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e Planetary sciences, paleomagnetism, remanent magnetization of
ancient rocks ~ history and future of Earth magnetic field

e Magnetization not measurable
~» measures of generated magnetic field
~> inverse problems, non destructive inspection



How do rocks acquire magnetization?
e Igneous rocks (from Earth volcanoes, lava, magma; basalts)

e Thermoremanent magnetization, ferromagnetic particles
(small magnets) follow the magnetic field:
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How do rocks acquire magnetization?
e Igneous rocks (from Earth volcanoes, lava, magma; basalts)

e Thermoremanent magnetization, ferromagnetic particles
(small magnets) follow the magnetic field:

&
LSS

e Can be subsequently altered, under high pressure or
temperature



SQUID microscope

Scanning magnetic microscopes: (MIT, EAPS)
for weakly magnetized small samples

sapphire window
pedestal + sensor

~» map of the vertical component of the (tiny) magnetic field
on a rectangular region above the sample



Hawaiian Basalt example
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picture of thin sample vertical component of the
magnetic field (nT)



General scheme
Thin sample ~ planar (rectangle) S C R?
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General scheme
Thin sample ~ planar (rectangle) S C R?
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— m
support of unknown magnetization (source term) M (mz)

X3

Bl(X)
B(X) = BZ(X) R
B3(X)

measurements @

o 5 = = =



Problem setting

e Generates a magnetic field at x € S: B[m|(x) = —poV U[m](x)

(m(y),x—y
where  U[m](x 47r/ |(x—y|3 dy

1o magnetic constant, V 3D gradient
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Problem setting

Generates a magnetic field at x ¢ S: B[m|(x) = —poV U[m](x)

(m(y),x—y
where  U[m](x 47r/ |(x—y|3 >dy

1o magnetic constant, V 3D gradient

Measurements b3[m] of vertical component Bs[m] = — 100y, U[m]
performed on square @ C R? at height h (incomplete data)

BX:' partial derivative w.r.t. x;

Inverse problems: from pointwise values of b3[m] on Q recover
magnetization m or net moment (M) on S average, m; € 12(5) € L1(S), i =1,2,3

(m) = ézzg Cm)= [[ m)ay

or suitable extension of b3[m] to R2? then Fourier...



Magnetic, harmonic quantities

e Scalar magnetic potential U[m] and magnetic field B[m)]

Maxwell, magnetostatics, time-harmonic, macroscopic

Blm] = 110 VU[m] = Bs[m] = — g O, Ulm]

~ data: b3[m] = Bs3[m]|qx(n = (Ox U[mM]) quiny

e Poisson-Laplace equation in divergence form in R3 4 30 Laplacian

A U[m] =divm

e U[m] and Bz[m] harmonic functions in {x3 > 0}
m supported on S C R?

A U[m] = AB3[m] =0in {x3 > 0}

~> magnetization: m or net moment (average) (m) on S x {0}7



Operators

Put X = (X17X2,X3) €R3

O, 9
grad =V = 0y with Oy, = —
P Ox

X3

i

div =V., curl =Vx

Laplacian = A =div(grad) =V -V = 8)2(12 + 8)%22 + 8)2(32



Maxwell's equations (magnetostatics)

Quasi-static assumptions H magnetic field
Ampere's law, no external current density (J = 0):
VxH=0=H=-VU U magnetic potential (scaler)
magnetic flux density (induction) B: V-B =0

with constitutive relation: B = po (H +m)  for magnetization m

o magnetic permeability (B = po H outside support of m whence in {x3 > 0})

= AU=V -m=divm

~> Laplace-Poisson PDE with source term in div form



Interlude: portraits

Laplace Poisson Maxwell
1749-1827 1781-1840 1831-1879



Inverse recovery problems

AUm=V-m inR3, suppmcC S x {0}

bs[m] = (0, U[m) qumy € L2(Q)

bs[m] on Q x {h} ~» (m) or mon S x {0}?

(m) = //S m(y)dy e B, m e [*(s)>

or by[m] on Q x {h} ~» B3[m] on R? x {h}?

