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Introduction



Introduction

• Our purpose is to study the best approximation by

polynomials of degree at most n on the unit ball Bd in Rd .

• For

$µ(x) = (1− ‖x‖2)µ, µ > −1, x ∈ Bd ,

we let ‖ · ‖µ be the norm of L2($µ;Bd), defined by

‖f ‖µ :=

(
bµ

∫
Bd

|f (x)|2$µ(x)dx

)1/2

,

where bµ = 1/
∫
Bd $µ(x)dx .

• Let Πd
n the space of polynomials of degree at most n in d

variables.

• We consider the error, En(f )µ, of best approximation by

polynomials in Πd
n in the space L2($µ;Bd), defined by

En(f )µ := inf
pn∈Πd

n

‖f − pn‖µ.
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Our main goal

• For d = 1 and f ′ ∈ L2($µ+1; [−1, 1]) there exists a nice

estimate

En(f )µ ≤
c

n
En−1(f ′)µ+1.

• Extending this well–known estimate to the unit ball with

d > 1 is a difficult problem.

• For example, we can consider the obvious extension

En(f )µ ≤
c

n

d∑
i=1

En−1(∂i f )µ+1,

For d > 2, this inequality does not hold on the unit ball!.
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Differential operators

• Let ∆ denote the usual Laplace operator ∆ = ∂2
1 + · · ·+ ∂2

d .

• In spherical-polar coordinates x = rξ, r ≥ 0 and ξ ∈ Sd−1,

∆ =
d2

dr2
+

d − 1

r

d

dr
+

1

r2
∆0.

∆0 denotes the Laplace-Beltrami operator on the unit sphere

Sd−1 of Rd .

• We will also use the angular derivatives, Di ,j , defined by

Di ,j := xi∂j − xj∂i , 1 ≤ i < j ≤ d .

• The angular derivatives Di ,j and the Laplace-Beltrami

operator ∆0 are related by

∆0 =
∑

1≤i<j≤d
D2
i ,j .
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Harmonic polynomials

• Pd
n denote the space of homogeneous polynomials of degree n.

• Harmonic polynomials of d-variables are homogeneous

polynomials in Pd
n that satisfy the Laplace equation ∆Y = 0

• Hd
n denotes the space of harmonic polynomials of degree n.

• We will denote

adn := dimHd
n =

(
n + d − 1

n

)
−
(
n + d − 3

n

)
.
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Spherical harmonics

• Spherical harmonics are the restriction of harmonic

polynomials on the unit sphere.

• They are eigenfunctions of the Laplace-Beltrami operator,

∆0Y (ξ) = −n(n + d − 2)Y (ξ), ∀Y ∈ Hd
n , ξ ∈ Sd−1.

• Spherical harmonics of different degrees are orthogonal with

respect to the inner product

〈f , g〉Sd−1 :=
1

σd−1

∫
Sd−1

f (ξ)g(ξ)dσ(ξ).

where dσ denote the surface measure and σd−1 denote the

surface area,

σd−1 :=

∫
Sd−1

dσ =
2πd/2

Γ(d/2)
.
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A basis of spherical harmonics

Let Tn(t) and Un(t) denote the Chebyshev polynomials of the first

and the second kind, respectively. Define

g0,n(x1, x2) = (x2
1 + x2

2 )n/2Tn

(
x2(x2

1 + x2
2 )−1/2

)
,

g1,n−1(x1, x2) = x1(x2
1 + x2

2 )(n−1)/2Un−1

(
x2(x2

1 + x2
2 )−1/2

)
.

For d > 2 and n = (n1, n2, . . . , nd) ∈ Nd
0 with n1 = 0 or 1, define

Yn(x) = gn1,n2(x1, x2)
d∏

j=3

(x2
1 +. . .+x2

j )nj/2C
λj
nj

(
xj(x

2
1 + . . .+ x2

j )−1/2
)
,

where λj = λj(n1, . . . , nj−1) :=
∑j−1

i=1 ni + j−2
2 .

