Effective Analysis: Foundations, Implementations, Certification
Luminy, France

Formal verification of numerical analysis programs

Sylvie Boldo
Inria

January 12th, 2016

V4

: informati:s,mafhemntits

Introduction

Effective Analysis:

Foundations, Implementations, Certification

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 2 /51

Introduction

Effective Analysis:

Foundations, Implementations, Certification

(Applicd) Wathematics

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 2 /51

Introduction

Effective Analysis:

Foundations, Implementations, Certification

(Applicd) Wathematics
and
Formal proof (Coq)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 2 /51

Introduction

Effective Analysis:

Foundations, Implementations, Certification

(Applicd) Wathematics
and
Formal proof (Coq)
and
Floating-point numbers

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 2 /51

Motivations

PDE (Partial Differential Equation) = weather forecast
= nuclear simulation
= optimal control

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 3/51

Motivations

PDE (Partial Differential Equation) = weather forecast
= nuclear simulation
= optimal control
=

Usually too complex to solve by an exact mathematical formula
= approximated by numerical scheme over discrete grids

=- mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the grids size
decreases)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 3/51

Motivations

PDE (Partial Differential Equation) = weather forecast
= nuclear simulation
= optimal control
=

Usually too complex to solve by an exact mathematical formula
= approximated by numerical scheme over discrete grids

=- mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the grids size
decreases)

= C program implementing the scheme

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 3/51

Motivations

= weather forecast
= nuclear simulation
= optimal control
=

PDE (Partial Differential Equation)

Usually too complex to solve by an exact mathematical formula
= approximated by numerical scheme over discrete grids

=- mathematical proofs of the convergence of the numerical scheme
(we compute something close to the PDE solution if the grids size
decreases)

= C program implementing the scheme

Let us machine-check this kind of programs!

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

3/51

Joint work with

Francois Clément
Jean-Christophe Fillidtre
Vincent Martin

Micaela Mayero
Guillaume Melquiond

Pierre Weis

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 4 /51

Outline

© Prerequisite
@ Floating-Point Arithmetic
@ Deductive Program Verification

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 5/51

Numbers

Babylonian clay tablet (1800-1600 BC)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 6 /51

Numbers

Babylonian clay tablet (1800-1600 BC)

I 7 &1 < = (1,24,51,10)
24 51 10
= 14 = 4+ == 4 —= =30547/21
0" 602 T 603 30547/21600

~ 1,41421296 ~ /2

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 6 /51

Numbers

Babylonian clay tablet (1800-1600 BC)

I 7 &1 < = (1,24,51,10)
24 51 10

= 1+ —+ — + —= = 30547/21600
* 60 * 602 * 603 /

~ 1,41421296 ~ /2

= representation of a real number with a finite precision

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 6 /51

Floating-Point Number

Using a finite number of bits (the precision p) and based on scientific
notation, computers use floating-point (FP) numbers.

A FP number is only a string of bits.

11100011010010011110000111000000

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 7 /51

Floating-Point Number

Using a finite number of bits (the precision p) and based on scientific

notation, computers use floating-point (FP) numbers.

A FP number is only a string of bits.

11100011010010011110000111000000

We interpret it depending on the respective values of s (sign), e
(exponent) and f (fraction).

1 11000110 10010011110000111000000

[1[1100011010010011110000111000000 |
s e f

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

751

Floating-Point Number

We associate a real value:

[11000110] [10010011110000111000000 |

s € f
\: \: \
(-1)°x 2878 x lef

(—1)1x 2198127 »1.10010011110000111000000,

—25% % 206727 ~ —3.724 x 10%!

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

8 /51

Floating-Point Number

We associate a real value:

(11000110 [10010011110000111000000 |

s € f
\: \: \
(-1)°x 2878 x lef

(—1)1x 2198127 »1.10010011110000111000000,

—25% % 206727 ~ —3.724 x 10%!

except for the special values of e: £0, +00, NaN, subnormals.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

8 /51

Floating-Point Number Repartition

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 9 /51

Floating-Point Number Repartition

subnormals

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 9 /51

Floating-Point Number Repartition

subnormals binade (common exponent)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 9 /51

Floating-Point Number Repartition

| f :
I T \ \ \ \ \
CTTTRTTT T T T 1 1 1 1 e
subnormals ulp(f) binade (common exponent)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 9 /51

Floating-Point Computation

For the +, —, x, =, V' the result is the same as if the infinitely precise
mathematical result was computed and then rounded to the nearest
floating-point number.

= guaranteed by the IEEE-754 standard (1985 & 2008).

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 10 / 51

Floating-Point Computation

For the +, —, x, =, V' the result is the same as if the infinitely precise
mathematical result was computed and then rounded to the nearest
floating-point number.

= guaranteed by the IEEE-754 standard (1985 & 2008).

= portability & accuracy

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 10 / 51

Floating-Point Computation

For the +, —, x, =, V' the result is the same as if the infinitely precise
mathematical result was computed and then rounded to the nearest
floating-point number.

= guaranteed by the IEEE-754 standard (1985 & 2008).

