

Rational interpolation of analytic functions

Direct and inverse results

Bernardo de la Calle Ysern

Departamento de Matemáticas del Área Industrial Universidad Politécnica de Madrid

What is this talk about?

What is this talk about?

What is this talk about?

Convergence

- Let $\Sigma \subset \mathbb{C}$ be a simply connected compact set.
- Let f be an analytic function on an open set $V \supset \Sigma$.
- Let us fix a table of interpolation points at the zeros of the polynomials

$$w_n(z) = \prod_{i=1}^n (z - a_{n,i}) \qquad \boxed{a_{n,i} \in \Sigma} \qquad n \in \mathbb{N}.$$

- Let $\Sigma \subset \mathbb{C}$ be a simply connected compact set.
- Let f be an analytic function on an open set $V \supset \Sigma$.
- Let us fix a table of interpolation points at the zeros of the polynomials

$$w_n(z) = \prod_{i=1}^n (z - a_{n,i}) \qquad \boxed{a_{n,i} \in \Sigma} \qquad n \in \mathbb{N}.$$

ullet Given $n,m\in\mathbb{Z}^+$, there exist polynomials $P_{n,m},Q_{n,m}$ with $\deg P_{n,m}\leq n$, $\deg Q_{n,m}\leq m$, $Q_{n,m}\not\equiv 0$, such that the function

$$\frac{Q_{n,m}(z)f(z)-P_{n,m}(z)}{w_{n+m+1}(z)} \quad \text{is analytic on V.}$$

• The rational function $\Pi_{n,m} = P_{n,m}/Q_{n,m}$ is the multipoint Padé approximant of type (n,m) of the function f associated with w_{n+m+1} .

• To describe the convergence of the interpolation process as $n \to \infty$, the interpolation points need to have a limit distribution:

$$dw_n = \frac{1}{n} \sum_{i=1}^n \delta_{a_{n,i}} \xrightarrow{*} \alpha$$
 Weak convergence of measures

• To describe the convergence of the interpolation process as $n \to \infty$, the interpolation points need to have a limit distribution:

$$dw_n = \frac{1}{n} \sum_{i=1}^n \delta_{a_{n,i}} \stackrel{*}{\longrightarrow} \frac{\alpha}{\alpha}$$

$$\alpha$$
 is supported on Σ
$$P(\alpha; \mathbf{z}) = \int \frac{1}{\log |\mathbf{z} - \mathbf{w}|} \, \mathrm{d}\alpha(\mathbf{w})$$

• To describe the convergence of the interpolation process as $n \to \infty$, the interpolation points need to have a limit distribution:

$$dw_n = \frac{1}{n} \sum_{i=1}^n \delta_{a_{n,i}} \xrightarrow{*} \alpha$$

$$\alpha$$
 is supported on Σ
$$P(\alpha; \mathbf{z}) = \int \frac{1}{\log |\mathbf{z} - \mathbf{w}|} \, \mathrm{d}\alpha(\mathbf{w})$$

• The domain of m-meromorphy $\lfloor D_m(\alpha) \rfloor$ is the largest set determined by the equipotential curves of α to which f can be continued as a meromorphic function with \leq m poles.

$$\mathsf{D}_\mathsf{m}(\alpha) = \{\mathsf{z} \in \mathbb{C} \, : \, \mathsf{exp}\{-\mathsf{P}(\alpha;\mathsf{z})\} < \mathsf{R}_\mathsf{m}(\alpha)\}$$

ullet To describe the convergence of the interpolation process as $n \to \infty$, the interpolation points need to have a limit distribution:

$$\left| dw_n = rac{1}{n} \sum_{i=1}^n \delta_{a_{n,i}} \stackrel{*}{\longrightarrow} rac{lpha}{lpha}
ight|$$

The convergence of the interpolants $\Pi_{\rm n,m}$ is governed by these equipotential curves of α

(As for Taylor polynomials)

• The domain of m-meromorphy $D_m(\alpha)$ is the largest set determined by the equipotential curves of α to which f can be continued as a meromorphic function with \leq m poles.

m poles.
$$\mathsf{D_m}(\alpha) = \{\mathsf{z} \in \mathbb{C} \,:\, \mathsf{exp}\{-\mathsf{P}(\alpha;\mathsf{z})\} < \mathsf{R_m}(\alpha)\}$$

• Let P_n be the polynomial of degree n interpolating f at the Chebyshev nodes.