Proposition

{Yn; |n| = n with n1 = 0 or 1} is a mutually orthogonal basis of

Hd
n .
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A basis of spherical harmonics

We need information on two operations on this basis,

• partial derivatives ∂i

• multiplication by xi .

They are related by the orthogonal projection operator

projdn,S : Pd
n 7→ Hd

n

It is known that

projdn,S P =

b n
2
c∑

j=0

1

4j j!(−n + 2− d/2)j
‖x‖2j∆jP,

which implies, for a spherical harmonic Yn ∈ Hd
n ,

projdn+1,S(xiYn(x)) = xiYn(x)− 1

2n + d − 2
‖x‖2∂iYn(x).

8



A basis of spherical harmonics

The basis satisfies the following property

Theorem

Let n = (n1, n2, . . . , nd) ∈ Nd
0 with n1 = 0 or 1 and |n| = n.

Then

1. ∂iYn(x) is an spherical harmonic of degree n − 1 and

〈∂iYn,Ym〉Sd−1 6= 0, |m| = n − 1

for at most 2d−2 many m ∈ Nd
0 with m1 = 0 or 1.

2. projdn+1,S(xiYn) is an spherical harmonic of degree n + 1 and

〈projdn+1,S(xiYn),Ym〉Sd−1 6= 0, |m| = n + 1,

for at most 2d−2 many m ∈ Nd
0 with m1 = 0 or 1.
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Orthogonal polynomials on the unit ball

Theorem (Dunkl, Xu)

For n ∈ N0 and 0 ≤ j ≤ n/2, let {Y n−2j
ν : 1 ≤ ν ≤ adn−2j} denote

an orthonormal basis for Hd
n−2j . For µ > −1, define

Pn,µ
j ,ν (x) := P

(µ,n−2j+ d−2
2

)

j (2 ‖x‖2 − 1)Y n−2j
ν (x).

Then the set {Pn,µ
j ,ν : 1 ≤ j ≤ n/2, 1 ≤ ν ≤ adn−2j} consists of a

mutually orthogonal basis of Vdn ($µ); more precisely,

〈Pn,µ
j ,ν ,P

m,µ
k,η 〉µ = hµj ,nδn,m δj ,k δν,η,

where hµj ,n is given by

hµj ,n :=
(µ+ 1)j(

d
2 )n−j(n − j + µ+ d

2 )

j!(µ+ d+2
2 )n−j(n + µ+ d

2 )
.
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Orthogonal polynomials on the unit ball

The orthogonal basis {Pn,µ
j ,ν } satisfies two other orthogonal

relations in the Sobolev space.

Lemma

Let µ > −1. Then the basis {Pn,µ
j ,ν } satisfies

bµ

∫
Bd

∇Pn,µ
j ,ν (x) · ∇Pm,µ

j ′,ν′(x)$µ+1(x)dx = hµj ,n(∇)δν,ν′δj ,j ′δn,m,

where hµj ,n(∇) = (4j(n − j + µ+ d/2) + 2(n − 2j)(µ+ 1))hµj ,n.
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Orthogonal polynomials on the unit ball

For the angular derivatives we have

Lemma

Let µ > −1. Then the basis {Pn,µ
j ,ν } satisfies

bµ

∫
Bd

∑
1≤i<j≤d

Di ,jP
n,µ
`,ν (x)Di ,jP

m,µ
`′,ν′(x)$µ(x)dx = hµ`,n(D)δν,ν′δ`,`′δn,m,

where hµ`,n(D) = (m − 2`)(m − 2`+ d − 2)hµ`,n.
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Orthogonal polynomials on the unit ball

Define Pn,µ
j ,ν = 0 if j < 0. The polynomial Pn,µ

j ,ν enjoys a simple

form under both ∆ and ∆0.

Lemma

Let µ > −1, for Pn,µ
j ,ν we have

∆Pn,µ
j ,ν (x) = κµn−jP

n−2,µ+2
j−1,ν (x) and ∆0P

n,µ
j ,ν (x) = λn−2jP

n,µ
j ,ν (x),

where κµn := 4(n +µ+ d
2 )(n + d−2

2 ) and λn := −n(n + d − 2).