= portability & accuracy

= if x € R is not too small, |x — ogoup1e(X)| < 2793|x|

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 10 / 51

Floating-Point Computations

More than one FP operation may lead to incorrect results.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 11 /51

Floating-Point Computations

More than one FP operation may lead to incorrect results.

3e-13 .

KO- 16,4 X410+ 96,430k 25643 +256 ——
) (x-4)*(x-4)¥(x-4)*(x-4)

26-13 e

1e-13 Fof o]

-le-13

213 |- i ; ; 4

3.9999 3.9‘9995 4 4.60005 4.000]

Floating-point evaluations of (x — 4)* around 4.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 11 /51

Outline

@ Introduction
© Prerequisite
@ Deductive Program Verification

© 1-D Wave equation discretization

@ About the Finite Element Method

© Conclusion

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

12 /51

Annotation language: ACSL

@ ANSI/ISO C Specification Language

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51

Annotation language: ACSL

@ ANSI/ISO C Specification Language

@ behavioral specification language for C programs

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51

Annotation language: ACSL

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

13 / 51

Annotation language: ACSL

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

@ variants and invariants of the loops.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51

Annotation language: ACSL

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

@ variants and invariants of the loops.

@ assertions

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51

Annotation language: ACSL

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

@ variants and invariants of the loops.

@ assertions

@ In annotations, all computations are exact.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51

Annotation language: ACSL

@ ANSI/ISO C Specification Language
@ behavioral specification language for C programs

@ pre-conditions and post-conditions to functions
(and which variables are modified).

@ variants and invariants of the loops.

@ assertions

@ In annotations, all computations are exact.

= For the programmer, the specification is easy to understand.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 13 / 51

ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 14 / 51

ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part

@ the value that would have been obtained with exact computations,
X — Xe €xact part

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 14 / 51

ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part

@ the value that would have been obtained with exact computations,
X — Xe €xact part

@ the value that we ideally wanted to compute
X — X, model part

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 14 / 51

ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part 1+x+x*x/2

@ the value that would have been obtained with exact computations,
2
X — Xe exact part 1+x+%

@ the value that we ideally wanted to compute
X — Xm model part exp(x)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 14 / 51

ACSL and floating-point numbers

A floating-point number is a triple:

@ the floating-point number, really computed by the program,
x — xr floating-point part 1+x+x*x/2

@ the value that would have been obtained with exact computations,
2
X — Xe exact part 1+x+%
@ the value that we ideally wanted to compute
X — Xm model part exp(x)

= easy to split into method error and rounding error

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 14 / 51

Methodology for the verification of C programs

C Program

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human
4

Annotated C Program
(specification, invariant)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant) Jessie

Theorem statements

h 2

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Cog¥d< Human
Automatic

provers
(Alt-Ergo,
Gappa, Z3)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic Coqle Human
provers

(Alt-Ergo,

Gappa, Z3)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic COCIl<— Human
provers

(Alt-Ergo,

Gappa, Z3)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic Coq | « Human
provers

(Alt-Ergo,
Gappa, Z3)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Coq | «— Human

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic

provers Coq | <~ Human
(Alt-Ergo,

Gappa, Z3)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant)

Theorem statements

A 2

Jessie

Automatic

provers Coq | + Human
(Alt-Ergo,

Gappa, Z3)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human

!

Annotated C Program
(specification, invariant)

Frama-C

Sylvie Boldo (Inria)

Theorem statements

A 2

Jessie

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Coq | + Human

Verification of numerical analysis programs January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human

!

Annotated C Program
(specification, invariant)

Frama-C

Sylvie Boldo (Inria)

A 2

Jessie

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Theorem statements

Coq | + Human

Proved Theorems

Verification of numerical analysis programs

January 12th, 2016 15 / 51

Methodology for the verification of C programs

Human
4

Annotated C Program Frama-C
(specification, invariant) Jessie

Theorem statements

h 2

Automatic
provers
(Alt-Ergo,
Gappa, Z3)

Coq | + Human

The program is correct with

respect to its specifications Hietee e

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 15 / 51

Outline

© 1-D Wave equation discretization
Presentation

Rounding Error

Method Error

Program Verification

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 16 / 51

The wave equation

Looking for u : R> — R regular enough such that:

0?u(x, t) 2 O?u(x, t)
ot? Ix?

= s(x,t)

with given values for the initial position ug(x) and the initial velocity u(x).

= rope oscillation, sound, radar, oil prospection. ..

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 17 / 51

Scheme?

We want u}‘ ~ u(jAx, kAt).

ko k=1 k-2 k=1 _ o k=1 k-1
up —2up Ay 2l 2uj AUy k-1
At? Ax? J

And other horrible formulas to initialize uj(-) and u}.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 18 / 51

Scheme?

We want ujf‘ ~ u(jAx, kAt).

ko k=1 k-2 Sl g kel kel
ui — 2ty _ 2l 2uj AUy k-1
At? AX2 J

And other horrible formulas to initialize uj(-) and u}.

t

kAt (Y
k-1)Atl @ @ @
(k—2)At (Y

[Jjax X
(—1)Ax (j+1)Ax

e .k k=1 k=1 k-1 -2
Three-point scheme: u; depends on Uiy, U7, U and u .

