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Convergence




Multipoint interpolation

e Let X C C be a simply connected compact set.
e Let f be an analytic function on an open setV D 3.

e Let us fix a table of interpolation points at the zeros of the polynomials

n

W, (Z) — H(Z — an,i)

1I=1

an,iez‘ neN.
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Multipoint interpolation

e Let X C C be a simply connected compact set.
e Let f be an analytic function on an open setV D 3.

e Let us fix a table of interpolation points at the zeros of the polynomials

n

W, (Z) — H(Z — an,i)

1I=1

an,iez‘ neN.

e Given n,m € Z™, there exist polynomials P, i, Qn m with degP, < n,
degQnm < m, Q,m # 0, such that the function

Qn,m(2)f(z) — Paym(2)

Is analytic on V.
Whn+m41(2) 4

e The rational function | I, m = Pn.m/Qnm | IS the multipoint Padé ap-

proximant of type (n, m) of the function f associated with wp m.1.
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Multipoint interpolation

e To describe the convergence of the interpolation process as n — oo, the
Interpolation points need to have a limit distribution:

1 — e
dw, = 525%,; HO‘\
|—

Weak convergence

of measures
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Multipoint interpolation

e To describe the convergence of the interpolation process as n — oo, the
Interpolation points need to have a limit distribution:

1 < .
de — ﬁz5an’i —

=1

1
« 15 supported on X Pla;2) = élogp — W] da(w)

v
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Multipoint interpolation

e To describe the convergence of the interpolation process as n — oo, the
Interpolation points need to have a limit distribution:

1 < .
de — ﬁz5an’i —

=1

« 15 supported on X

Pla;z) =

1
élog 1z — w| do(w)

v

e The domain of m-meromorphy

D ()

Is the largest set determined by

the equipotential curves of a to which f can be continued as a meromorphic

function with < m poles.

/ Radius of Dn(a)

Din(ar) = {z € C : exp{—P(a;2)} < R(a1)}
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Multipoint interpolation

e To describe the convergence of the interpolation process as n — oo, the
Interpolation points need to have a limit distribution:

1 < .
de — ﬁz5an’i —

=1

The convergence of the interpolants II, 1, is [REXE2TPPITe
governed by these equipotential curves of « polynomials)

e The domain of m-meromorphy | Dn(a) | isthe largest set determined by

the equipotential curves of a to which f can be continued as a meromorphic
function with < m poles.

/ Radius of Dn(a)

Din(ar) = {z € C : exp{—P(a;2)} < R(a1)}

SIGMA’'2016, CIRM, Marseille 4[25



Polynomial examples

e Let P, be the polynomial of degree n interpolating f at the Chebyshev
nodes.

1 . dx
de — X =

Poles of f
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Polynomial examples

e Let P, be the polynomial of degree n interpolating f at the Chebyshev
nodes.

Uniform convergence

Largest equipotential curve of
on compact subsets

a Inside of which f is analytic
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Polynomial examples

e Let P, bethe polynomial of degree ninterpolating fat equidistant nodes.

1 dx
f(z) = —
) 1+ 2522 dwn p)
1 +1
Poles of f
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Polynomial examples

e Let P, bethe polynomial of degree ninterpolating fat equidistant nodes.

dw,

Uniform convergence

Largest equipotential curve of
on compact subsets

a Inside of which f is analytic
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If the function f has exactly m poles in D (), then

(1) {ITIn m} converge uniformly to fin compact subsets of Dy, (a)\ {Poles of f}

(2) The poles of f attract the poles of IT, , according to their multiplicity

SIGMA'2016, CIRM, Marseille 6/25



If the function f has exactly m poles in D (), then

(1) {ITIn m} converge uniformly to fin compact subsets of Dy, (a)\ {Poles of f}

(2) The poles of f attract the poles of IT, , according to their multiplicity

e Example: |f(z) = 11+—\/z§32 Ry =1
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If the function f has exactly m poles in D (), then

(1) {ITIn m} converge uniformly to fin compact subsets of Dy, (a)\ {Poles of f}

(2) The poles of f attract the poles of IT, , according to their multiplicity

e Example: |f(z) = 1+ V22 Ry =1
1-23
e Poles of II; »: C
- n=0(mod 3)
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If the function f has exactly m poles in D (), then

(1) {ITIn m} converge uniformly to fin compact subsets of Dy, (a)\ {Poles of f}

(2) The poles of f attract the poles of IT, , according to their multiplicity

3
1+ V22 R, = 1

e Example: |f(z) =

e Poles of II; »: C

- n=0(mod 3)

- n=1(mod 3)
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If the function f has exactly m poles in D (), then

(1) {ITIn m} converge uniformly to fin compact subsets of Dy, (a)\ {Poles of f}

(2) The poles of f attract the poles of IT, , according to their multiplicity

3
1+ V22 R, = 1

e Example: |f(z) =

e Poles of 11 »:

- n=0(mod 3)

They aren't
poles of £!