13



Derivatives of orthogonal polynomials on the unit ball

Lemma

For 1 ≤ i ≤ d , let Ŷm+1
η,i := projdm+1,S(xiY

m
η ). Let

β` = m − 2`+ d−2
2 . Then,

∂iP
m,µ
`,η (x) =

β` + `

β`
P

(µ+1,β`−1)
` (2r2 − 1)∂iY

m−2`
η (x)

+ 2(`+ µ+ β` + 1)P
(µ+1,β`+1)
`−1 (2r2 − 1)Ŷm−2`+1

η,i (x).
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Derivatives of orthogonal polynomials on the unit ball

Up to this point, we assumed that the spherical harmonics Y n−2j
ν

in the basis Pn,µ
j ,ν form an orthonormal basis of Hd

n−2j but did not

specify this basis. In our next proposition, however, we need to

specify this basis as the one previously defined.

Proposition

Let Pn,µ
`,ν be an orthogonal polynomial with Y n−2j

ν being the

orthonormal basis previously defined. Let η ∈ Nd
0 with

|η| = n − 2k and η1 = 0 or 1. Then

1. for 1 ≤ i ≤ d , 〈∂iPn,µ
`,ν ,P

n−1,µ+1
k,η 〉µ+1 6= 0 only if k = ` or

`− 1 and, in each case, for at most 2d−1 many ν ∈ Nd
0 with

ν1 = 0 or 1;

2. for 1 ≤ i < j ≤ d , 〈Di ,jP
n,µ
`,ν ,P

n,µ
k,η 〉µ+1 6= 0 only if k = ` and

for at most 22d−1 many ν ∈ Nd
0 with ν1 = 0 or 1.
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Fourier orthogonal expansions and approximation

The Fourier orthogonal expansion of f ∈ L2($µ,Bd) is defined by

f (x) =
∞∑
n=0

b n
2
c∑

j=0

∑
ν

f̂ n,µj ,ν Pn,µ
j ,ν (x), with f̂ n,µj ,ν :=

1

hµj ,n
〈f ,Pn,µ

j ,ν 〉µ.

Let projµn : L2($µ,Bd) 7→ Vdn ($µ) and Sµn : L2($µ,Bd) 7→ Πd
n

denote the projection operator and the n-th partial sum operator,

respectively. Then

Sµn f (x) =
n∑

m=0

projµm f (x) and projµm f (x) =

bm
2
c∑

j=0

∑
ν

f̂ m,µj ,ν Pm,µ
j ,ν (x).

By definition, Sµn f = f if f ∈ Πd
n and 〈f − Sµn f , v〉µ = 0 for all

v ∈ Πd
n .
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Fourier orthogonal expansions and approximation

It turns out that the partial derivatives commute with the partial

sum operators, a fact that plays an essential role.

Lemma

Let µ > −1. Then

∂iS
µ
n f = Sµ+1

n−1 (∂i f ), 1 ≤ i ≤ d ,

and

Di ,jS
µ
n f = Sµn (Di ,j f ), 1 ≤ i < j ≤ d .

Obviously, it also holds

∆Sµn f = Sµ+2
n−2 (∆f ), and ∆0S

µ
n f = Sµn (∆0f )
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Fourier orthogonal expansions and approximation

Theorem 1

Let f ∈W 2
2 ($µ,Bd). Then, for n ≥ 2,

En(f )µ ≤
c

n2
[En−2(∆f )µ+2 + En(∆0f )µ] .

It is easy to see that both terms in the right hand side are

necessary.

• If f is a harmonic function, then ∆f = 0 and we need

En(∆0f )µ.