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 18 / 51

Program

// initialization of p[i][0] and p[i][1]
for (k=1; k<nk; k++) {
p[0][k+1] = O.;
for (i=1; i<ni; i++) {
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pLil[k+1] = 2.4p[i1[k] — p[i][k—1] + axdp;

p[ni][k+1] = 0.;

Program

// initialization of p[i][0] and p[i][1]
for (k=1; k<nk; k++) {
p[0][k+1] = O.;
for (i=1; i<ni; i++) {
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pLil[k+1] = 2.4p[i1[k] — p[i][k—1] + axdp;

p[ni][k+1] = 0.;

Two different errors:

@ round-off errors
due to floating-point roundings

@ method errors
the scheme only approximates the exact solution

Outline
@ Introduction

© Prerequisite

© 1-D Wave equation discretization

@ Rounding Error

@ About the Finite Element Method

© Conclusion

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

20 / 51

Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 21 /51

Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get

|p¥ — exact(pf)| < O (2"2’53)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

21 /51

Rounding error

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—1][k];
pli][k+1] = 2.xp[i][k] — p[i][k—=1] + axdp;

If we use a naive technique to bound the rounding errors, we get

|p¥ — exact(pf)| < O (2"2’53)

This is too much because the errors do compensate.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

21 /51

Definition of ¥

Remainder:
dp = p[i+1][k] — 2.xp[i][k] + p[i—-1][k];
pli]lk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let Ef-(+1 be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 22 /51

Definition of ¥

Remainder:

dp = pli+1][k] — 2.xp[i][k] + p[i —1][K];
plillk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let 5;(“ be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1

We know (from initializations) that the model values of the |p)"| are
bounded by 1. We assume that the floating-point values of the |p]’| are
bounded by 2.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 22 /51

Definition of ¥

Remainder:

dp = pli+1][k] — 2.xp[i][k] + p[i —1][K];
plillk+1] = 2.xp[i][k] — p[i][k—1] + axdp;

Let 5;(“ be the rounding error made during these two lines of computations.

We assume a, p_ ;, p¥, pk, ; and pf~1 are exact and we look into the

rounding error of these two lines. It is called 5k+1

We know (from initializations) that the model values of the |p)"| are
bounded by 1. We assume that the floating-point values of the |p]’| are
bounded by 2.

lemM| < 78 x 2722

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 22 /51

Rounding error

k

pk — exact p, Z Z Q; 5,+J

1=0 j=—1

@ We have an analytical expression of the rounding error with known

constants af‘.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 23 /51

Rounding error

k

kKoo
pr — exact(pf) = Z Z o af‘;j’

@ We have an analytical expression of the rounding error with known
constants af‘.

@ It is not that complicated!
(we cannot get rid of the pyramidal double summation)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 23 /51

Rounding error

kKoo
k Ky _ I k=
ps — exact(p;) = E E Q€4

@ We have an analytical expression of the rounding error with known

constants af‘.
@ It is not that complicated!
(we cannot get rid of the pyramidal double summation)

© The rounding error is bounded by ()(k? 27°3):

’p!‘ — exact (p:‘)’ <78 x 2793 x (k+1)x (k+2)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 23 /51

Outline
@ Introduction

© Prerequisite

© 1-D Wave equation discretization

@ Method Error

@ About the Finite Element Method

© Conclusion

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

24 / 51

Method error

We measure that v and uj{‘ are close when (Ax, At) — 0.

. def _
We define ej‘ = uj’-‘ — uj’f: convergence error

where B}‘ is the value of u at the (j, k) point of the grid.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 25 /51

Method error

We measure that v and uj{‘ are close when (Ax, At) — 0.

. def _
We define ej‘ = uj’-‘ — uj’f: convergence error

where B}‘ is the value of u at the (j, k) point of the grid.

We want to bound H kae(t)

. the average of the convergence error on
X
all points of the grid at a given time ka:(t) = | 2] At.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 25 /51

Method error

We measure that v and u}‘ are close when (Ax, At) — 0.

f
We define e ke de ujk uj’f: convergence error
where uj is the value of u at the (j, k) point of the grid.

We want to bound H kae(t)

. the average of the convergence error on
X

all points of the grid at a given time ka:(t) = | 2] At.

We want to prove:

He:m()

= O,] (AX* + AL?)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 25 /51

Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

0,C >0, VxeR", x| <a=|f(x)] < C-lg(x).

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 26 / 51

Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

Ja,C >0, VxeR" x| <a=|f(x)]<C-|g(x).

Here 2 variables: Ax (grid sizes, tends to 0), and x (time and space).

(Think about Taylor expansions)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

26 / 51

Big O = big pain

Usually, the big O uses one variable and f(x) = O|4-0(g(x)) means

Ja,C >0, VxeR" x| <a=|f(x)]<C-|g(x).