B3[m] € L*(R?)



Inverse recovery problems

e Net moment estimation:
uniqueness, unstability ~> regularization (BEP)

e Preliminary step for magnetization recovery (non-uniqueness):
~» mean values (m;) of m; on S ~~ (m)
~ direction and other informations for estimation of m

m(y) d a
Unidirectional mg(y) = d2 m(y) = <m> = d2 (m) moment furnishes direction
ms(y) ds ds

(m real valued)

Also for S, Q C R? open bounded connected Lipschitz-smooth

(whose boundaries are locally graphs of Lipschitz continuous functions)



~~ magnetization recovery

—
e

picture of thin vertical component of

. estimated magnetization
sample the magnetic field (nT) &

(Am?)

knowing direction and after re-magnetization (MIT, EAPS)



Inverse recovery problems

e Linear map:
. { (S — L2(Q)
3 m— B3[m]|Q><{h} = b3[m]

e Magnetization recovery (full inversion): recover m from bz[ml]
~ ill-posed (non uniqueness) because Ker bz # {0}, silent sources
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Inverse recovery problems

Linear map:

{ [L2(S)P = L*(Q)

3

m— B3[m]|Q><{h} = b3[m]

Magnetization recovery (full inversion): recover m from bz[m)]

~ ill-posed (non uniqueness) because Ker bz # {0}, silent sources

Moment recovery: well-defined i {1,2,3)

{ Ran b3 — R

b3[m] —> (m,>

Strategy: linear estimator Vm of given norm, once and for all
find test functions ¢; € L?(Q) such that (@i, bs[m])12(g)~=(mi)
~~ best constrained approximation problems (BEP)

and asymptotic formulas, for large measurement area Q

Direct inversion of associated discrete problem: heavy, unstable



Strategy for net moment recovery

Determine ¢; € L%(Q) such that

<b3[m]a¢i>L2(Q) = (m, b§[¢i]>[L2(S)]3 ~ (m;) = (m, ei>[L2(5)]3

with adjoint operator b3 : L2(Q) — [L%(S)]® to b3 and €1 = (1,0,0), e = (0,1,0), e3 = (0,0,1)on S
(e1 = (xs5,0,0), e = (0,xs,0), €3 = (0,0, xs) on R?)
~~ linear estimator for moment (m;) given bound on [|ml| ;253

~» trade-off between prescribed accuracy ~ and norm of ¢;

in Sobolev space, L2 norm of gradient of ¢

~> stability w.r.t. measurement errors, robustness



Operator bs

[ ] |ntegra| expreSSion also in terms of Poisson and Riesz transforms

with y = (y1, y2), for (x1,x) € Q:

bs [m] (x1, x2) = —Z—;x

mi(y) (1 — y1) + ma(y) (2 — y2) + m3(y) x3
(o] | )

(1 — y1)? + (e — y2)2 +x2)2

e b3 : [L2(5)]3 — Lz(Q) continuous, Hb3[m]H/_2(Q) S HmH[L2(S)]3



Magnetic quantities, harmonic analysis

e Poisson kernel of upper half-space: (x1,%) €ER?, x3 >0
X3

27 (X12 + x02 + X32)

PX3(X1’X2) — 3/2

e For m ¢ [L2(5)]3, h>0

monS ~ JUR
m= { 0 outside S’ m = (M, My, M3) € [L2(R2)]3

Ho

b3[m] = — 5

(axl Ppy o i1y + Oy Pp % 12+ [Oy P ,773]|X3:,,) .

