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Tensor

An Nth-order tensor is represented by an N-way array in a
chosen basis.

Example:
N = 1: a vector.

N = 2: a matrix.



Introduction
[e] lele)

Third-order tensors

A special case: nonnegative third-order tensors (N = 3)
T _ (7 LxhxI
T = (tilizis)iuiz,i} € RHxExh,

The Canonical Polyadic (CP) decomposition:
Tensor rank

~—
R

T=3 aloa®o0a® — [A0,AQ AO)]

- N

Loading vectors Loading matrices

vn e {1,2,3},a" € R and A" € RI¥R
o: the outer product.
Entry-wise form:

R
livhis = E 1|r zzr 137 ) V(lhlz'/ 13)
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Standard operations

‘letue R veR’,
wv=uv' |eR™

:letU = [u,uy,...,u;] € R™ and
V= [V17V27---;VJ] € RKXJ

’U V = [u,@v], 1uev,, . .., u;0v] ‘ e RIEX/,

where u@v = [u1v;. .. ;u;v] € R (Kronecker product).
‘letU e R Ve RIXY,

’U V = (w/vy)ij| € R™




Tensor flattening: example

Objective: to handle matrices instead of tensors.

Mode 1 {QQ =

Tensor CION Il
C/ O: mode2 | Q@ M
| ]/D {OQ M |

O_Q Mode 3 {OO OO—‘
ON Tl
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3D fluorescence spectroscopy and tensors

R
T = a5 32 5503
T = E a,’oa;” oa;
r=1
excitation spectra emission spectra concentration
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Remark: all the involved quantities are




Introduction
(o] J

Objective: tensor decomposition

Input:

> T: observation of an (unknown) T
possibly degraded (noise).

Output:

> A" foralln € {1,2,3}
Difficulty:

» Rank R unknown (i.e. R # R): generally i) estimated or ii) overestimated.

Formulate the problem under a variational approach.



Proximal tools

Minimization problem
Standard problem:

minimize F(x) + (x)
xERL —— ~—~—
Fidelity Regularization

Taking into account several regularizations (J terms):

J
x) =D Ry(x)
j=1

For large size problem or for other reasons, can be interesting to work
on data blocks x) of size Li(x= (x(’)) <j<Js)

x) = ZR/‘(XO))
=1

Technical assumptions: 7, /< and R; are proper lower semi-continuous
functions. F is differentiable with a S-Lipschitz gradient. R; is assumed to
be bounded from below by an affine function, and its restriction to its
domain is continuous.



Proximal tools

Proximity operator

let ¢ : R — |—00, +00] be a proper lower semi-continuous function.
The proximity operator is defined as

1 2
prox,: R — R: v arg min - llu —v||” + o(u),

let o : RE — ]—00, +00] be a proper lower semi-continuous function.
The proximity operator associated with a Symmetric Positive Definite
(SPD) matrix P is defined as

1 2
proXp ,, : RE = RE: v i arg min > lu—v|p+ ¢(u),

where Vx € RE, ||fo, = (x,Px) and (-, -) is the inner product.

Remark : Note that if P reduces to the identity matrix, then the two
definitions coincides.



Proximal tools
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Criterion to be minimized

J

mi}r{leiflgize Fx) + ]:Zl R;(x1)

Some solutions (non exhaustive list, CPD oriented):

Proximal Alternating Linearized Minimization (PALM) [Bolte et al., 2014]

A Block Coordinate Descent Method for both CPD and Tucker
decomposition [Xu and Yin, 2013]

An accelerated projection gradient based algorithm [Zhang et al., 2016

(BC-VMFB)
algorithm [Chouzenoux et al., 2016]

Advantages of the BC-VMFB: flexible, stable, integrates preconditionning,
relatively fast.



