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Introduction

e Our purpose is to study the best approximation by
polynomials of degree at most n on the unit ball B¢ in RY.
e For
@ ()= (-, pu>-1, xeB,

we let || - ||, be the norm of L?(zo,; BY), defined by

1/2
17 i= (8 [ 1FCOPm0e)
where b, =1/ [ps wu(x)dx.

e Let M9 the space of polynomials of degree at most n in d
variables.
e We consider the error, E,(f),, of best approximation by
polynomials in M¢ in the space L?(cw,; BY), defined by
En(F)y = inf |If — pallu-
pa€N
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Our main goal

e Ford=1and f’' € [?(w,+1;[—1,1]) there exists a nice
estimate

c
En(f)u < ;En—l(fl)u—&-l-
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Our main goal

e Ford=1and f’' € [?(w,+1;[—1,1]) there exists a nice
estimate
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e Extending this well-known estimate to the unit ball with
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e For example, we can consider the obvious extension

d
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=il

For d > 2, this inequality does not hold on the unit ball!.



Differential operators

o lLet A denote the usual Laplace operator A = 8% 4+ 4+ 8(21.

e In spherical-polar coordinates x = r&, r >0 and ¢ € S9-1,

d> d-1d 1

T a e
Ao denotes the Laplace-Beltrami operator on the unit sphere
S9-1 of RH.

o We will also use the angular derivatives, D; ;, defined by

A= Ao.

D,'JZZX,'@j-Xj@;, 1<i<j<d.

e The angular derivatives D; j and the Laplace-Beltrami

operator Ag are related by

Ay = Z D

1<i<j<d



Spherical harmonics




Harmonic polynomials

P9 denote the space of homogeneous polynomials of degree n.

e Harmonic polynomials of d-variables are homogeneous
polynomials in 77,‘7’ that satisfy the Laplace equation AY =0

H9 denotes the space of harmonic polynomials of degree n.

We will denote

ad = dimHd = <n+d—1) = (n+d—3>.
n n



Spherical harmonics

e Spherical harmonics are the restriction of harmonic
polynomials on the unit sphere.
e They are eigenfunctions of the Laplace-Beltrami operator,

DY (E)=—n(n+d—-2)Y(), VY e HY, ¢ces? .

e Spherical harmonics of different degrees are orthogonal with

respect to the inner product

1
a1 /S L [(©)g(&)da(8).

where do denote the surface measure and o4_1 denote the

g 27Td/2
el = /Sdl 7T T2y

<f7g>Sd*1 =

surface area,




A basis of spherical harmonics

Let Th(t) and U,(t) denote the Chebyshev polynomials of the first
and the second kind, respectively. Define

gonl1,2) = O +58)"2T, (a0 + ) /%)
gLn-100,0) = 1 (¢ + )"V 20,1 (o + ) 712).

For d > 2 and n = (n1,ny,...,ng) € N§ with ny = 0 or 1, define

where \j = \j(n1,...,nj_1) = Z{;i n; + J%z

Proposition

{Yn:|In| =nwithny =00r1}isa of
e,



A basis of spherical harmonics

We need information on two operations on this basis,

e partial derivatives 0;
e multiplication by x;.

They are related by the orthogonal projection operator
-d d d
projns : Py — Hj

It is known that
3] 1
-d
P= -
Prolns J;) 4ji(—n+2—d)2)

Ix|[¥ AP,

which implies, for a spherical harmonic Y, € HY,

proj 1 5(xi Ya(x)) = xi Ya(x) Ix120; Ya (%)

72/7+d72



A basis of spherical harmonics

The basis satisfies the following property

Theorem
Let n = (n1,m,...,ny) € N with n =0 or 1 and |n| = n.
Then

1. 0iYa(x) is an spherical harmonic of degree n — 1 and
<(9,'Yn, Ym>Sd71 7£ O7 ]m] =n-—1

for many m € Ng with my =0 or 1.

2. projffH’S(x,- Yn) is an spherical harmonic of degree n+ 1 and
<pr0jg+1,S(Xi Yn)? Ym>Sd*1 #0, |m| =n+1,

for many m € Ng with m; =0 or 1.



Orthogonal polynomials on the unit
ball




Orthogonal polynomials on the unit ball

Theorem (Dunkl, Xu)

For n € Ng and 0 <j < n/2, Iet{Y" Yi1<v<a
an orthonormal basis for 7-[ . For > —1, define

n—2j} denote

i (1,n—2j+952) —2j
P (x) = P 272]|x1? = 1) Y77 ¥ (x).

Then the set {P"' 1 1< j < n/2, 1<v<al

of Vd(z,,); more precisely,

n—2j} consists of a

<Pj 17/“7 ’Dm H>u = hj'fné,,,m 617" 51”77’
where A’ 'is given by

o et Di()nj(n—j+n+5)
P Mt e+t 9)

10



Orthogonal polynomials on the unit ball

The orthogonal basis {PJ"V“} satisfies two other orthogonal
relations in the Sobolev space.

Lemma

Let 1> —1. Then the basis { P’} satisfies
/ VPPH(x) - VPTA(X) @1 (x)x = H (V)00 16

where b’ (V) = (4j(n —j+ p+ d/2) +2(n = 2j)(u+ )AL,

11



Orthogonal polynomials on the unit ball

For the angular derivatives we have

Lemma

Let > —1. Then the basis { P’} satisfies

bu [ S0 DiPLLCIDLPIL ()@ (x)dx = b (D)ot
BY 1<ici<d

where hy (D) = (m —20)(m —2( +d — 2)hj

12



Orthogonal polynomials on the unit ball

Define Pﬂ;j“ = 0if j < 0. The polynomial Pj'j;/“ enjoys a simple
form under both A and Ag.