(x1,%) € Q. x3=h



Operator b3

e Adjoint operator: for ¢ € L2(Q), ¢ = ¢ on Q, 0 outside Q

Oy N

B3] = 2 | 0 | (P )pam
_3X3

e b3 injective
o Ran b = Dt = V, [WA2(S)] x L2(S)
2D gradient V, = ( gi; )

Bounds on ||b3]| and ||b5 ||, Fourier transform of Py,



Operator b;

e Lemma: R2 5 Q # ) open

If g € L*(R?) is such that [Dy, Px, * g]|,,_p =0 0r V2Ppxg =0

on Q, then 8 = 0 Proof: harmonicity, real analyticity, Poisson
~ b3 injective

L] S||ent sources: divergence free, Helmholtz- / Hardy-Hodge decompositions

Ker by = Ds = {(~0, ¥, 0, ¥, 0) , ¥ € W3*(S)}
° [LZ(S)]3 = Ker b3 &, Ran b§

~ Ran by = Dg = Vo [W2(S)] x L*(S)



Hilbert Sobolev spaces

R? 5 Q # () open bounded Lipschitz-smooth

e W;(Q) C L2(Q): functions with [2(R) first derivatives, that
vanish on boundary 92

o g € L2(Q) belongs to W,?(Q) & Vag € [L2(Q)]? and glag = 0

e Poincaré inequality: HgHWOI,2(Q) ~ V2 glli2 )2



Net moment recovery: uniqueness

Silent sources possess vanishing net moments

~~ uniqueness of (m) from b3 [m]

Indeed, recall (my) = (m, &) [LZ(S)}3

with e; = (1,0,0), ep =(0,1,0), e3 = (0,0,1)on S
e1 = (xs5,0,0), e2 = (0,xs,0), e3 = (0,0, xs) on R?
and e; € V3 [leZ(S)} x L2(S) = D& C [L2(S)P

Hence, m € Ker b3 = Dg (silent) = (m;) =0



Net moment recovery, strategy

e; c Ran b} = Dé, though e; g Ran b; yet from Lemma

Hence, no hope to find ¢ € L2(Q) such that
(b3 [m], ¢)12(q) — (mi)

vanishes for arbitrary m € [L2(S)]3

(balml, 6)2(q) = (mi) = (Balm] 6)12(q) = (. €153 = (m b3 [#] - &) 205



Density result

However
inf ~|lb3[¢] — eill 3 =0
L2(S
L, [L2(5)
hence for m € [L2(S)]® , ¢6Viv';1f2(0) [(Bslm] . #)2(g) — (mid| =0

o There exists ¢, € W, *(Q) such that ||b5 [¢,] — eiH[L2(5)]3 —0

as n — oo

e |t satisfies || V2 ¢”||[L2(Q)]2 — 00

Proof: e; € Ran b3 \ Ran b3, wh2(Q) C L%(Q) compact, W01'2(Q) C Wh2(Q) closed, Poincaré inequality,

b3 continuous



Consequence

For m € [LZ(S)]3, we can find ¢ € W01’2(Q) C L2(Q) such that
|<b3 [m], ¢>L2(Q) - (m,-)‘ <165 [¢] - ei||[L2(5)]3 HmH[Lz(s)]3

arbitrarily small, at the expense of arbitrarily large | V2 ¢||[L2(Q)]z

or Hd)HWLQ(Q), Poincaré

Unstability ~~ regularization, trade-off (error / constraint)



Bounded extremal problem

Best constrained approximation, optimization issue M>0
o (BEP) Find . € Wy*(Q), V2 bull2(qp < M such that

min 165 [6] — eill 2rsqs = 165 (6] — €illi ooy
PEWG (), V2l g2 <M [L2(S)] [L2(S)]

2

2
o) uvmu[pwﬂz] LA>0

min, [ 61 - o
PEWY Q)

e 3 unique solution ¢, to (BEP) and || V> ¢*H[L2(Q)]2 =M

Proof: orthogonal best approximation projection on closed (b; continuous) convex

b3 {6 € WyX(Q), IV2 éxll2(q < M} C Ranby C [L3(S)PP

e; € Ran b; \ Ran b; = constraint saturated



Critical point equation

e Solution ¢, to (BEP) satisfies critical point equation (CPE)
3 unique A > 0 such that || V> ¢*H[L2(Q)]2 = M and

(CPE) b3 b; [¢*] — )\Az qb* = b3 [e,-] on Q

Proof: using _L best approximation projection, or by differentiation and density of Wol’z(Q) in LZ(Q);
indeed, 3 unique A € R such that V§ € WOI‘Z(Q),

