 |- i ; ; 4

3.9999 3.9‘9995 4 4.60005 4.000]

Floating-point evaluations of (x — 4)* around 4.
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@ Introduction
© Prerequisite
@ Deductive Program Verification

© 1-D Wave equation discretization

@ About the Finite Element Method

© Conclusion
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Annotation language: ACSL

@ ANSI/ISO C Specification Language
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Annotation language: ACSL

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

@ variants and invariants of the loops.

@ assertions

@ In annotations, all computations are exact.

= For the programmer, the specification is easy to understand.
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ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part
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ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part 1+x+x*x/2

@ the value that would have been obtained with exact computations,
2
X — Xe exact part 1+x+%

@ the value that we ideally wanted to compute
X — Xm model part exp(x)
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ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part 1+x+x*x/2

@ the value that would have been obtained with exact computations,
2
X — Xe exact part 1+x+%
@ the value that we ideally wanted to compute
X — Xm model part exp(x)

= easy to split into method error and rounding error
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Methodology for the verification of C programs

C Program
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Methodology for the verification of C programs

Human
4

Annotated C Program
(specification, invariant)
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Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant) Jessie

Theorem statements

h 2
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Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Cog¥d< Human
Automatic

provers
(Alt-Ergo,
Gappa, Z3)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51



Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic Coqle Human
provers

(Alt-Ergo,

Gappa, Z3)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51



Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic COCIl<— Human
provers

(Alt-Ergo,

Gappa, Z3)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51



Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic Coq | « Human
provers

(Alt-Ergo,
Gappa, Z3)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51



Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Coq | «— Human

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51
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Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements
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Methodology for the verification of C programs

Human

!

Annotated C Program
(specification, invariant)

Frama-C
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Methodology for the verification of C programs

Human

!

Annotated C Program
(specification, invariant)

Frama-C

Sylvie Boldo (Inria)
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Jessie

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Theorem statements

Coq | + Human

Proved Theorems
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Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant) Jessie

Theorem statements

h 2

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Coq | + Human

The program is correct with

respect to its specifications Hietee e
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Outline

© 1-D Wave equation discretization
Presentation

Rounding Error

Method Error

Program Verification
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The wave equation

Looking for u : R> — R regular enough such that:

0?u(x, t) 2 O?u(x, t)
ot? Ix?

= s(x,t)

with given values for the initial position ug(x) and the initial velocity u(x).

= rope oscillation, sound, radar, oil prospection. ..
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Scheme?

We want u}‘ ~ u(jAx, kAt).

ko k=1 k-2 k=1 _ o k=1 k-1
up —2up Ay 2l 2uj AUy k-1
At? Ax? J

And other horrible formulas to initialize uj(-) and u}.
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Scheme?

We want ujf‘ ~ u(jAx, kAt).

ko k=1 k-2 Sl g kel kel
ui — 2ty _ 2l 2uj AUy k-1
At? AX2 J

And other horrible formulas to initialize uj(-) and u}.

t

kAt (Y
k-1)Atl @ @ @
(k—2)At (Y

[ Jjax X
(—1)Ax (j+1)Ax

e .k k=1 k=1 k-1 -2
Three-point scheme: u; depends on Uiy, U7, U and u .
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Program

// initialization of p[i][0] and p[i][1]
for (k=1; k<nk; k++) {
p[0][k+1] = O.;
for (i=1; i<ni; i++) {
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pLil[k+1] = 2.4p[i1[k] — p[i][k—1] + axdp;

p[ni][k+1] = 0.;



Program

// initialization of p[i][0] and p[i][1]
for (k=1; k<nk; k++) {
p[0][k+1] = O.;
for (i=1; i<ni; i++) {
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pLil[k+1] = 2.4p[i1[k] — p[i][k—1] + axdp;

p[ni][k+1] = 0.;

Two different errors:

@ round-off errors
due to floating-point roundings

@ method errors
the scheme only approximates the exact solution



Outline
@ Introduction

© Prerequisite

© 1-D Wave equation discretization

@ Rounding Error

@ About the Finite Element Method

© Conclusion
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Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 21 /51



Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get
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Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get

|p¥ — exact(pf)| < O (2"2’53)

This is too much because the errors do compensate.
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Definition of ¥

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—-1][k];
pli]lk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let Ef-(+1 be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1
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Definition of ¥

Remainder:

dp = pli+1][k] — 2.xp[i][k] + p[i —1][K];
plillk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let 5;(“ be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1

We know (from initializations) that the model values of the |p)"| are
bounded by 1. We assume that the floating-point values of the |p]’| are
bounded by 2.
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Definition of ¥

Remainder:

dp = pli+1][k] — 2.xp[i][k] + p[i —1][K];
plillk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let 5;(“ be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1

We know (from initializations) that the model values of the |p)"| are
bounded by 1. We assume that the floating-point values of the |p]’| are
bounded by 2.

lemM| < 78 x 2722
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Rounding error

k

pk — exact p, Z Z Q; 5,+J

1=0 j=—1

@ We have an analytical expression of the rounding error with known

constants af‘.
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Rounding error

k

kKoo
pr — exact(pf) = Z Z o af‘;j’

@ We have an analytical expression of the rounding error with known
constants af‘.