• Let P_n be the polynomial of degree n interpolating f at the Chebyshev nodes.

• Let P_n be the polynomial of degree n interpolating f at equidistant nodes.

• Let P_n be the polynomial of degree n interpolating f at equidistant nodes.

If the function f has exactly m poles in $D_m(\alpha)$, then

- (1) $\{\Pi_{n,m}\}\$ converge uniformly to fin compact subsets of $D_m(\alpha)\setminus\{\text{Poles of f}\}$
- (2) The poles of f attract the poles of $\Pi_{\text{n,m}}$ according to their multiplicity

If the function f has exactly m poles in $D_m(\alpha)$, then

- (1) $\{\Pi_{n,m}\}\$ converge uniformly to f in compact subsets of $D_m(\alpha)\setminus\{\text{Poles of f}\}$
- (2) The poles of f attract the poles of $\Pi_{\text{n},\text{m}}$ according to their multiplicity

• Example: $f(z) = \frac{1 + \sqrt[3]{2}}{1 - z^3}$

$$R_2 = 1$$

If the function f has exactly m poles in $D_m(\alpha)$, then

- (1) $\{\Pi_{n,m}\}\$ converge uniformly to f in compact subsets of $D_m(\alpha)\setminus\{\text{Poles of f}\}$
- (2) The poles of f attract the poles of $\Pi_{\text{n,m}}$ according to their multiplicity

• Example: $f(z) = \frac{1 + \sqrt[3]{2} z}{1 - z^3}$

$$R_2 = 1$$

- Poles of $\Pi_{n,2}$:
 - $n \equiv 0 \pmod{3}$

If the function f has exactly m poles in $D_m(\alpha)$, then

- (1) $\{\Pi_{n,m}\}\$ converge uniformly to f in compact subsets of $D_m(\alpha)\setminus\{\text{Poles of f}\}$
- (2) The poles of f attract the poles of $\Pi_{\text{n,m}}$ according to their multiplicity

• Example: $f(z) = \frac{1 + \sqrt[3]{2} z}{1 - z^3}$

$$R_2 = 1$$

- Poles of $\Pi_{n,2}$:
 - $n \equiv 0 \pmod{3}$
 - $n \equiv 1 \pmod{3}$

If the function f has exactly m poles in $D_m(\alpha)$, then

- (1) $\{\Pi_{n,m}\}\$ converge uniformly to f in compact subsets of $D_m(\alpha)\setminus\{\text{Poles of f}\}$
- (2) The poles of f attract the poles of $\Pi_{\text{n,m}}$ according to their multiplicity

• Example: $f(z) = \frac{1 + \sqrt[3]{2} z}{1 - z^3}$

 $R_2 = 1$

They aren't poles of f!

- Poles of $\Pi_{n,2}$:
 - $n \equiv 0 \pmod{3}$
 - $n \equiv 1 \pmod{3}$
 - $n \equiv 2 \pmod{3}$

• Let K be a compact set in the complex plane and σ a positive measure supported on K. The energy of σ is defined as

$$I(\sigma) = \int_{K} \int_{K} \log \frac{1}{|z - w|} d\sigma(w) d\sigma(z).$$

ullet Let K be a compact set in the complex plane and σ a positive measure supported on K. The energy of σ is defined as

$$I(\sigma) = \int_{K} \int_{K} \log \frac{1}{|z - w|} d\sigma(w) d\sigma(z).$$

The logarithmic capacity of K is given by

$$cap(K) = exp\left\{-\min_{\sigma} I(\sigma)\right\}$$
 (Large minimum energy means small capacity)

and the minimum is attained at the equilibrium measure of K (when cap(K) > 0).

ullet Let K be a compact set in the complex plane and σ a positive measure supported on K. The energy of σ is defined as

$$I(\sigma) = \int_{K} \int_{K} \log \frac{1}{|z - w|} d\sigma(w) d\sigma(z).$$

The logarithmic capacity of K is given by

$$cap(K) = exp \left\{ - \min_{\sigma} I(\sigma) \right\}$$
 (Large minimum energy means small capacity)

and the minimum is attained at the equilibrium measure of K (when cap(K) > 0).