Here 2 variables: Ax (grid sizes, tends to 0), and x (time and space).
(Think about Taylor expansions)

Vx,3a,C >0, YAxcR? |Ax| <a=|f(x,Ax)| < C-|g(Ax)|

does not work.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 26 / 51

Uniform big O

We used a uniform big O:

Jda, C >0, Vx,Ax, [Ax||<a=|f(x,Ax)|<C-|g(Ax)|.

where variables x and Ax are restricted to subsets of R2.
(for example such that At > 0)
= Taylor expansions

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 27 /51

Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the
numerical scheme:

—k _ ork—1 | —k=2 —k—1 _ nek—1 | —k—1
k1 _ 0 2 T 2 Uiy 2uj + Uy g
J At? Ax? J

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 28 / 51

Proof idea 1/3: consistency

The truncation error is defined as how much the exact solution solves the

numerical scheme:

ul —

The consistency is the boundedness of the truncation error:

H&_Zm(t) _ O[O,t,m,‘x](AXQ + At2)

By Taylor series and many computations.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

28 / 51

Proof idea 2/3: stability

We define a discrete energy by

2
k+1 k

At

L/ k k+1>
Jr2<u’”u” An(c)

kinetic energy potential energy

Ax

def def 1 —2Vitvi_
(Vhs Wh) ap(c) = (An(€) vhy wh) p, and (Ap(c) vp); & — 208

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 29 /51

Proof idea 2/3: stability

We define a discrete energy by
2
k+1 k
up " — up

1
E k41 d:ef <
h(c)(up) 2 5 Az

L/ k k+1>
Jr2<u’”u” An(c)

kinetic energy potential energy

Ax

def def 1 —2Vitvi_
(Vhs Wh) ap(c) = (An(€) vhy wh) p, and (Ap(c) vp); & — 208

Note that this energy is constant if f = 0.
We prove an overestimation and an underestimation of this energy.
= up, does not diverge.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 29 /51

Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

el
and sk = ghtl,

. P
up,j = 07 uij = At, j j

+ proofs about the initializations.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 30 /51

Proof idea 3/3: convergence

The convergence error is solution of the same discrete scheme with inputs

el

and sk = ghtl,

. P
up,j = 07 uij = At, j j

+ proofs about the initializations.

All these proofs require the existence of ¢ and £ in |0, 1[with { <1 —¢
and we require that { < %‘Xt < 1 —¢ (CFL conditions).

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 30 /51

Convergence

We proved that:

kAt(t)
|

)Ax
(Ax,At) =0
0<Ax AO0<AtA

At
(<, S1-¢

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

= Y te 0,] (AX* + At?).

31 /51

Extraction of the big O constants

The preceding result is a uniform big O defined by:
Jdo, C >0, Vx,Ax, [Ax]<a=|f(x,Ax)| < C-|g(Ax)|.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 32 /51

Extraction of the big O constants

The preceding result is a uniform big O defined by:

Jdo, C >0, Vx,Ax, [Ax]<a=|f(x,Ax)| < C-|g(Ax)|.

Let (a3, G3) be the constants for the order-3 Taylor development of the
exact solution and (au, C4) for order-4. The initial support is [x1; x2]-

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 32 /51

Extraction of the big O constants

The preceding result is a uniform big O defined by:
Jdo, C >0, Vx,Ax, [Ax]<a=|f(x,Ax)| < C-|g(Ax)|.

Let (a3, G3) be the constants for the order-3 Taylor development of the
exact solution and (au, C4) for order-4. The initial support is [x1; x2]-

«@ = min(a37a4’17tmax)
s1 = max(1,2- G- (2 +1),C - (1+c%/2)+1)
2= (el - bl +2 et (14 1) +3)
5 = %(C3-(1+c2/2)+1)-(X27X1+1+(2-c+4))
V2

72'max' 2

fovaE gl)

V2
C = '2'max‘

VaE—g e

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 32 /51

Outline
@ Introduction

© Prerequisite

© 1-D Wave equation discretization

@ Program Verification
@ About the Finite Element Method

© Conclusion

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

33 /51

Program verification

@ 154 lines of annotations for 32 lines of C
@ 150 verification conditions:

o 44 about the behavior
o 106 about the safety (runtime errors)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 34 /51

Program verification

@ 154 lines of annotations for 32 lines of C

@ 150 verification conditions:

o 44 about the behavior

o 106 about the safety (runtime errors)

Prover Behavior VC | Safety VC | Total
Alt-Ergo 18 80 98
Cves 18 89 107
Gappa 2 20 22
Z3 21 63 84
Automatically proved 23 94 117
Coq 21 12 33
| Total 44 106 | 150 |

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

34 /51

Program verification

@ About 90 % of the safety goals (matrix access, Overflow, and so on)
are proved automatically.

@ 33 theorems are interactively proved using Coq for a total of about
15,000 lines of Coq and 30 minutes of compilation.

Type of proofs Nb spec lines | Nb lines | Compilation time
Convergence 991 5275 42 s
Round-off + runtime errors 7737 13175 32 min

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 35 /51

@ Introduction

© Prerequisite
@ Floating-Point Arithmetic
@ Deductive Program Verification

e 1-D Wave equation discretization
Presentation

Rounding Error

Method Error

Program Verification

® 6 o

@ About the Finite Element Method
© Conclusion

Motivations

http://www.ima.umn.edu/~arnold/disasters/sleipner.html

The sinking of the Sleipner A offshore
platform

Excerpted from a report of SINTEE. Civil and Environmental Engineering:

The Sleipner A platform produces oil and gas in the North Sea and is supported on the
seabed at a water depth of 82 m. It is a Condeep type platform with a concrete gravity
base structure consisting of 24 cells and with a total base area of 16 000 m2. Four cells
are elongated to shafts supporting the platform deck. The first concrete base structure
for Sleipner A sprang a leak and sank under a controlled ballasting operation during
preparation for deck mating in Gandsfjorden outside Stavanger, Norway on 23 August
1991.