- n=1(mod 3)
- n=2(mod 3)

SIGMA'2016, CIRM, Marseille
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Logarithmic capacity

e Let K be a compact set in the complex plane and o a positive measure
supported on K. The energy of o is defined as

(o) = /K/Klog 2 _1 W do(w)do(z).
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Logarithmic capacity

e Let K be a compact set in the complex plane and o a positive measure
supported on K. The energy of o is defined as

(o) = /K/Klog 2 _1 W do(w)do(z).

e The logarithmic capacity of K is given by

cap(K) = exp {_ min |(J)} (Large minimum energy
’ means small capacity)

and the minimum is attained at the equilibrium measure of K(when cap(K) > 0).
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Logarithmic capacity

e Let K be a compact set in the complex plane and o a positive measure
supported on K. The energy of o is defined as

(o) = /K/Klog 2 _1 W do(w)do(z).

e The logarithmic capacity of K is given by

cap(K) = exp {_ min |(0)} (Large minimum ew.@.rgy
’ means small capacity)

and the minimum is attained at the equilibrium measure of K(when cap(K) > 0).

Every function bounded on a domain G and harmonic on G\ K admits a
harmonic extension to the whole of G if and only if cap(K) =0
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Logarithmic capacity

e Let K be a compact set in the complex plane and o a positive measure
supported on K. The energy of o is defined as

(o) = /K/Klog 2 _1 W do(w)do(z).

e The logarithmic capacity of K is given by

cap(K) = exp {— main I(a)}

(Large minimum energy

means small capacity)

and the minimum is attained at the equilibrium measure of K(when cap(K) > 0).

e If Kis connected, then

SIGMA'2016, CIRM, Marseille

diam(K)

< cap(K) <

diam(K)

2
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Convergence In capacity

e The sequence of functions {f,} converges in capacity to the function f
on compact subsets of the domain D if

Ve>0,VKCD limcap{zeK: |f(z) — f.(2)| > ¢} = 0.

n— o0

As convergence

. C . (h measure!
Notation: | f, — f Inside D
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Convergence In capacity

e The sequence of functions {f,} converges in capacity to the function f
on compact subsets of the domain D if

Ve>0,VKCD limcap{zeK: |f(z) — f.(2)| > ¢} = 0.

n— o0

Dm(c) Is the largest domain inside of which II, p, s fasn — oo
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e The sequence of functions {f,} converges in capacity to the function f
on compact subsets of the domain D if
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> Uniform convergence of f,
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fn analyticin D
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Convergence In capacity

e The sequence of functions {f,} converges in capacity to the function f
on compact subsets of the domain D if

Ve>0,VKCD limcap{zeK: |f(z) — f.(2)| > ¢} = 0.

n— o0

Suppose that | f, . f inside D

> Uniform convergence of f,
Inside D

fn analyticin D

f, meromorphicin D

with < m poles v >
" E Uniform convergence of 1,

Inside D \ {Poles of f}

f meromorphicinD
with exactly m poles
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Convergence In capacity

e The sequence of functions {f,} converges in capacity to the function f
on compact subsets of the domain D if

Ve>0,VKCD limcap{zeK: |f(z) — f.(2)| > ¢} = 0.

n— o0

Dm(c) Is the largest domain inside of which II, p, s fasn — oo

Convergence in capacity + control over the poles

Implies uniform convergence
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Convergence In capacity

e The sequence of functions {f,} converges in capacity to the function f
on compact subsets of the domain D if

Ve>0,VKCD limcap{zeK: |f(z) — f.(2)| > ¢} = 0.

n— o0

Dm(c) Is the largest domain inside of which II, p, s fasn — oo

Convergence in capacity + control over the poles

Implies uniform convergence

We are done with the direct results!
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Convergence In capacity

e The sequence of functions {f,} converges in capacity to the function f
on compact subsets of the domain D if

Ve>0,VKCD limcap{zeK: |f(z) — f.(2)| > ¢} = 0.

n— o0

Dm(c) Is the largest domain inside of which II, p, s fasn — oo

How can we calculate Ry («)?
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Buslaev Theorem

e Suppose that
(1) The m poles of IT, 1, have a limit as n — oc.

(2) The table of interpolations points on the continuum X is extremal:

Wn(2)

M R 8@ 70

where h is the conformal mapping of C \ ¥ onto C \ .
e Then

- The limit points of the poles are singularities of the function f.