Every function bounded on a domain G and harmonic on G \ K admits a harmonic extension to the whole of G if and only if cap(K) = 0

ullet Let K be a compact set in the complex plane and σ a positive measure supported on K. The energy of σ is defined as

$$I(\sigma) = \int_{K} \int_{K} \log \frac{1}{|z - w|} d\sigma(w) d\sigma(z).$$

The logarithmic capacity of K is given by

$$cap(K) = exp\left\{-\min_{\sigma} I(\sigma)\right\}$$
 (Large minimum energy means small capacity)

and the minimum is attained at the equilibrium measure of K (when cap(K) > 0).

• If K is connected, then
$$\frac{\text{diam}(K)}{4} \leq \text{cap}(K) \leq \frac{\text{diam}(K)}{2}$$

ullet The sequence of functions $\{f_n\}$ converges in capacity to the function f on compact subsets of the domain D if

$$\forall\,\epsilon>0,\,\forall\,\mathsf{K}\subset\mathsf{D}\ \lim_{\mathsf{n}\to\infty}\mathsf{cap}\{\mathsf{z}\in\mathsf{K}\,:\,|\mathsf{f}(\mathsf{z})-\mathsf{f}_\mathsf{n}(\mathsf{z})|>\epsilon\}=\mathsf{0}.$$

Notation:

$$f_n \stackrel{C}{\longrightarrow} f$$
 inside D

As convergence in measure!

ullet The sequence of functions $\{f_n\}$ converges in capacity to the function f on compact subsets of the domain D if

$$\forall\, \epsilon>0,\, \forall\, K\subset D\ \lim_{n\to\infty}cap\{z\in K\,:\, |f(z)-f_n(z)|>\epsilon\}=0.$$

 $D_m(\alpha) \text{ is the largest domain inside of which } \Pi_{n,m} \stackrel{C}{\longrightarrow} f \text{ as } n \to \infty$

 \bullet The sequence of functions $\{f_n\}$ converges in capacity to the function f on compact subsets of the domain D if

$$\forall\, \epsilon>0,\, \forall\, K\subset D\ \lim_{n\to\infty}cap\{z\in K\,:\, |f(z)-f_n(z)|>\epsilon\}=0.$$

Gonchar's Lemma

Suppose that

$$f_n \stackrel{C}{\longrightarrow} f$$
 inside D

f_n analytic in D

Uniform convergence of f_n inside D

 \bullet The sequence of functions $\{f_n\}$ converges in capacity to the function f on compact subsets of the domain D if

$$\forall\, \epsilon>0,\, \forall\, K\subset D\ \lim_{n\to\infty}cap\{z\in K\,:\, |f(z)-f_n(z)|>\epsilon\}=0.$$

Gonchar's Lemma

Suppose that

 $f_n \stackrel{C}{\longrightarrow} f$ inside D

f_n analytic in D

Uniform convergence of f_n inside D

 $\begin{array}{c} f_n \ meromorphic \ in \ D \\ with \leq m \ poles \end{array}$

f meromorphic in D with exactly m poles $\begin{array}{c} \mbox{Uniform convergence of } f_n \\ \mbox{inside } D \setminus \{\mbox{Poles of } f\} \end{array}$

 \bullet The sequence of functions $\{f_n\}$ converges in capacity to the function f on compact subsets of the domain D if

$$\forall\, \epsilon>0,\, \forall\, K\subset D\ \lim_{n\to\infty}cap\{z\in K\,:\, |f(z)-f_n(z)|>\epsilon\}=0.$$

 $D_m(\alpha)$ is the largest domain inside of which $\Pi_{n,m} \stackrel{C}{\longrightarrow} f$ as $n \to \infty$

Convergence in capacity + control over the poles implies uniform convergence

ullet The sequence of functions $\{f_n\}$ converges in capacity to the function f on compact subsets of the domain D if

$$\forall\, \epsilon>0,\, \forall\, K\subset D\ \lim_{n\to\infty}cap\{z\in K\,:\, |f(z)-f_n(z)|>\epsilon\}=0.$$

 $D_m(\alpha) \text{ is the largest domain inside of which } \Pi_{n,m} \stackrel{C}{\longrightarrow} f \text{ as } n \to \infty$

Convergence in capacity + control over the poles implies uniform convergence

We are done with the direct results!

ullet The sequence of functions $\{f_n\}$ converges in capacity to the function f on compact subsets of the domain D if

$$\forall\, \epsilon>0,\, \forall\, K\subset D\ \lim_{n\to\infty}cap\{z\in K\,:\, |f(z)-f_n(z)|>\epsilon\}=0.$$

 $D_m(\alpha)$ is the largest domain inside of which $\Pi_{n,m} \stackrel{C}{\longrightarrow} f$ as $n \to \infty$

How can we calculate $R_m(\alpha)$?