• If f is a radial function, f (x) = f0(‖x‖), then ∆0f = 0 and we

need En−2(∆f )µ+2.
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Sketch of the proof of Theorem 1

1. Let f ∈ W2
2 ($µ,Bd), from

∆Pn,µ
j ,ν (x) = κµn−jP

n−2,µ+2
j−1,ν (x) and ∆0P

n,µ
j ,ν (x) = λn−2jP

n,µ
j ,ν (x),

and the conmutativity of the operators, we deduce

∆̂f
n−2,µ+2

j ,ν = κµn−j−1f̂
n,µ
j+1,ν and ∆̂0f

n,µ

j ,ν = λn−2j f̂
n,µ
j ,ν .

2. From Parseval’s identity,

En(f )2
µ = ‖f −Sµn f ‖2

µ =
∞∑

m=n+1

bm
2
c∑

j=0

∑
ν

∣∣∣f̂ m,µj ,ν

∣∣∣2 hµj ,m = Σ1 +Σ2,

where we split the sum as

Σ1 =
∞∑

m=n+1

bm
2
c∑

j=bm
4
c

∑
ν

∣∣∣f̂ m,µj ,ν

∣∣∣2 hµj ,m Σ2 =
∞∑

m=n+1

bm
4
c−1∑

j=0

∑
ν

∣∣∣f̂ m,µj ,ν

∣∣∣2 hµj ,m.
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Sketch of the proof of Theorem 1

3. From the definition of hµj ,m we get

hµj ,m

hµ+2
j−1,m−2

=
(µ+ 1)2(m − j − 1 + d

2 )(m − j + µ+ d
2 )

(µ+ 1 + d
2 )2j(µ+ j + 1)

,

which is bounded by a constant, independent of m, when

bm4 c ≤ j ≤ bm2 c. Consequently, it follows that

Σ1 ≤ c
∞∑

m=n+1

bm
2
c∑

j=bm
4
c

∑
ν

m−4
∣∣∣∆̂f

m−2,µ+2

j−1,ν

∣∣∣2 hµ+2
j−1,m−2

≤ c

n4
En−2(∆f )2

µ+2.
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Sketch of the proof of Theorem 1

4. We have∣∣∣f̂ m,µj ,ν

∣∣∣2 = (λm−2j)
−2
∣∣∣∆̂0f

m,µ

j ,ν

∣∣∣2 ∼ m−4
∣∣∣∆̂0f

m,µ

j ,ν

∣∣∣2
for 0 ≤ j ≤ bm4 c. Consequently, it follows that

Σ2 ≤ c
∞∑

m=n+1

bm
4
c−1∑

j=0

∑
ν

m−4
∣∣∣∆̂0f

m,µ

j ,ν

∣∣∣2 hµj ,m
≤ c

n4
En(∆0f )2

µ.
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Fourier orthogonal expansions and approximation

Theorem 2

Let f ∈W 1
2 ($µ,Bd). Then, for n ≥ 1,

En(f )µ ≤
c

n

 d∑
i=1

En−1(∂i f )µ+1 +
∑

1≤i<j≤d
En(Di ,j f )µ

 .
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Fourier orthogonal expansions and approximation

Theorem 3

Let s ∈ N and let f ∈W 2s
2 ($µ,Bd). Then, for n ≥ 2s,

En(f )µ ≤
c

n2s
[En−2s(∆s f )µ+2s + En(∆s

0f )µ] .

By its definition, En(f )µ ≤ ‖f ‖µ, which allows us to state the

estimates in terms of norms of the derivatives.

Corollary

Let s ∈ N and let f ∈W 2s
2 ($µ,Bd). Then, for n ≥ 2s,

En(f )µ ≤
c

n2s
(‖∆s f ‖µ+2s + ‖∆s

0f ‖µ) .
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Fourier orthogonal expansions and approximation

Theorem 4

Let f ∈W 2s+1
2 ($µ,Bd). Then, for n ≥ 2s + 1,

En(f )µ 6

6
c

n2s+1

 d∑
i=1

En−2s−1(∂i∆
s f )µ+2s+1 +

∑
1≤i<j≤d

En(Di ,j∆
s
0f )µ

 .
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