- Rm(«) 1s determined by the limit points with smallest potential.

- Those with larger potential are the only poles of the function fin Dy, («)
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Exact rate of convergence




Propagation of convergence

1+ V22
o Example: | f(z) = 1+\/z; .
@
o | limsup |[f— I, |Y" = p <1
n—o0
®

(lim sup |[ITn11,2 — Hn,2H|1</n = p)

N— 00
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Propagation of convergence

14+ v/22
Example: | f(z) =
1/n
o | limsup|[f— Il " =p<1 ‘
n—oo
(limsupunn+12 o " = )
n—o0
Z
eThen | = 2l | » | limsup||Qn(f - an)Hl/”:_H I
R2 n— 00 R2
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Propagation of convergence

e Example: | f(z) =

1—273 K\
e | imsup ||f —II, zHl/n =p<l1 \!J
n—oo

(lim sup ||Mps12 — Hpo|lV" = )

N— 00

eThen | = 2l | » | limsup||Qn(f - an)Hl/”:_HZ”K

R2 n— 00 R2
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Best approximants

e Let f be a function defined on a regular compact set K c C.

e Let us consider | dym(K) =min{||[f—r|[x : r € Ram} | where

Rn,m:{g : degp <n,degq<m,q#0,.

/
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Best approximants

e Let f be a function defined on a regular compact set K c C.

e Let us consider | dym(K) =min{||[f—r|[x : r € Ram} | where

Rn,m:{g : degp <n,degq<m,q#0,.

/

e Suppose that limsup (/dn,m(K) — p < 1. Then

n—o0

_cap(K)
" Rm(x)

where u Is the equilibrium measure of the compact set K.
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e Let f be an analytic function on a neighborhood of [—1,1]. Let us inter-

polate f along a table of points in [—

— o — — — — — — — — —
e
—_—

1, 1] with arbitrary distribution a.

— — — — — — — — — —
T m— e
— —

— — —
—_—— — —

—_—
_—
- — — —_— — — — —_ — —_—_- -

Region of m-meromorphy
of the function f
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e Let f be an analytic function on a neighborhood of [—1,1]. Let us inter-

polate f along a table of points in [—

1, 1] with arbitrary distribution a.

e Suppose that

n—o00

lim sup [|f — I o

1/n

« =p<l

(K is regular)

— — —
—_—— — —

Region of m-meromorphy
of the function f
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e Let f be an analytic function on a neighborhood of [—1,1]. Let us inter-

polate f along a table of points in [—

1, 1] with arbitrary distribution a.

e Suppose that

n—o00

lim sup [|f — I o

1/n

« =p<l

(K is regular)

What can be said
about D, («0)?

— — —
—_—— — —

Region of m-meromorphy
of the function f
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e Let f be an analytic function on a neighborhood of [—1,1]. Let us inter-
polate f along a table of points in [—1, 1] with arbitrary distribution «.

e Suppose that | limsup |[f — Iy /" = p < 1 (K is regular)

n—o00

What can be said
about D, («0)?

Region of m-meromorphy
of the function f
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e Suppose that the function f is defined on K and verifies

limsup ||[f — My V" =p <1

nN— 00

(In regions where the potential is large p = limsup |[IIn11.m — nm }/”)
n— oo
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e Suppose that the function f is defined on K and verifies

limsup ||[f — My V" =p <1

nN— 00

(In regions where the potential is large p = limsup |1l 11.m — Hn,mH}(/”)

n— 00

e Kis a regular compact set on which the minimum value of the potential
of o Is attained at a point that does not belong to the interior of X.
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e Suppose that the function f is defined on K and verifies

limsup ||[f — My V" =p <1

nN— 00

(In regions where the potential is large p = limsup |1l 11.m — Hn,mH}(/”)
n— oo

e Kis a regular compact set on which the minimum value of the potential
of o Is attained at a point that does not belong to the interior of X.

e Then p = R (@) \/a(K) = exp {— TEII? P(a; z)}
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e Let f be an analytic function on a neighborhood of [—1,1]. Let us inter-
polate f along a table of points in [—1, 1] with arbitrary distribution «.

e Suppose that | limsup |[f — Iy /" = p < 1 (K is regular)

n—o00

What can be said
about D, («0)?

Region of m-meromorphy
of the function f
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e Let f be an analytic function on a neighborhood of [—1,1]. Let us inter-
polate f along a table of points in [—1, 1] with arbitrary distribution «.

e Suppose that | limsup |[f — Iy /" = p < 1 (K is regular)

n—o00

What can be said
about D, («0)?