Buslaev Theorem

- Suppose that
- (1) The m poles of $\Pi_{n,m}$ have a limit as $n \to \infty$.
- (2) The table of interpolations points on the continuum Σ is extremal:

$$\lim_{n\to\infty}\frac{w_n(z)}{[h(z)]^n}=g(z)\neq 0,$$

where h is the conformal mapping of $\mathbb{C} \setminus \Sigma$ onto $\mathbb{C} \setminus \overline{\mathbb{D}}$.

- Then
- The limit points of the poles are singularities of the function f.
- $R_m(\alpha)$ is determined by the limit points with smallest potential.
- Those with larger potential are the only poles of the function f in $D_m(\alpha)$

Exact rate of convergence

Propagation of convergence

• Example:
$$f(z) = \frac{1 + \sqrt[3]{2} z}{1 - z^3}$$

$$\bullet \quad \limsup_{n\to\infty} \|\mathbf{f} - \Pi_{n,2}\|_{\mathsf{K}}^{1/n} = \rho < 1$$

$$\left(\limsup_{n\to\infty}\|\Pi_{n+1,2}-\Pi_{n,2}\|_{\mathsf{K}}^{1/n}=\rho\right)$$

Propagation of convergence

• Example:
$$f(z) = \frac{1 + \sqrt[3]{2} z}{1 - z^3}$$

$$\bullet \quad \limsup_{\mathsf{n} \to \infty} \|\mathsf{f} - \Pi_{\mathsf{n},\mathsf{2}}\|_{\mathsf{K}}^{1/\mathsf{n}} = \rho < 1$$

$$\left(\limsup_{n\to\infty}\|\Pi_{n+1,2}-\Pi_{n,2}\|_{K}^{1/n}=\rho\right)$$

$$\rho = \frac{\|\mathbf{z}\|_{\mathsf{K}}}{\mathsf{R}_2} \longrightarrow$$

$$| \limsup_{n \to \infty} \|Q_{n,2}(f - \Pi_{n,2})\|_{K}^{1/n} = \frac{\|z\|_{K}}{R_{2}}$$

Propagation of convergence

• Example:
$$f(z) = \frac{1 + \sqrt[3]{2} z}{1 - z^3}$$

$$\bullet \quad \limsup_{\mathsf{n} \to \infty} \|\mathsf{f} - \Pi_{\mathsf{n},\mathsf{2}}\|_{\mathsf{K}}^{1/\mathsf{n}} = \rho < 1$$

$$\left(\limsup_{n\to\infty}\|\Pi_{n+1,2}-\Pi_{n,2}\|_{K}^{1/n}=\rho\right)$$

$$\rho = \frac{\|\mathbf{z}\|_{\mathsf{K}}}{\mathsf{R}_2} \longrightarrow$$

$$\left| \begin{array}{c} \limsup_{n \to \infty} \|Q_{n,2}(f - \Pi_{n,2})\|_{K}^{1/n} = \frac{\|z\|_{K}}{R_{2}} \end{array} \right|$$

Best approximants

- Let f be a function defined on a regular compact set $K \subset \mathbb{C}$.
- \bullet Let us consider $\boxed{ d_{n,m}(K) = min \left\{ \|f r\|_K \, : \, r \in R_{n,m} \right\} }$ where

$$R_{n,m} = \left\{ \frac{p}{q} : \, deg \, p \leq n, \, deg \, q \leq m, \, q \not\equiv 0 \right\}.$$

Best approximants

- Let f be a function defined on a regular compact set $K \subset \mathbb{C}$.
- \bullet Let us consider $\boxed{ d_{n,m}(K) = min \left\{ \| f r \|_K \, : \, r \in R_{n,m} \right\} }$ where

$$R_{n,m} = \left\{ \frac{p}{q} : \, deg \, p \leq n, \, deg \, q \leq m, \, q \not\equiv 0 \right\}.$$

 \bullet Suppose that $\limsup_{n\to\infty}\sqrt[n]{d_{n,m}({\sf K})}=\rho<1.$ Then

$$\rho = \frac{\mathsf{cap}(\mathsf{K})}{\mathsf{R}_{\mathsf{m}}(\mu_{\mathsf{K}})}$$

where $\mu_{\rm K}$ is the equilibrium measure of the compact set K.