Immediately after the accident, the owner of the platform, Statoil, a Norwegian oil
company appointed an investigation group, and SINTEF was contracted to be the
technical advisor for this group.

The investigation into the accident is described in 16 reports...

The conclusion of the investigation was that the loss was caused by a failure in a cell wall,
resulting in a serious crack and a leakage that the pumps were not able to cope with. The
wall failed as a result of a combination of a serious error in the finite element analysis
and insufficient anchorage of the reinforcement in a critical zone.

A better idea of what was
involved can be obtained
from this photo and sketch
of the platform. The top
deck weighs 57,000 tons,
and provides
accommodation for about
200 people and support for
drilling equipment weighing
about 40,000 tons. When
the first model sank in
Auaust 1991. the crash
Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 37 /51

http://www.ima.umn.edu/~arnold/disasters/sleipner.html

Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 38 /51

Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 38 /51

Motivations

Real life applications need solving PDE (Partial Differential Equation) on
complex 3D geometries.

Instead of regular 2D /3D grids, we consider meshes made of
triangles/tetrahedra.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 38 /51

Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements,
to approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 39 /51

https://en.wikipedia.org/wiki/Finite_element_method

Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements,
to approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

= mathematical proofs of the FEM
= C++ library (Felisce) implementing the FEM

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 39 /51

https://en.wikipedia.org/wiki/Finite_element_method

Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements,
to approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

= mathematical proofs of the FEM
= C++ library (Felisce) implementing the FEM

Let us machine-check this program!

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 39 /51

https://en.wikipedia.org/wiki/Finite_element_method

Motivations

The Finite Element Method (FEM) is the most used method to solve
PDEs over meshes.

FEM encompasses methods for connecting many simple element
equations over many small subdomains, named finite elements,
to approximate a more complex equation over a larger domain.

(https://en.wikipedia.org/wiki/Finite_element_method)

= mathematical proofs of the FEM
= C++ library (Felisce) implementing the FEM

Let us machine-check this program!
First, let us understand/formally prove the mathematics.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 39 /51

https://en.wikipedia.org/wiki/Finite_element_method

Opening a parenthesis

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 40 / 51

The Coquelicot library (Boldo, Lelay, Melquiond)
We wanted to prove that
x+ct x+c(t— 7—)
u(x,t):%(uo(x+ct)+uo(xfct))+i/7 ul(f)d£+—/ / ’ f(&,7)dedr

2c "

is regular and solution of 2 atQ 5(x,t) — 2g—(x t) = f(x,t).

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 41 /51

The Coquelicot library (Boldo, Lelay, Melquiond)
We wanted to prove that
x+ct x+c(t— 7—)
u(x,t):%(uo(x+ct)+uo(xfct))+i/7 ul(é)d£+—/ / ’ f(&,7)dedr

2c "

is regular and solution of 2 atQ 5(x,t) — 2g—(x t) = f(x,t).

We developed a Coq library of real analysis that is:

@ compatible with the Coq standard library of real numbers,

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 41 /51

The Coquelicot library (Boldo, Lelay, Melquiond)

We wanted to prove that

x+ct x+c(t— 7—)
u(x,t):%(uo(x+ct)+uo(xfct))+i/ ul(é)d£+—// f(&,7)dedr

2c "

is regular and solution of 2 atQ 5(x,t) — 2g—(x t) = f(x,t).

We developed a Coq library of real analysis that is:
@ compatible with the Coq standard library of real numbers,

@ with total functions for limit, derivative, integral,

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

41 / 51

The Coquelicot library (Boldo, Lelay, Melquiond)

We wanted to prove that

x+ct x+c(t— 7—)
u(x,t):%(uo(x+ct)+uo(xfct))+%/7 ul(f)d£+—// f(&,7)dedr

t

is regular and solution of 2 atQ 5(x,t) — 2g—(x t) = f(x,t).
We developed a Coq library of real analysis that is:
@ compatible with the Coq standard library of real numbers,
@ with total functions for limit, derivative, integral,

@ with parametric integrals, two-dimensional differentiability, asymptotic
behaviors,

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 41 /51

The Coquelicot library (Boldo, Lelay, Melquiond)

We wanted to prove that

x+ct x+c(t— 7—)
u(x,t):%(uo(x+ct)+uo(xfct))+%/7 ul(f)d£+—// f(&,7)dedr

t

is regular and solution of 2 atQ 5(x,t) — 2g—(x t) = f(x,t).
We developed a Coq library of real analysis that is:
@ compatible with the Coq standard library of real numbers,
@ with total functions for limit, derivative, integral,

@ with parametric integrals, two-dimensional differentiability, asymptotic
behaviors,

@ with a tactic dedicated to derivative proofs.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 41 /51

The Coquelicot library (Boldo, Lelay, Melquiond)

We wanted to prove that

x+ct x+c(t— 7—)
u(x,t):%(uo(x+ct)+uo(xfct))+i/ ul(f)d£+—// f(&,7)dedr

2c "

is regular and solution of 2 atQ 5(x,t) — c2g 2(x,t) = f(x,t).