Region of m-meromorphy
of the function f
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Faster rate of convergence




Overconvergence

e For each continuum Q C Dy («) (not a single point) far away from the
poles of the function f and the set of interpolation 3, we have

limsup ||Qnm(f - Hn,m)Hl/”— (Q)

n— 00 Q@ Rm (04)
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Overconvergence

e For each continuum Q C Dy («) (not a single point) far away from the
poles of the function f and the set of interpolation 3, we have

: Q
Lim Sup HQn,m(f— Hn,m)H(l)/< ?i&(((j)
n— 00 X m

e Suppose that there exists a subsequence A|C N such that for a contin-
uum Q it holds that

¥

. B 1/ a(Q)
frlzlen)\ ||Qn,m(f Hn,m) ||Q %
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Overconvergence

e For each continuum Q C Dy («) (not a single point) far away from the
poles of the function f and the set of interpolation 3, we have

limsup [|Qnm(f = Tnm) 1§ "=

n— 00 Rm (04)

e Suppose that there exists a subsequence A C N such that for a contin-
uum Q it holds that

a(Q)

1/n
I‘Im HQn m(f Hn m)” Rm(Ck)

Faster subsequences want to converge beyond the domain of

m-meromorphy
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Porter (1906)

Ro = 0.67...

e Convergence and analyticity domain of f: | |z(z — 3)| < V6

SIGMA'2016, CIRM, Marseille 15/25



Porter (1906)

Fly) — — [z(z - 3) ®w The partial sums of the series are
(2) Z ~—1a subsequence of the Taylor polynomials

N
N

Ro = 0.67...

e Convergence and analyticity domain of f: | |z(z — 3)| < V6
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Porter (1906)

) - i (z(zﬁ3)>3k . (z(z\/—g3)>3 N (z(z\/—gB))g . (z(z\/—gB))” .

dh
J

Ro = 0.67...

e Convergence and analyticity domain of f: | |z(z — 3)| < V6
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Porter (1906)

) - IZ% (z(zﬁs)f . (z(z\/—g3)>3 N (z(z\/—63)>9 . (z(z\/—gB))” .

The subsequence converges in

e Convergence and analyticity domain of f: | |z(z — 3)| < V6

a much larger region!

Ro = 0.67...
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:> Overconvergence around any regular
point of the circle of convergence

Increasingly large gaps
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Overconvergence around any regular
point of the circle of convergence

Increasingly large gaps | —>

g

Faster subsequences
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:> Overconvergence around any regular
point of the circle of convergence

Increasingly large gaps

g

Faster subsequences

Overconvergence in capacity around any
:D regular point or pole of 0Dy () \ &
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Overconvergence around any regular
point of the circle of convergence

Increasingly large gaps | —>

g

Faster subsequences

Overconvergence in capacity around any
:D regular point or pole of 0Dy () \ &

b

e For Taylor polynomials:

There are no poles on the

Increasingly large gaps ::> circle of convergence
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Overconvergence around any regular
point of the circle of convergence

Increasingly large gaps | —>

g

Faster subsequences | —>

Overconvergence in capacity around any
regular point or pole of 0Dy () \ &

b

e For Taylor polynomials:

There are no poles on the
circle of convergence

Increasingly large gaps —>

::> The domains of analytic and
meromgrphic continuation of f coincide

\-W{H« any amount of poles!

Very large gaps
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Distribution of zeros




The Jentzsch-Szego Theorem

Z
7eros ofz « for n = 64
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The Jentzsch-Szego Theorem

Z
7eros ofz « for n = 64

e Glven any expansion with 0 < Ry, < +o0:

There exists a subsequence of the m-th row of the Padé approximants
whose zero limit distribution is the equilibrium measure of 9D,

SIGMA'2016, CIRM, Marseille 17/25



Extensions

There exist many generalizations for extremal approximants

Qn(Z) = H(Z — ai), a; eI’

1I=1
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Extensions

There exist many generalizations for extremal approximants

 — |Qnl|r IS minimum

Qn(Z) = H(Z — ai), a; eI’

1I=1
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e Zeros of the orthogonal expansion in the interval [—1, 1] of the function
f by means of Chebyshev polynomials.

- 1 — 2522 N=84

Largest equipotential curve (of the
equilibrium measure of the interval)
Inside of which f is analytic

Poles of f
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e Let P, be the polynomial that interpolates the function f at the n + 1
equidistant nodes of [—1, 1]

_“

i N

1 +1

Largest equipotential curve of \ Poles of f

dx inside of which f is analytic
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e Let P, be the polynomial that interpolates the function f at the n + 1
equidistant nodes of [—1, 1]

dw,

~

Zeros of P, for n = 64

Largest equipotential curve of
dx inside of which f is analytic
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e Let P, be the polynomial that interpolates the function f at the n + 1

equidistant nodes of [—1, 1]

The interpolation points are swept
towards the boundary!