• Let f be an analytic function on a neighborhood of [-1,1]. Let us interpolate f along a table of points in [-1,1] with arbitrary distribution α .

SIGMA'2016, CIRM, Marseille

• Let f be an analytic function on a neighborhood of [-1,1]. Let us interpolate f along a table of points in [-1,1] with arbitrary distribution α .

$$ullet$$
 Suppose that $\limsup_{{\sf n} o \infty} \|{\sf f} - \Pi_{{\sf n},{\sf m}}\|_{\sf K}^{1/{\sf n}} =
ho < 1$ (K is regular)

• Let f be an analytic function on a neighborhood of [-1,1]. Let us interpolate f along a table of points in [-1,1] with arbitrary distribution α .

$$ullet$$
 Suppose that $\limsup_{{\sf n} o \infty} \|{\sf f} - \Pi_{{\sf n},{\sf m}}\|_{\sf K}^{1/{\sf n}} =
ho < 1$

(K is regular)

• Let f be an analytic function on a neighborhood of [-1,1]. Let us interpolate f along a table of points in [-1,1] with arbitrary distribution α .

$$ullet$$
 Suppose that $\limsup_{{\sf n} o \infty} \|{\sf f} - \Pi_{{\sf n},{\sf m}}\|_{\sf K}^{1/{\sf n}} =
ho < 1$

(K is regular)

Suppose that the function f is defined on K and verifies

$$\limsup_{\mathsf{n}\to\infty}\|\mathsf{f}-\Pi_{\mathsf{n},\mathsf{m}}\|_{\mathsf{K}}^{1/\mathsf{n}}=\rho<1$$

In regions where the potential is large $ho = \limsup_{\mathsf{n} \to \infty} \|\Pi_{\mathsf{n}+\mathsf{1},\mathsf{m}} - \Pi_{\mathsf{n},\mathsf{m}}\|_{\mathsf{K}}^{1/\mathsf{n}}$

Suppose that the function f is defined on K and verifies

$$\limsup_{\mathsf{n}\to\infty}\|\mathsf{f}-\Pi_{\mathsf{n},\mathsf{m}}\|_{\mathsf{K}}^{1/\mathsf{n}}=\rho<1$$

 $\left(\text{In regions where the potential is large }\rho=\limsup_{\mathsf{n}\to\infty}\|\Pi_{\mathsf{n}+\mathsf{1},\mathsf{m}}-\Pi_{\mathsf{n},\mathsf{m}}\|_{\mathsf{K}}^{1/\mathsf{n}}\right)$

• K is a regular compact set on which the minimum value of the potential of α is attained at a point that does not belong to the interior of Σ .

Suppose that the function f is defined on K and verifies

$$\limsup_{\mathsf{n}\to\infty}\|\mathsf{f}-\Pi_{\mathsf{n},\mathsf{m}}\|_{\mathsf{K}}^{1/\mathsf{n}}=\rho<1$$

(In regions where the potential is large $ho = \limsup_{\mathsf{n} o \infty} \|\Pi_{\mathsf{n+1,m}} - \Pi_{\mathsf{n,m}}\|_{\mathsf{K}}^{1/\mathsf{n}}$)

• K is a regular compact set on which the minimum value of the potential of α is attained at a point that does not belong to the interior of Σ .

Then

$$\rho = \frac{\alpha(\mathbf{K})}{\mathsf{R}_{\mathsf{m}}(\alpha)} \qquad \qquad \alpha(\mathbf{K}) = \exp\left\{-\min_{\mathbf{z} \in \mathbf{K}} \mathsf{P}(\alpha; \mathbf{z})\right\}$$

• Let f be an analytic function on a neighborhood of [-1,1]. Let us interpolate f along a table of points in [-1,1] with arbitrary distribution α .

$$ullet$$
 Suppose that $\limsup_{{\sf n} o \infty} \|{\sf f} - \Pi_{{\sf n},{\sf m}}\|_{\sf K}^{1/{\sf n}} =
ho < 1$

(K is regular)