@ It is not that complicated!
(we cannot get rid of the pyramidal double summation)
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Rounding error

kKoo
k Ky _ I k=
ps — exact(p;) = E E Q€4

@ We have an analytical expression of the rounding error with known

constants af‘.
@ It is not that complicated!
(we cannot get rid of the pyramidal double summation)

© The rounding error is bounded by ()(k? 27°3):

’p!‘ — exact (p:‘)’ <78 x 2793 x (k+1)x (k+2)
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Outline
@ Introduction
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© 1-D Wave equation discretization

@ Method Error

@ About the Finite Element Method

© Conclusion
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Method error

We measure that v and uj{‘ are close when (Ax, At) — 0.

. def _
We define ej‘ = uj’-‘ — uj’f: convergence error

where B}‘ is the value of u at the (j, k) point of the grid.
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Method error

We measure that v and uj{‘ are close when (Ax, At) — 0.

. def _
We define ej‘ = uj’-‘ — uj’f: convergence error

where B}‘ is the value of u at the (j, k) point of the grid.

We want to bound H kae(t)

. the average of the convergence error on
X
all points of the grid at a given time ka:(t) = | 2] At.
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Method error

We measure that v and u}‘ are close when (Ax, At) — 0.

f
We define e ke de ujk uj’f: convergence error
where uj is the value of u at the (j, k) point of the grid.

We want to bound H kae(t)

. the average of the convergence error on
X

all points of the grid at a given time ka:(t) = | 2] At.

We want to prove:

He:m( )

= O, ] (AX* + AL?)
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Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

0,C >0, VxeR", x| <a=|f(x)] < C-lg(x).
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Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

Ja,C >0, VxeR" x| <a=|f(x)]<C-|g(x).

Here 2 variables: Ax (grid sizes, tends to 0), and x (time and space).

(Think about Taylor expansions)
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Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

Ja,C >0, VxeR" x| <a=|f(x)]<C-|g(x).

Here 2 variables: Ax (grid sizes, tends to 0), and x (time and space).
(Think about Taylor expansions)

Vx,3a,C >0, YAxcR? |Ax| <a=|f(x,Ax)| < C-|g(Ax)|

does not work.
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Uniform big O

We used a uniform big O:

Jda, C >0, Vx,Ax, [Ax||<a=|f(x,Ax)|<C-|g(Ax)|.

where variables x and Ax are restricted to subsets of R2.
(for example such that At > 0)
= Taylor expansions
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Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the
numerical scheme:

—k _ ork—1 | —k=2 —k—1 _ nek—1 | —k—1
k1 _ 0 2 T 2 Uiy 2uj + Uy g
J At? Ax? J
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Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the

numerical scheme:

ul —

The consistency is the boundedness of the truncation error:

H&_Zm(t) _ O[O,t,m,‘x](AXQ + At2)

By Taylor series and many computations.
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Proof idea 2/3: stability

We define a discrete energy by

2
k+1 k

At

L/ k k+1>
Jr2<u’”u” An(c)

kinetic energy potential energy

Ax

def def 1 —2Vitvi_
(Vhs Wh) ap(c) = (An(€) vhy wh) p, and (Ap(c) vp); & — 208
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Proof idea 2/3: stability

We define a discrete energy by
2
k+1 k
up " — up

1
E k41 d:ef <
h(c)(up) 2 5 Az

L/ k k+1>
Jr2<u’”u” An(c)

kinetic energy potential energy

Ax

def def 1 —2Vitvi_
(Vhs Wh) ap(c) = (An(€) vhy wh) p, and (Ap(c) vp); & — 208

Note that this energy is constant if f = 0.
We prove an overestimation and an underestimation of this energy.
= up, does not diverge.
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Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

el
and sk = ghtl,

. P
up,j = 07 uij = At, j j

+ proofs about the initializations.
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Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

el

and sk = ghtl,

. P
up,j = 07 uij = At, j j

+ proofs about the initializations.