Block coordinate proximal algorithm

1: Letxg € domR, k € Nand ; €]0,4+00] // Initialization step
2: fork=0,1,...do //k-th iteration of the algorithm
3: Let jir € {1,...,J}  // Processing of block number ji (chosen, here,
according to a rule)
. Let P;,(xx) be a SPD matrix  // Construction of the preconditioner P;, (x;)
5:  Let V. F(xk) be the Gradient // Calculation of Gradient
ig") = X,Ejk) — P (%), F(xx)  // Updating of block ji according to a

. (i) 109 7 o of T i aernrdine
7: X € prox,y,:lgik (%0):R;, (Xk ) // Updating of block jx according to a

8: Xif‘_,_] = Xi" wherej = {1,...J}\ {j}  // Other blocks are kept unchanged
9: end for
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Prox for CP decomposition

CP decomposition: decompose a tensor into a (minimal) sum of rank-1

terms.
Order 3: B
R
Zﬁ§ oa®oal® =AM AP AT, 1)
Tensor structure: naturally leads to consider corresponding to the
loading matrices and

minimize  F(AM, AP A 1R (AD) 4R, (AP)+R;(AD).
A ERMXR ne{l1,2,3}

Some of the fastest classical approaches: Fast HALS and
N-Way
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Tensor matricization

T;n), € RIJ”FX”” the matrix obtained by unfolding the tensor 7 in the
n-th mode where the size I_,isequal to I} Lb15/1,

Tensor expressed under matrix form as

T =AWZ )T, ne{1,2,3}

where
27V = AD 0 A® e R
277 =AW 0 AW e R,
ARSONCICYNCRE R':XR,



Application to CPD
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Function choice
FAD A® AG): term

1 n —
FAD,AD, A0) = J|T-[A0, AP, AOYE = ST Az

R.(A™): block dependent

Zan My wne{1,2,3}

in=1r=1

where loadlng matrices are defined element wise as

(w) = a”m“>ﬁ%33w§%@
Pn +00 otherwise
a €]0, 00|, 7 e N*, 7751?121 € [—00, +0oo| and n,(rﬁl)x € [7751:1131"*‘00]-

= block dependent but constant within a block regularization
parameters.



Application to CPD
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Preconditionning

Precontionning similar to the one used in NMF [Lee and Seung. 2001].
The matrix P for the n-th block can be defined as follows Vn € {1,2,3}

)T

P™ (A(l),A(z),A(3)) — A (Z(_” Z(_")) oA® |

Remark: Vn € {1,2,3}, A" must be non zero.
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Gradient and proximity operator

matrices of F with respect to A foralln = 1,...,3, defined
as

T

)Z(*”)‘

Vn]:(A(l),A(Z),A(3)) _ 7(T§,7,)Ln —_ Amz(=n)

given by (Vy = (0M)ic1 iy € REM))

ProX, jy-1pm i, =, (¥) = (pm"v[k} 10 1, O v ))

i€{1,....RI}

where Vi € {1,...,RIl,}, we have (Vv € R)

N (n) (n)
proxv[k],,p"(n)’pn(v) = min {nmax, max {nmim PTOX_ 100 (5 i) —1] . = (U)}}

(separable structure, diagonal preconditionning matrices,
componentwise calculation)



Application to CPD

Proximal algorithm for tensor decomposition

e 7
Inputs: Choose Preconditioner Gradient step
1) Initial loading randomly a p™ [k]
matrices A" [0] = block - ol A =AM [
2) Stepsize choice ~y ne{l,2,3} Partial gradient —YVaulk] @ p™ [k]
3) Iteration k = 0 to be updated Vaulk]
& J
k< k+1
Y
e 7
Proximal step
Outputs: Yes stopping Other blocks
Esti@atedj((;z)tding criterion unchanged - proxw:(l’?)(,,) (4, Ron
matrices A reached ? atk (A [k])
& J

Figure: BC-VMFB algorithm for CPD.

19



Numerical simulations
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Computer simulation: simulated spectroscopy-like data

: (uni or bimodal type) emission and excitation
spectra, random concentrations = 7 € Rfoxmoxmo and R = 5.