SIGMA'2016, CIRM, Marseille
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Balayage measures

e Let 1 be a probability measure supported on a compact set K which is
contained in a bounded domain G.

—_— T

— —_— = ———
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Balayage measures

e Let 1 be a probability measure supported on a compact set K which is
contained in a bounded domain G.

=)

0G

e The balayage measure of  onto 0G is the unique probability measure
supported on 9G such that

P(ii;2) = P(1;2), z€Q=C\G
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Balayage measures

e Let 1 be a probability measure supported on a compact set K which is
contained in a bounded domain G.

>
N

0G Y/

e The balayage measure of §, onto 9G is the harmonic measure corre-
sponding to z and G.
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Balayage measures

e Let 1 be a probability measure supported on a compact set K which is
contained in a bounded domain G.

5, = equilibrium measure of 0G

0G Y/

e The balayage measure of §, onto 9G is the harmonic measure corre-
sponding to z and G.

e The balayage measure of 1, onto an equipotential curve of ;1 is the equi-
librium measure of the curve.
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Exact harmonic majorant

e The harmonic function h is an exact harmonic majorant of a sequence
of subharmonic functions {un},ca on a domain D if

zeQ

lim {max un(z)} — maxh(z) | forany continuumQ c D
neA | zeQ
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Exact harmonic majorant

e The harmonic function h is an exact harmonic majorant of a sequence
of subharmonic functions {un},ca on a domain D if

zeQ

lim {max un(z)} — maxh(z) | forany continuumQ c D
neA | zeQ

Uy = %log\fn] with
fn, analyticin D

There are o(n) zeros of {f,}
¥ —> in compact subsets of D

{u,} has an exact harmonic
majorant on D
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Exact harmonic majorant

Exact rate of convergence of

the interpolants on Dy () \

Existence of an exact harmonic majorant of

1
— log |Py.m| on the complement of ¥ U Dy ()

n
for a subsequence A C N
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Exact harmonic majorant

Exact rate of convergence of

the interpolants on Dy () \

Existence of an exact harmonic majorant of

1
— | —log|Pn,m| on the complement of ¥ U Dy («)

n
for a subsequence A C N

There are o(n) zeros of P, m in compact subsets
of the complement of ¥ U D (a) forn € A
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Exact harmonic majorant

Exact rate of convergence of

the interpolants on Dy () \

Existence of an exact harmonic majorant of

1
— | —log|Pn,m| on the complement of ¥ U Dy («)

n
for a subsequence A C N

There are o(n) zeros of P, m in compact subsets
of the complement of ¥ U D (a) forn € A

The zero limit distribution of P, p, Is
supported on (E U Dm(a)) \ Dm ()
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e Let o = oy + «» be the limit distribution of the interpolation points.

(Mild topological

restrictions)
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e Let o = oy + «» be the limit distribution of the interpolation points.

Then there exists A ¢ N such that
dPn’m L)Oél—l_aQ, n EA’

where o, Is the balayage of a, onto 9Dy, («).

(Mild topological

~ restrictions)
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An open problem

50 k
Zeros of the Taylor polynomial of f(z) = Z z2(z - 3) ’
the function f of degree 100

e Convergence and analyticity domain of f: | |z(z — 3)| < V6
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An open problem

50 k
Zeros of the Taylor polynomial of f(z) = Z z2(z - 3) ’
the function f of degree 162=2x3*

e Convergence and analyticity domain of f: | |z(z — 3)| < V6
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An open problem

50 k
The partial sums of the series are also f(7) — z2(z - 3) ’
: : : 3 B (z) = E
Interpolating polynomials at z=0 and z=3

e Convergence and analyticity domain of f: | |z(z — 3)| < V6
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An open problem

50 k
The partial sums of the series are also f(7) — z2(z - 3) ’
: : : 3 B (z) = E
Interpolating polynomials at z=0 and z=3

[s this true v general?
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Thank you so much for your attention!



Topological restrictions

( D () Q=C\ (D,,(a) UX) is a connected set

SIGMA'2016, CIRM, Marseille



Topological restrictions
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Topological restrictions

C < D () Q=C\ (D,(a)UX)isaconnected set

0 = (Dm () UX) \ Dp(a)
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Topological restrictions

C < D () Q =C\ (D,n(a) UY) is a connected set

0 = (Dm () UX) \ Dp(a)
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