All these proofs require the existence of ¢ and £ in |0, 1[ with { <1 —¢
and we require that { < %‘Xt < 1 —¢ (CFL conditions).
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Convergence

We proved that:

kAt(t)
|

)Ax
(Ax,At) =0
0<Ax AO0<AtA

At
(<, S1-¢
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Extraction of the big O constants

The preceding result is a uniform big O defined by:
Jdo, C >0, Vx,Ax, [Ax]<a=|f(x,Ax)| < C-|g(Ax)|.
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Let (a3, G3) be the constants for the order-3 Taylor development of the
exact solution and (au, C4) for order-4. The initial support is [x1; x2]-
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Extraction of the big O constants

The preceding result is a uniform big O defined by:
Jdo, C >0, Vx,Ax, [Ax]<a=|f(x,Ax)| < C-|g(Ax)|.

Let (a3, G3) be the constants for the order-3 Taylor development of the
exact solution and (au, C4) for order-4. The initial support is [x1; x2]-

«@ = min(a37a4’17tmax)
s1 = max(1,2- G- (2 +1),C - (1+c%/2)+1)
2= (el - bl +2 et (14 1) +3)
5 = %(C3-(1+c2/2)+1)-(X27X1+1+(2-c+4))
V2

72'max' 2

fovaE gl )

V2
C = '2'max‘

VaE—g e
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Program verification

@ 154 lines of annotations for 32 lines of C
@ 150 verification conditions:

o 44 about the behavior
o 106 about the safety (runtime errors)
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Program verification

@ 154 lines of annotations for 32 lines of C

@ 150 verification conditions:

o 44 about the behavior

o 106 about the safety (runtime errors)

Prover Behavior VC | Safety VC | Total
Alt-Ergo 18 80 98
Cves 18 89 107
Gappa 2 20 22
Z3 21 63 84
Automatically proved 23 94 117
Coq 21 12 33
| Total 44 106 | 150 |
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Program verification

@ About 90 % of the safety goals (matrix access, Overflow, and so on)
are proved automatically.

@ 33 theorems are interactively proved using Coq for a total of about
15,000 lines of Coq and 30 minutes of compilation.

Type of proofs Nb spec lines | Nb lines | Compilation time
Convergence 991 5275 42 s
Round-off + runtime errors 7737 13175 32 min
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Motivations

http://www.ima.umn.edu/~arnold/disasters/sleipner.html

The sinking of the Sleipner A offshore
platform

Excerpted from a report of SINTEE. Civil and Environmental Engineering:

The Sleipner A platform produces oil and gas in the North Sea and is supported on the
seabed at a water depth of 82 m. It is a Condeep type platform with a concrete gravity
base structure consisting of 24 cells and with a total base area of 16 000 m2. Four cells
are elongated to shafts supporting the platform deck. The first concrete base structure
for Sleipner A sprang a leak and sank under a controlled ballasting operation during
preparation for deck mating in Gandsfjorden outside Stavanger, Norway on 23 August
1991.

Immediately after the accident, the owner of the platform, Statoil, a Norwegian oil
company appointed an investigation group, and SINTEF was contracted to be the
technical advisor for this group.

The investigation into the accident is described in 16 reports...

The conclusion of the investigation was that the loss was caused by a failure in a cell wall,
resulting in a serious crack and a leakage that the pumps were not able to cope with. The
wall failed as a result of a combination of a serious error in the finite element analysis
and insufficient anchorage of the reinforcement in a critical zone.

A better idea of what was
involved can be obtained
from this photo and sketch
of the platform. The top
deck weighs 57,000 tons,
and provides
accommodation for about
200 people and support for
drilling equipment weighing
about 40,000 tons. When
the first model sank in
Auaust 1991. the crash
Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 37 /51



http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.
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Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.

Instead of regular 2D /3D grids, we consider meshes made of
triangles/tetrahedra.
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Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements,
to approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)
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https://en.wikipedia.org/wiki/Finite_element_method

Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements,
to approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

= mathematical proofs of the FEM
= C++ library (Felisce) implementing the FEM

Let us machine-check this program!
First, let us understand/formally prove the mathematics.
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Opening a parenthesis
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The Coquelicot library (Boldo, Lelay, Melquiond)
We wanted to prove that
x+ct x+c(t— 7—)
u(x,t):%(uo(x+ct)+uo(xfct))+i/7 ul(f)d£+—/ / ’ f(&,7)dedr

2c "

is regular and solution of 2 atQ 5(x,t) — 2g—(x t) = f(x,t).
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The Coquelicot library (Boldo, Lelay, Melquiond)

We wanted to prove that

x+ct x+c(t— 7—)
u(x,t):%(uo(x+ct)+uo(xfct))+i/ ul(f)d£+—// f(&,7)dedr

2c "

is regular and solution of 2 atQ 5(x,t) — c2g 2(x,t) = f(x,t).