SIGMA'2016, CIRM, Marseille

• Let f be an analytic function on a neighborhood of [-1,1]. Let us interpolate f along a table of points in [-1,1] with arbitrary distribution α .

$$ullet$$
 Suppose that $\limsup_{{\sf n} o \infty} \|{\sf f} - \Pi_{{\sf n},{\sf m}}\|_{\sf K}^{1/{\sf n}} =
ho < 1$

(K is regular)

SIGMA'2016, CIRM, Marseille

Faster rate of convergence

Overconvergence

• For each continuum $Q \subset D_m(\alpha)$ (not a single point) far away from the poles of the function f and the set of interpolation Σ , we have

$$\limsup_{n \to \infty} \|\mathbf{Q}_{\mathsf{n},\mathsf{m}}(\mathbf{f} - \Pi_{\mathsf{n},\mathsf{m}})\|_{\mathsf{Q}}^{1/\mathsf{n}} = \frac{\alpha(\mathsf{Q})}{\mathsf{R}_{\mathsf{m}}(\alpha)}$$

Overconvergence

• For each continuum $Q \subset D_m(\alpha)$ (not a single point) far away from the poles of the function f and the set of interpolation Σ , we have

$$\limsup_{n\to\infty} \|\mathbf{Q}_{\mathsf{n},\mathsf{m}}(\mathbf{f}-\Pi_{\mathsf{n},\mathsf{m}})\|_{\mathbf{Q}}^{1/\mathbf{p}} + \mathbf{R}_{\mathsf{m}}(\alpha)$$

 \bullet Suppose that there exists a subsequence $\Lambda \subset \mathbb{N}$ such that for a continuum Q it holds that

$$\lim_{n \in \Lambda} \|\mathbf{Q}_{\mathsf{n},\mathsf{m}}(\mathbf{f} - \Pi_{\mathsf{n},\mathsf{m}})\|_{\mathbf{Q}}^{1/\mathbf{p}} \underbrace{\frac{\alpha(\mathbf{Q})}{\mathbf{R}_{\mathsf{m}}(\alpha)}}$$

Overconvergence

• For each continuum $Q \subset D_m(\alpha)$ (not a single point) far away from the poles of the function f and the set of interpolation Σ , we have

$$\limsup_{n \to \infty} \|\mathbf{Q}_{\mathsf{n,m}}(\mathbf{f} - \Pi_{\mathsf{n,m}})\|_{\mathbf{Q}}^{1/\mathsf{n}} = \frac{\alpha(\mathbf{Q})}{\mathsf{R}_{\mathsf{m}}(\alpha)}$$

 \bullet Suppose that there exists a subsequence $\Lambda\subset\mathbb{N}$ such that for a continuum Q it holds that

$$\lim_{n \in \Lambda} \|\mathbf{Q}_{\mathsf{n},\mathsf{m}}(\mathbf{f} - \Pi_{\mathsf{n},\mathsf{m}})\|_{\mathbf{Q}}^{1/\mathsf{n}} < \frac{\alpha(\mathbf{Q})}{\mathsf{R}_{\mathsf{m}}(\alpha)}$$

Faster subsequences want to converge beyond the domain of m-meromorphy

$$f(z) = \sum_{k=0}^{\infty} \left(\frac{z(z-3)}{\sqrt{6}}\right)^{3^k}$$

• Convergence and analyticity domain of f: $|z(z-3)| < \sqrt{6}$

$$|\mathbf{z}(\mathbf{z}-\mathbf{3})|<\sqrt{6}$$

$$f(z) = \sum_{k=0}^{\infty} \left(\frac{z(z-3)}{\sqrt{6}} \right)^{3^k}$$

The partial sums of the series are a subsequence of the Taylor polynomials

• Convergence and analyticity domain of f:

$$|\mathbf{z}(\mathbf{z}-\mathbf{3})|<\sqrt{6}$$

$$f(z) = \sum_{k=0}^{\infty} \left(\frac{z(z-3)}{\sqrt{6}} \right)^{3^k} \\ = 1 + \left(\frac{z(z-3)}{\sqrt{6}} \right)^3 + \left(\frac{z(z-3)}{\sqrt{6}} \right)^9 + \left(\frac{z(z-3)}{\sqrt{6}} \right)^{27} + \cdots \\ = 1 + \left(\frac{z(z-3)}{\sqrt{6}} \right)^{3} + \left(\frac{z(z-3)}{\sqrt{6}} \right)^$$