We developed a Coq library of real analysis that is:
@ compatible with the Coq standard library of real numbers,

@ with total functions for limit, derivative, integral,

@ with parametric integrals, two-dimensional differentiability, asymptotic
behaviors,

@ with a tactic dedicated to derivative proofs.

= Then, it was extended to more than real analysis.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 41 /51

Hierarchy (Lelay, Melquiond)

AbelianGroup (0, +, —) —: “used to define”
sum.n._m --»: “parameter of”

“SRN

Ringp c’("Zilj,1 2 | ModuleSpace ()
M,(C))
AbsRing (| | NormedModule (|| ||

R, C i oo [, f

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 42 /51

Hierarchy (Lelay, Melquiond)

AbelianGroup (0, +, —) —: “used to define”
sum.n._m --»: “parameter of”

“SRN

Rinio(‘:'jj 2 | ModuleSpace)
Mn(C) M"»m((c)

AbsRing (| [)| |NormedModule (|| | . |UniformSpace (ball)
R, C oo [, f locally

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 42 /51

Hierarchy (Lelay, Melquiond)

AbelianGroup (0, +, —) —: “used to define”
sum.n._m --»: “parameter of”

“SRN

Rinio(‘:'jj 2 | ModuleSpace)
Mn(C) M"»m((c)

AbsRing (| [)| |NormedModule (|| | . |UniformSpace (ball)
R, C oo [, f locally

|

CompleteSpace (1lim)
Cauchy
R—C

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 42 /51

Hierarchy (Lelay, Melquiond)

AbelianGroup (0, +, —)
sum_n_m

e

Ring (1, Xx)
pow._n
M, (C)

|

AN

ModuleSpace (-)
Mp,m(C)

“used to define”
“parameter of”

—:

-

AbsRing (| |
R, C

NormedModule (H H)

>, [, f

UniformSpace (ball)
|

locally

Sylvie Boldo (Inria)

I

|

CompleteNormedModule

Jlim=lim [

R, R, C

k—

CompleteSpace (1lim)
Cauchy
R—=C

Verification of numerical analysis programs

January 12th, 2016

Closing a parenthesis

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 43 / 51

Mathematicians at work

@ more 50 pages of mathematical proofs

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 44 / 51

Mathematicians at work

@ more 50 pages of mathematical proofs

@ very detailed!

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 44 / 51

Mathematicians at work

@ more 50 pages of mathematical proofs
@ very detailed!
@ more than 7,000 lines and 220,000 characters

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

44 / 51

Mathematicians at work

@ more 50 pages of mathematical proofs
@ very detailed!
@ more than 7,000 lines and 220,000 characters

@ with dependencies!

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 44 / 51

Mathematicians at work

@ more 50 pages of mathematical proofs
@ very detailed!
@ more than 7,000 lines and 220,000 characters

@ with dependencies!

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 44 / 51

Mathematicians at work

@ more 50 pages of mathematical proofs
@ very detailed!
@ more than 7,000 lines and 220,000 characters

@ with dependencies!

N

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 44 / 51

Proof engineering

Let us build upon Coquelicot

+ general spaces

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 45 / 51

Proof engineering

Let us build upon Coquelicot
+ general spaces

+ many existing theorems

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

45 / 51

Proof engineering

Let us build upon Coquelicot
+ general spaces
+ many existing theorems

- not always the space we need

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

45 / 51

Proof engineering

Let us build upon Coquelicot
+ general spaces
+ many existing theorems

- not always the space we need

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

45 / 51

Proof engineering

Let us build upon Coquelicot
+ general spaces
+ many existing theorems

- not always the space we need

Please note this is still work in progress.

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 45 / 51

Summary of the work done

@ results about functional spaces, linear and bilinear mappings

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 46 / 51

Summary of the work done

@ results about functional spaces, linear and bilinear mappings

@ fixed-point theorem in a sub-complete normed module

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 46 / 51

Summary of the work done

@ results about functional spaces, linear and bilinear mappings
o fixed-point theorem in a sub-complete normed module

o decide if a space (> NormedModule) is only zero

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 46 / 51

Summary of the work done

results about functional spaces, linear and bilinear mappings
fixed-point theorem in a sub-complete normed module

decide if a space (> NormedModule) is only zero

norm on functions (operator norm) on R U {400}

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 46 / 51

Summary of the work done

results about functional spaces, linear and bilinear mappings
fixed-point theorem in a sub-complete normed module
decide if a space (> NormedModule) is only zero

norm on functions (operator norm) on R U {400}

8 equivalences of continuity of linear mappings

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 46 / 51

Summary of the work done

results about functional spaces, linear and bilinear mappings
fixed-point theorem in a sub-complete normed module
decide if a space (> NormedModule) is only zero

norm on functions (operator norm) on R U {400}

8 equivalences of continuity of linear mappings

definitions of pre-Hilbert and Hilbert spaces inside the Coquelicot
hierarchy (and first lemmas)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 46 / 51