(b5 (D] — e, b3 [8]) 1253 + M V2dw, Vad) 22 = (b3b3[¢u] — balei] — A2, 6) 2q) =0

argument of minimum = XA > 0; relation below and b;‘ injective = X\ > 0



Critical point equation

e Lagrange parameter \, constraint M, error in (BEP):

<b>3k [gb*] — €, b>3k [¢*]>[L2(S)]3 = —>\ M2

and )\ — 0 as M — 00 by density result

e Variational formulation, ¥4y € Wy 2(Q), A > O:

<b§ [¢4] b§ [¢]>[L2( 3+ (Vagy V2¢> L2(Q))? — (ei, b3 [¥]) [L2(S))®



Ongoing, solving (CPE)
~> numerical magnetometer

e FEM, preliminary numerics, ¢, = ¢, [e;], i =1,2,3
—AD2 ¢y + b3 by [d«] = b3 [ej] and ¢, 90 =0

e iterative scheme, ¢, = ¢, [ei/] — &4 [ei] n— oo
—XoDy¢n+ ¢p=—0b3 by [¢pp_1] + Pn_1+ b3 [e]] and ¢pj90 =0, n>1

° in Fourier baSIS product of sin of separated variables

Dirichlet problems, elliptic 2D PDE



Solving (CPE), preliminary numerics

FEM, P1, squares, matlab ng = 80 x 80
right hand sides bs[e;] =123
b,le,] b,le,] b,le,]
4 4 4
2 2 2 i
) \\@ @) ~ 0 ~ 0
2 -2 2 .
44 2 0 2 4 -4-4 2 0 2 4 44 2 () 2 4
1 1 1

SQUID R=4.00 s=0.50 h=0.050

u]
o)
I
i
it



Solving (CPE), preliminary numerics
bi = belei], i =1,2,3
(i, b3 [mi]>L2(Q) ~ (m;)

—X D2 ¢; + b3 by [6i] = b3 [ej] and ¢;50 =0

A=15

SQUID R=4.00 s=0.50 h=0.050 - nQ=80 nS=30 -

lambda=1.5



Solving (CPE), preliminary numerics
¢I' - ¢* [ei]v I = 13273
(@i by [mi]) 2(q) = (mj)

—A Dy ¢ + b3 b3 [¢] = b3 [e;] and $j19¢ =0

A = 0.0001

SQUID R=4.00 $=0.50 h=0.050 - Q=80 nS=30 -

lambda=0.0001



Solving (CPE), preliminary numerics
bi = belei], i =1,2,3
(i, b3 [mi]>L2(Q) ~ (m;)

—X D2 ¢; + b3 by [6i] = b3 [ej] and ¢;50 =0

A=4

SQUID R=4.00

=0.50 h=0.050 - nQ=80 nS=30 -

lambda-=.



3 = O« [e3]

(b3 [83] » ei) 253

Solving (CPE), preliminary numerics

~

(e3) = (xs)ifi=3, ~0ifi=1,2
<b(3,(\)

=(¢3, b3 [ei]) 2(q) A =1
<b(2,(M),

<by(®,(\),

<>\t \:‘u“
ol
SO

2 /ﬂx/‘\l‘f
1\

<bj(,(\) onS

A=1

N



(CPE), iterative resolution scheme
(CPE): b3 b} [6u] — ADg ¢ = by [e] on @
Forn>1, let ¢, 1 € W01’2(Q), 0> 0. Let ¢, on Q s.t.
ob3 b3 [pn-1] — Ao D2 ¢n = 0bs [€]] — (¢ — Pn-1)
then ¢p€ W01’2(Q)