• Convergence and analyticity domain of f: $|z(z-3)| < \sqrt{6}$

$$|\mathbf{z}(\mathbf{z}-\mathbf{3})|<\sqrt{6}$$

$$\left| f(z) = \sum_{k=0}^{\infty} \left(\frac{z(z-3)}{\sqrt{6}} \right)^{3^k} \right| = 1 + \left(\frac{z(z-3)}{\sqrt{6}} \right)^3 + \left(\frac{z(z-3)}{\sqrt{6}} \right)^9 + \left(\frac{z(z-3)}{\sqrt{6}} \right)^{27} + \cdots \right|$$

The subsequence converges in a much larger region!

• Convergence and analyticity domain of f:

$$|\mathbf{z}(\mathbf{z}-\mathbf{3})|<\sqrt{6}$$

Increasingly large gaps

Overconvergence around any regular point of the circle of convergence

Increasingly large gaps

Overconvergence around any regular point of the circle of convergence

Faster subsequences

Distribution of zeros

The Jentzsch-Szegő Theorem

$$-\log(1-z) = \sum_{k=1}^{\infty} \frac{z^k}{k}$$

Zeros of
$$\sum_{k=1}^{n} \frac{z^k}{k}$$
 for $n = 64$

The Jentzsch-Szegő Theorem

$$-\log(1-z) = \sum_{k=1}^{\infty} \frac{z^k}{k}$$

Zeros of
$$\sum_{k=1}^{n} \frac{z^k}{k}$$
 for $n = 64$

• Given any expansion with $0 < R_m < +\infty$:

There exists a subsequence of the m-th row of the Padé approximants whose zero limit distribution is the equilibrium measure of ∂D_m

Extensions

There exist many generalizations for extremal approximants

$$Q_n(z) = \prod_{i=1}^n (z - a_i), \quad a_i \in \Gamma$$

Extensions

There exist many generalizations for extremal approximants

ullet Zeros of the orthogonal expansion in the interval [-1,1] of the function f by means of Chebyshev polynomials.

ullet Let P_n be the polynomial that interpolates the function f at the n+1 equidistant nodes of [-1,1]

ullet Let P_n be the polynomial that interpolates the function f at the n+1 equidistant nodes of [-1,1]

dx inside of which f is analytic

ullet Let P_n be the polynomial that interpolates the function f at the n+1 equidistant nodes of [-1,1]

Balayage measures

 \bullet Let μ be a probability measure supported on a compact set K which is contained in a bounded domain G.

Balayage measures

ullet Let μ be a probability measure supported on a compact set K which is contained in a bounded domain G.

• The balayage measure of μ onto ∂G is the unique probability measure $\widehat{\mu}$ supported on ∂G such that

$$\mathsf{P}(\widehat{\mu};\mathsf{z}) = \mathsf{P}(\mu;\mathsf{z}), \quad \mathsf{z} \in \overline{\Omega} = \mathbb{C} \setminus \mathsf{G}$$

Balayage measures

ullet Let μ be a probability measure supported on a compact set K which is contained in a bounded domain G.

• The balayage measure of δ_z onto ∂G is the harmonic measure corresponding to z and G.

Balayage measures

• Let μ be a probability measure supported on a compact set K which is contained in a bounded domain G.

- The balayage measure of δ_z onto ∂G is the harmonic measure corresponding to z and G.
- The balayage measure of μ onto an equipotential curve of μ is the equilibrium measure of the curve.

• The harmonic function h is an exact harmonic majorant of a sequence of subharmonic functions $\{u_n\}_{n\in\Lambda}$ on a domain D if

$$\lim_{n \in \Lambda} \left\{ \max_{z \in Q} u_n(z) \right\} = \max_{z \in Q} h(z) \quad \text{ for any continuum } Q \subset D$$

• The harmonic function h is an exact harmonic majorant of a sequence of subharmonic functions $\{u_n\}_{n\in\Lambda}$ on a domain D if

$$\lim_{n \in \Lambda} \left\{ \max_{z \in Q} u_n(z) \right\} = \max_{z \in Q} h(z) \quad \text{for any continuum } Q \subset D$$

$$\begin{aligned} u_n &= \frac{1}{n} \log |f_n| \text{ with} \\ f_n \text{ analytic in D} \end{aligned}$$