Summary of the work done

results about functional spaces, linear and bilinear mappings
fixed-point theorem in a sub-complete normed module
decide if a space (> NormedModule) is only zero

norm on functions (operator norm) on R U {400}

8 equivalences of continuity of linear mappings

definitions of pre-Hilbert and Hilbert spaces inside the Coquelicot
hierarchy (and first lemmas)

@ define clm: the set of the continuous linear mappings

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 46 / 51

Summary of the work done

results about functional spaces, linear and bilinear mappings
fixed-point theorem in a sub-complete normed module
decide if a space (> NormedModule) is only zero

norm on functions (operator norm) on R U {400}

8 equivalences of continuity of linear mappings

definitions of pre-Hilbert and Hilbert spaces inside the Coquelicot
hierarchy (and first lemmas)

define clm: the set of the continuous linear mappings

prove it is a NormedModule, to consider clm E (clm E R)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 46 / 51

Summary of the work done

results about functional spaces, linear and bilinear mappings
fixed-point theorem in a sub-complete normed module
decide if a space (> NormedModule) is only zero

norm on functions (operator norm) on R U {400}

8 equivalences of continuity of linear mappings

definitions of pre-Hilbert and Hilbert spaces inside the Coquelicot
hierarchy (and first lemmas)

define clm: the set of the continuous linear mappings
prove it is a NormedModule, to consider clm E (clm E R)

state Lax-Milgram theorem

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 46 / 51

Hierarchy Il

AbelianGroup (0, +, —) — “used to deflns
--+: “parameter of
sum_n_m "
/ \ —: "is proved to be a
Rlnio(;;l 2 ModuleSpace (-)
Mo(C) M”l’(@)
AbsRing (| [)| |NormedModule (|| [. | UniformSpace (ball)
R, C S f, locally
1 1
CompleteNormedModule | |CompleteSpace (1lim)
Jlim=lim [Cauchy
R, R?, C R—C

Sylvie Boldo (Inria)

Verification of numerical analysis programs

January 12th, 2016

Hierarchy Il

—: "used to define”
--»: “parameter of”
—: "is proved to be a”

AbelianGroup (0, +, —)
sum._n_m

RN

Rini o(n:m 0 | Modulespace ()
My(C) o)

-

PreHilbert (inner)

norm
~

AbsRing (| |) NormedModule (|| |)| |UniformSpace (ball)

R, C o . [, f] locally

1

CompleteNormedModule | |CompleteSpace (1lim)

Jlim=lim [- Cauchy

R, R? C R—C

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 47 / 51

Hierarchy Il

AbelianGroup (0, +, —)
sum_n_m

e

Ring (1,
pow.n
M,(C)

X)

N

ModuleSpace (-)

My.m(C)
-

PreHilbert (inner)
norm

~

—: "used to define”
--»: “parameter of”
—: “is proved to be a”

AbsRing (| |) NormedModule (|| |)| |UniformSpace (ball)
R, C T >, f, f’ I locally
T 1
CompleteNormedModule | |CompleteSpace (1lim)
Jlim=lim [- Cauchy
R R?% C R—C

Hilbert (1lim)
Cauchy

Sylvie Boldo (Inria)

Verification of numerical analysis programs

January 12th, 2016

47 / 51

Intermediate conclusion

Problems:
@ what is a subgroup?

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 48 / 51

Intermediate conclusion

Problems:
@ what is a subgroup?
o dependent type: consider {g € G| x(g)}

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 48 / 51

Intermediate conclusion

Problems:
@ what is a subgroup?
o dependent type: consider {g € G|x(g)} ={g: G, H: x(g)}

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 48 / 51

Intermediate conclusion

Problems:
@ what is a subgroup?

o dependent type: consider {g € G|x(g)} ={g: G, H: x(g)}
and prove it is a group

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 48 / 51

Intermediate conclusion

Problems:
@ what is a subgroup?

o dependent type: consider {g € G|x(g)} ={g: G, H: x(g)}
and prove it is a group
e overgroup + x + a property of x

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 48 / 51

Intermediate conclusion

Problems:
@ what is a subgroup?

o dependent type: consider {g € G|x(g)} ={g: G, H: x(g)}
and prove it is a group

e overgroup + x + a property of x

@ canonical structures (both a help and a pain)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

48 / 51

Intermediate conclusion

Problems:
@ what is a subgroup?

o dependent type: consider {g € G|x(g)} ={g: G, H: x(g)}
and prove it is a group

e overgroup + x + a property of x

@ canonical structures (both a help and a pain)

Size:
e maths: more than 7,000 lines and 220,000 characters (50 pages)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 48 / 51

Intermediate conclusion

Problems:
@ what is a subgroup?

o dependent type: consider {g € G|x(g)} ={g: G, H: x(g)}
and prove it is a group

e overgroup + x + a property of x

@ canonical structures (both a help and a pain)

Size:
e maths: more than 7,000 lines and 220,000 characters (50 pages)
e Coqg: more than 2,300 lines and 56,000 characters (117 lemmas)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 48 / 51

Intermediate conclusion

Problems:
@ what is a subgroup?

o dependent type: consider {g € G|x(g)} ={g: G, H: x(g)}
and prove it is a group
e overgroup + x + a property of x

@ canonical structures (both a help and a pain)

Size:
e maths: more than 7,000 lines and 220,000 characters (50 pages)
e Coqg: more than 2,300 lines and 56,000 characters (117 lemmas)

@ still a lot to do!