Lemma
Let u> —1, for P we have

) _27 +2 ) )
AP};’#(X) = Iilrf_jpf_l’yﬂ (x) and AOPEVM(X) — N J-'Zf(x),

where kh :==4(n+p+2)(n+952) and A, :=—n(n+d-2).

13



Derivatives of orthogonal polynomials on the unit ball

Lemma

For1<i<d, Iet Ym+1 = prOJm+1 s(xi Y. Let
Byp=m—20+ 952 Then

6~Pm’“(x)=—5€” PUID (202 1), ()

R Be
+ 2(€ 4 L + ﬁ[ + 1)Péﬁi>17/8£+1)(2r2 _ 1)?7117,71'—2é+1(x)‘

14



Derivatives of orthogonal polynomials on the unit ball

Up to this point, we assumed that the spherical harmonics Y%
in the basis Pﬂ;j‘” form an orthonormal basis of ’Hg_zj but did not
specify this basis. In our next proposition, however, we need to
specify this basis as the one previously defined.

Proposition

Let PZ’V" be an orthogonal polynomial with Y;7~% being the
orthonormal basis previously defined. Let n € Ng with
In| =n—2k and 1 =0 or 1. Then

1 for 1<i<d, (9P, Pr b ™) 11 # Oonlyif k= Lor

¢/ — 1 and, in each case, many v € Ng with
vy =0or1;
2. for1<i<j<d, (DjjP¥, Pl’:’#)wl # 0 only if k = ¢ and

many v € Ng with 1 = 0 or 1.
15



Fourier orthogonal expansions and
approximation




Fourier orthogonal expansions and approximation

The Fourier orthogonal expansion of f € L?(ww,,, BY) is defined by

f(X izz Jn,u Jn;/u ., with )/CJ\Z;M o o <f’ PJ ;/#> '

I'IO_/OV Jsn

Let proj® : L?(w,, BY) — V4(w,) and S§ : [%(w,,BY) — N?
denote the projection operator and the n-th partial sum operator,
respectively. Then
3]
SHF(x Z proj# f(x) and projt f(x Z fm“Pm“
j=0 v

N3

By definition, Si'f = f if f € Mg and (f — Si'f,v), = 0 for all
vend

16



Fourier orthogonal expansions and approximation

It turns out that the

, a fact that plays an essential role.
Lemma
Let > —1. Then

9;SHf = SHla,f), 1<i<d,

and
D,'JS#fZS#(D,’Jf), 1<i<j<d.

Obviously, it also holds
ASEF = SMT2(AF), and  DgSHf = SH(Aof)

17



Fourier orthogonal expansions and approximation

Theorem 1
Let f € W;(WM,IB%"). Then, for n > 2,

En(Fus < — [En-2(AF)usz + Ex(Bof),].

It is easy to see that both terms in the right hand side are

necessary.
e If fisa , then Af = 0 and we need
E,(Aof ),
o If fisa , f(x) = fo(||x]|), then Agf =0 and we

need En_o(Af)uyo.

18



Sketch of the proof of Theorem 1

1. Let f € W3(w,,BY), from
) 727 +2 ) )
APJ.'ZV“(x) = n’rf_jPJf’_LV“ (x) and AoPﬁV“(x) = An—2j J"V“(x),
and the conmutativity of the operators, we deduce
== 2,u+2 ~ ~
TOMTE MR and Dofih = Aol

Jsv — Np—j—1lj41, Jv M= fi

2. From Parseval’s identity,

EPR = IF—Sr2 = 3 ZZ\f"’“

m=n+1 j=0 v

=23+2,,

where we split the sum as
[Z]-1

=5 z DA DD DO 3 i%d i

m=n+1 j= m=n+1 j=0 v

K

19



Sketch of the proof of Theorem 1

3. From the definition of ' we get

Mm _ (nt1a(m—j—1+9)(m—j+pu+9)
B s (w4 1+ §)2j(u+j+1) ’

which is bounded by a constant, independent of m, when
| 7] <Jj < [3]. Consequently, it follows that

oo L3

Sce Y Y Som & R,

m:n+1j:L%J v

©

20



Sketch of the proof of Theorem 1

4. We have
—~ 2 —m /\m L 2
mypu T N2 M _4 o
" = Omez) 2| Bty | ~ m~* | Bof,

for0<j < L%j Consequently, it follows that

o Ll7l-1
B<e Y S Ymt|mr|

m=n-+1 j:0 14
€ 2
S ﬁEn(AOf),u

i
H:

21



Fourier orthogonal expansions and approximation

Theorem 2
Let f € W%(wu,Bd). Then, for n > 1,

ZEnlanHJr D GOt

1<i<j<d

22



Fourier orthogonal expansions and approximation

Theorem 3
Let s € N and let f € szs(wu,IB%d). Then, for n > 2s,

En(f)u < n2s [En 2s(A°F)pt2s + En(A5F),] -

By its definition, E,(f), < ||f]|,, which allows us to state the
estimates in terms of norms of the derivatives.
Corollary

Let s € N and let f € W35(w,,BY). Then, for n > 2s,

C S S
En(f)u < s (I1A%F || pr2s + |1 AGF ]| ) -

23



Fourier orthogonal expansions and approximation

Theorem 4
Let f € W225+1(wu,IB%d). Then, for n > 2s+ 1,

En(f)u <

d
7C S
S n2s+1 ZEH—ZS—I(aiASf)u+2s+1+ Z EHlBh A6
=l 1<i<j<d

24
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