 $\{u_n\}$ has an exact harmonic majorant on D

There are o(n) zeros of $\{f_n\}$ in compact subsets of D

Exact rate of convergence of the interpolants on $D_m(\alpha)$

Existence of an exact harmonic majorant of $\frac{1}{n} \log |\mathsf{P}_{\mathsf{n},\mathsf{m}}| \text{ on the complement of } \Sigma \cup \overline{\mathsf{D}_{\mathsf{m}}(\alpha)}$ for a subsequence $\Lambda \subset \mathbb{N}$

Exact rate of convergence of the interpolants on $D_m(\alpha)$

Existence of an exact harmonic majorant of $\frac{1}{n} \log |\mathsf{P}_{\mathsf{n},\mathsf{m}}| \text{ on the complement of } \Sigma \cup \overline{\mathsf{D}_{\mathsf{m}}(\alpha)}$ for a subsequence $\Lambda \subset \mathbb{N}$

There are o(n) zeros of $P_{n,m}$ in compact subsets of the complement of $\Sigma \cup \overline{D_m(\alpha)}$ for $n \in \Lambda$

Exact rate of convergence of the interpolants on $D_m(\alpha)$

Existence of an exact harmonic majorant of $\frac{1}{n} \log |\mathsf{P}_{\mathsf{n},\mathsf{m}}| \text{ on the complement of } \Sigma \cup \overline{\mathsf{D}_{\mathsf{m}}(\alpha)}$ for a subsequence $\Lambda \subset \mathbb{N}$

There are o(n) zeros of $P_{n,m}$ in compact subsets of the complement of $\Sigma \cup \overline{D_m(\alpha)}$ for $n \in \Lambda$

The zero limit distribution of $P_{n,m}$ is supported on $\left(\Sigma \cup \overline{D_m(\alpha)}\right) \setminus D_m(\alpha)$

Theorem

• Let $\alpha = \alpha_1 + \alpha_2$ be the limit distribution of the interpolation points.

Theorem

• Let $\alpha = \alpha_1 + \alpha_2$ be the limit distribution of the interpolation points.

Then there exists $\Lambda \subset \mathbb{N}$ such that

$$dP_{n,m} \stackrel{*}{\longrightarrow} \alpha_1 + \widehat{\alpha}_2, \quad n \in \Lambda,$$

where $\widehat{\alpha}_2$ is the balayage of α_2 onto $\partial D_m(\alpha)$.

Zeros of the Taylor polynomial of the function f of degree 100

$$f(z) = \sum_{k=0}^{\infty} \left(\frac{z(z-3)}{\sqrt{6}}\right)^{3^k}$$

• Convergence and analyticity domain of f:

$$|\mathbf{z}(\mathbf{z}-\mathbf{3})|<\sqrt{6}$$

Zeros of the Taylor polynomial of the function f of degree 162=2x3⁴ R = 0.67...

Convergence and analyticity domain of f:

$$|\mathbf{z}(\mathbf{z}-\mathbf{3})|<\sqrt{6}$$

The partial sums of the series are also interpolating polynomials at z=0 and z=3

$$f(z) = \sum_{k=0}^{\infty} \left(\frac{z(z-3)}{\sqrt{6}}\right)^{3^k}$$

Convergence and analyticity domain of f:

$$|\mathbf{z}(\mathbf{z}-\mathbf{3})|<\sqrt{6}$$

The partial sums of the series are also interpolating polynomials at z=0 and z=3

$$f(z) = \sum_{k=0}^{\infty} \left(\frac{z(z-3)}{\sqrt{6}}\right)^{3^k}$$

Is this true in general?

References

- M. Bello Hernández, B. de la Calle Ysern, Meromorphic continuation of functions and arbitrary distribution of interpolation points, J. Math. Anal. Appl. 284 (2013) 155-70.
- B. de la Calle Ysern, The Jentzsch-Szegö theorem and balayage measures, Constr. Approx. 40 (2014) 307-327.
- B. de la Calle Ysern, J. Mínguez Ceniceros, Rate of convergence of row sequences of multipoint Padé approximants, J. Comput. Appl. Math. 284 (2015) 155-70.
- B. de la Calle Ysern, J. Mínguez Ceniceros, Zero distribution of incomplete Padé and Hermite–Padé approximations, J. Approx. Theory 201 (2016) 13-29.

Thank you so much for your attention!