We developed a Coq library of real analysis that is:
@ compatible with the Coq standard library of real numbers,

@ with total functions for limit, derivative, integral,

@ with parametric integrals, two-dimensional differentiability, asymptotic
behaviors,

@ with a tactic dedicated to derivative proofs.

= Then, it was extended to more than real analysis.
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Hierarchy (Lelay, Melquiond)

AbelianGroup (0, +, —) —: “used to define”
sum.n._m --»: “parameter of”

“SRN

Ringp c’("Zilj,1 2 | ModuleSpace ()
M,(C) )
AbsRing (| | NormedModule (|| ||

R, C i oo [, f
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Hierarchy (Lelay, Melquiond)

AbelianGroup (0, +, —) —: “used to define”
sum.n._m --»: “parameter of”

“SRN

Rinio(‘:'jj 2 | ModuleSpace )
Mn(C) M"»m((c)

AbsRing (| [)|  |NormedModule (|| | . |UniformSpace (ball)
R, C oo [, f locally
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Hierarchy (Lelay, Melquiond)

AbelianGroup (0, +, —) —: “used to define”
sum.n._m --»: “parameter of”

“SRN

Rinio(‘:'jj 2 | ModuleSpace )
Mn(C) M"»m((c)

AbsRing (| [)|  |NormedModule (|| | . |UniformSpace (ball)
R, C oo [, f locally

|

CompleteSpace (1lim)
Cauchy
R—C
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Hierarchy (Lelay, Melquiond)

AbelianGroup (0, +, —)
sum_n_m

e

Ring (1, Xx)
pow._n
M, (C)

|

AN

ModuleSpace (-)
Mp,m(C)

“used to define”
“parameter of”

—:

-

AbsRing (| |
R, C

NormedModule (H H)

>, [, f

UniformSpace (ball)
|

locally

Sylvie Boldo (Inria)

I

|

CompleteNormedModule

Jlim=lim [

R, R, C

k—

CompleteSpace (1lim)
Cauchy
R—=C
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Closing a parenthesis
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Mathematicians at work

@ more 50 pages of mathematical proofs

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 44 / 51



Mathematicians at work

@ more 50 pages of mathematical proofs

@ very detailed!

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 44 / 51



Mathematicians at work

@ more 50 pages of mathematical proofs
@ very detailed!
@ more than 7,000 lines and 220,000 characters

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

44 / 51



Mathematicians at work

@ more 50 pages of mathematical proofs
@ very detailed!
@ more than 7,000 lines and 220,000 characters

@ with dependencies!

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 44 / 51



Mathematicians at work

@ more 50 pages of mathematical proofs
@ very detailed!
@ more than 7,000 lines and 220,000 characters

@ with dependencies!

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 44 / 51



Mathematicians at work

@ more 50 pages of mathematical proofs
@ very detailed!
@ more than 7,000 lines and 220,000 characters

@ with dependencies!

N
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Proof engineering

Let us build upon Coquelicot

+ general spaces
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Proof engineering

Let us build upon Coquelicot
+ general spaces
+ many existing theorems

- not always the space we need

Please note this is still work in progress.
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Summary of the work done

@ results about functional spaces, linear and bilinear mappings
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Summary of the work done

results about functional spaces, linear and bilinear mappings
fixed-point theorem in a sub-complete normed module
decide if a space (> NormedModule) is only zero

norm on functions (operator norm) on R U {400}

8 equivalences of continuity of linear mappings

definitions of pre-Hilbert and Hilbert spaces inside the Coquelicot
hierarchy (and first lemmas)

define clm: the set of the continuous linear mappings
prove it is a NormedModule, to consider clm E (clm E R)

state Lax-Milgram theorem
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Intermediate conclusion

Problems:
@ what is a subgroup?
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Conclusion on the 1-D wave equation discretization

@ Very high guarantee
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Conclusion on the 1-D wave equation discretization

@ Very high guarantee

e interdisciplinary (formal methods / numerical analysis)

@ not only rounding errors:

o all other errors such as pointer dereferencing or division by zero
e link with mathematical properties
e any property can be checked

@ expressive annotation language (as expressive as Coq)
= exactly the specification you want

@ an annotated C program to convince numerical analysts
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Perspectives

@ go deeper into numerical analysis
=- proof of the finite element method
= proof of the finite element method library
= stability (floating-point stability / numerical analysis stability)

@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

= basic blocks to build upon
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