XDy ¢+ ¢n=—eb3b; [dn_1] + dn_1+ ob3 [e]
Convergence result: Vo € WHA(Q), n > 1
for % Sma” enough, ¢n — d)* in LZ(Q) (numerics in progress)
actually, ¢, and ¢, € C*(Q) Holder continuous functions < c=(@®)

and ¢p — ¢ in C¥*(Q) for 0 < < 1/2 n— oo

[1(x) — ¥(y)l
IWllca(qy= sup ————""
xyEQx7Ay |x —y|*



Also, asymptotic estimations

Specific functions ¢; on large @ = [-R, R]? also other shapes

(B3[#i], m)p2(syp = (b3[m], ¢i) 2@y = (mi)

// Xi b3[m](X1,X2)C|X1dX2: @ <m,> I = 1,2
Qr 2

310 1
+m (yi m3) + O(ﬁ)

//QR R b3[m](x1, x2) dxidxp= :\%(mﬁ + O(%)

Also available for 3D samples



h=0.27mm, s = 0.53mm,

Numerical results (1/2)

(my) 0.06 ﬂ
<m2> = —0.07
<m3> 3.42
R R/s | Error on the amplitude | Error on the angle
1.2mm | 2.25 —9% 1.25°
1.85mm | 3.47 —3.7% 0.17°
2.45mm | 4.6 —0.93% 0.07°




h=0.27mm, s = 0.53mm,

Numerical results (2/2)

-

<m1> 3.53

(m) | = [ 6.78 »

<m3> —0.16

R R/s | Error on the amplitude | Error on the angle

1.2mm | 2.25 12.3% 3.17°
1.85mm | 3.47 2.36% 0.73°
2.45mm | 4.6 1.4% 0.58°




Ongoing, next

e Resolution schemes, numerical analysis (ctn), test actual data
e Local moments determined by b3[m] if m of minimal L2(S) norm
e (BEP) for general e € Ran b} \ Ran b} ~+ higher order moments

e Use (m) for magnetization m estimation
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Ongoing, next

Planetary sciences, paleomagnetism:
e Magnetizations m in [L}(S)]3 or distributions

e For 3D samples S, pointwise dipolar sources...

Brain imaging (medical engineering):

e Electroencephalography (EEG), source and conductivity inverse
problems, spherical geometry



Lunar paleomagnetism, 3D samples

inverse source recovery problems

Moon rocks (NASA)

or spherules



Lunar paleomagnetism, 3D samples

CEREGE-CNRS (ANR MaglLune), lunometer

Sparse measures of magnetic field B[m] (magnetometer)

~» magnetization (in rock), pointwise dipolar source m?



Lunar paleomagnetism, 3D <« 2D

For Moon rocks, dipolar source term m = p dc
with dipole C € S (rock sample), moment p € R3

AU=V -m=p - - Vic

Data: b == B|Q, B ~ VU == (69U, 8,U, 8)(3 U) pointwise (every degree)
on sets Q made of 3 series of 3 (or more) circles, in L directions

tangential, radial, vertical components of magnetic field; sparse, spherical / cylindrical

Recover moment p = (m) ~ first localize source C ongoing [KM PhD]



Inverse problems, comments

In both situations: AU=V.minR3

Data: pointwise values b = B|q of components of B ~ V U (bs)
on (planar) measurement set Q C R3\ S (square, circles)
far from magnetization support S C R3 (sample)

Inverse problems: recover
-min S or its moment (m) (source C in S, moment p)

- lacking values of U or / and components of VU (outside measurement set Q), or support of m in S?

Assumptions concerning: ~ existence, uniqueness, stability
- support supp m C S C R3 AU = 0 outside S C R
- models for m in L2(S) or pointwise dipolar sources

or more general distributions?

- conductivity (here known, constant) EEG: V - (cVU)=V -m



Lunar paleomagnetism, 3D <« 2D

Analysis of denominators of field's components B~ vuy(x) = =X

[x—c[®

on circles C Q C planes {x; = ct} in the 3 orthogonal directions i

/

(where data are given)

~> complex variable, best quadratic rational approximation  on circles



Lunar paleomagnetism, 3D <« 2D

~~ data on more circles?

o5

oz
ots o om o i

~~ 2 or several sources?

(EEG: other data sets, conductivity, several pointwise dipolar sources, ...

)