Simulated observed tensor: 7 = T + BB where B stands for an additive
white Gaussian noise
2 considered cases :

1. Perturbed case (noiseless): no noise added and R=6 (overesthl]ation).
2. Perturbed case (noisy): B fixed such that SNR = 17.6 dBand R = 6

(overestimation).
1. Signal to Noise Ratio defined as SNR = 201log, %
7Tl
2. Relative Reconstruction Error defined as RRE = 201og,, %
1
3 0AM (1R — A@
A"(1:R)—-A
3. Estimation error: E; = 101og,, (Z”z' | - ( = ) ”1>
2=t A1

R
4. Over-factoring error: E; = 10log,, | || Z al¥ 0a® oa? |,
r=R+1



Numerical simulations
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Numerical results

Elapsed time (s) [ BC-VMFB without penalty BC-VMFB with penalty N-way [ fast HALS |
For 50 iterations 0.2 0.2 11 0.5
Noisy case To reach stopping conditions 102 75 8 8
(actual number of iterations) (48500) (36500) (43) (1856)
(SNRE, Ey) dB (31.3,-12.5, 30.6) (32.7,-11.2, -409) (31.3, -12.5, 30.6) (31.3, -12.5, 30.6)
Noiseless case To reach stopping conditions 202 74 30 37
(actual number of iterations) (100000) (36500) (838) (308)
(RREE, Ey)dB (-75.1,-12.4,25.6) (-44.7, -15, -409) (-127.9.-8.7, 31.7) (-63.9,-6.1,31.7)

Computation time comparison of BC-VMFB in two cases: with or without penalty,
with N-way [Bro. 1997] and fast HALS [Phan et al., 2013] using the same initial value in
the noiseless and noisy cases.
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Visual results: noiseless case

Reference BC-VMFB without penalty BC-VMFB with penalty
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Figure: FEEM of reference (left) - FEEM reconstructed using BC-VMFB without
regularization (middle) and with regularization o = 0.05 (right).



Visual results: noiseless case
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Figure: R = 6 - reference spectra / BC-VMFB without penalty /
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Numerical simulations
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Visual results: noisy case

Reference BC-VMFB without penalty BC-VMFB with penalty
500

’<§ 400

500

’<§ 400

500

<§ 400

500

<& 400

500

<& 400

500

<& 400

350 400 450 500 350 400 450 500 350 400 450 500

em em )‘em

1*1HN

Figure: FEEM of reference (left) - FEEM reconstructed using BC-VMFB without
regularization (middle) and with regularization o = 0.05 (right).



Visual results: noisy case

simulations
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Numerical simulations
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Computer simulation: real experimental data - water
monitoring to detect pollutants

Data were acquired automatically every 3 minutes, during a 10 days
performed on water extracted from an urban river
= tensor of size 36 x 111 x 2594.

The excitation wavelengths range from 225nm to 400nm with a Snm
bandwidth, whereas the emission wavelengths range from 280nm to
500nm with a 2nm bandwidth.

The FEEM have been pre-processed using the Zepp’s method (negative
values were set to 0).

During this experiment, a contamination with diesel oil
appeared 7 days after the beginning of the monitoring.



Results: what about the rank ?

Estimated FEEMs Estimated FEEMs

penalized BC-VMEFB algorithm Bro’s N-way algorithm

Case R = 4
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Results: what about the rank ?
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Numerical simulations
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Results: concentrations

ot Concentrations (scaled) o Concentrations (scaled)
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Experiments Experiments

)

penalized BC-VMFB algorithm Bro’s N-way algorithm

Case R = 4
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Numerical simulations

Results: concentrations
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Conclusion and future work

Conclusion

clear theoretical and mathematical framework for CPD decomposition;

interesting properties of the proposed approach: reliability, robustness
versus noise and overestimation of the rank, good performance despite
model errors and relative quickness;

promising results on simulated and real data.

Perspectives:
extension to higher order tensor (in progress);
possibility of considering missing data;
study other preconditionning stategies.
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Conclusion

clear theoretical and mathematical framework for CPD decomposition;

interesting properties of the proposed approach: reliability, robustness
versus noise and overestimation of the rank, good performance despite
model errors and relative quickness;

promising results on simulated and real data.
Perspectives:

extension to higher order tensor (in progress);

possibility of considering missing data;

study other preconditionning stategies.

Questions ?
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