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 48 / 51

@ Introduction

© Prerequisite
@ Floating-Point Arithmetic
@ Deductive Program Verification

© 1-D Wave equation discretization
Presentation

Rounding Error

Method Error

Program Verification

® 6 o

@ About the Finite Element Method

© Conclusion

Conclusion on the 1-D wave equation discretization

@ Very high guarantee

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 50 / 51

Conclusion on the 1-D wave equation discretization

@ Very high guarantee

e interdisciplinary (formal methods / numerical analysis)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 50 / 51

Conclusion on the 1-D wave equation discretization

@ Very high guarantee

e interdisciplinary (formal methods / numerical analysis)

@ not only rounding errors:

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 50 / 51

Conclusion on the 1-D wave equation discretization

@ Very high guarantee

e interdisciplinary (formal methods / numerical analysis)

@ not only rounding errors:
o all other errors such as pointer dereferencing or division by zero

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 50 / 51

Conclusion on the 1-D wave equation discretization

@ Very high guarantee

e interdisciplinary (formal methods / numerical analysis)

@ not only rounding errors:

o all other errors such as pointer dereferencing or division by zero
e link with mathematical properties

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 50 / 51

Conclusion on the 1-D wave equation discretization

@ Very high guarantee

e interdisciplinary (formal methods / numerical analysis)

@ not only rounding errors:

o all other errors such as pointer dereferencing or division by zero
e link with mathematical properties
e any property can be checked

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 50 / 51

Conclusion on the 1-D wave equation discretization

@ Very high guarantee

e interdisciplinary (formal methods / numerical analysis)

@ not only rounding errors:

o all other errors such as pointer dereferencing or division by zero
e link with mathematical properties
e any property can be checked

@ expressive annotation language (as expressive as Coq)
= exactly the specification you want

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 50 / 51

Conclusion on the 1-D wave equation discretization

@ Very high guarantee

e interdisciplinary (formal methods / numerical analysis)

@ not only rounding errors:

o all other errors such as pointer dereferencing or division by zero
e link with mathematical properties
e any property can be checked

@ expressive annotation language (as expressive as Coq)
= exactly the specification you want

@ an annotated C program to convince numerical analysts

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 50 / 51

Perspectives

@ go deeper into numerical analysis

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 51 /51

Perspectives

@ go deeper into numerical analysis

=- proof of the finite element method

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 51 /51

Perspectives

@ go deeper into numerical analysis
=- proof of the finite element method

= proof of the finite element method library

Sylvie Boldo (Inria) Verification of numerical analysis programs

January 12th, 2016

51 / 51

Perspectives

@ go deeper into numerical analysis
=- proof of the finite element method
= proof of the finite element method library

= stability (floating-point stability / numerical analysis stability)

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016

51 / 51

Perspectives

@ go deeper into numerical analysis
=- proof of the finite element method
= proof of the finite element method library
= stability (floating-point stability / numerical analysis stability)

@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 51 /51

Perspectives

@ go deeper into numerical analysis
=- proof of the finite element method
= proof of the finite element method library
= stability (floating-point stability / numerical analysis stability)

@ prove and generalize well-known facts/algorithms/programs from the
computer arithmetic community

= basic blocks to build upon

Sylvie Boldo (Inria) Verification of numerical analysis programs January 12th, 2016 51 /51

	Introduction
	Prerequisite
	Floating-Point Arithmetic
	Deductive Program Verification

	1-D Wave equation discretization
	Presentation
	Rounding Error
	Method Error
	Program Verification

	About the Finite Element Method
	Conclusion

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	1.60:
	1.61:
	1.62:
	1.63:
	1.64:
	1.65:
	1.66:
	1.67:
	1.68:
	1.69:
	1.70:
	1.71:
	1.72:
	1.73:
	1.74:
	1.75:
	1.76:
	1.77:
	1.78:
	1.79:
	1.80:
	1.81:
	1.82:
	1.83:
	1.84:
	1.85:
	1.86:
	1.87:
	1.88:
	1.89:
	1.90:
	1.91:
	1.92:
	1.93:
	1.94:
	1.95:
	1.96:
	1.97:
	1.98:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	2.50:
	2.51:
	2.52:
	2.53:
	2.54:
	2.55:
	2.56:
	2.57:
	2.58:
	2.59:
	2.60:
	2.61:
	2.62:
	2.63:
	2.64:
	2.65:
	2.66:
	2.67:
	2.68:
	2.69:
	2.70:
	2.71:
	2.72:
	2.73:
	2.74:
	2.75:
	2.76:
	2.77:
	2.78:
	2.79:
	2.80:
	2.81:
	2.82:
	2.83:
	2.84:
	2.85:
	2.86:
	2.87:
	2.88:
	2.89:
	2.90:
	2.91:
	2.92:
	2.93:
	2.94:
	2.95:
	2.96:
	2.97:
	2.98:
	anm2:

