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3D fluorescence spectroscopy

Experiments
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Tensor

An Nth-order tensor is represented by an N-way array in a
chosen basis.

What is a tensor?

Example:
I N = 1: a vector.
I N = 2: a matrix.
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Third-order tensors
I A special case: nonnegative third-order tensors (N = 3)

T = (ti1i2i3)i1,i2,i3 ∈ R+I1×I2×I3 .

I The Canonical Polyadic (CP) decomposition:
Tensor rank

T =

R∑
r=1

ā(1)
r ◦ ā(2)

r ◦ ā(3)
r = [[Ā(1), Ā(2), Ā(3)]]

Loading vectors Loading matrices

∀n ∈ {1, 2, 3}, ā(n)
r ∈ R+In and Ā(n) ∈ RIn×R

◦: the outer product.
I Entry-wise form:

ti1i2i3 =

R∑
r=1

ā(1)
i1r ā(2)

i2r ā(3)
i3r , ∀(i1, i2, i3)
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Standard operations

I Outer product: let u ∈ RI , v ∈ RJ ,

u◦v = uv> ∈ RI×J

I Khatri-Rao product: let U = [u1,u2, . . . ,uJ] ∈ RI×J and
V = [v1, v2, . . . , vJ] ∈ RK×J

U�V = [u1⊗v1,u2⊗v2, . . . ,uJ⊗vJ] ∈ RIK×J.

where u⊗v = [u1v; . . . ; uIv] ∈ RIK (Kronecker product).
I Hadamard division: let U ∈ RI×J,V ∈ RI×J ,

U�V = (uij/vij)i,j ∈ RI×J
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Tensor flattening: example

Objective: to handle matrices instead of tensors.

 Tensor

Mode 1

Mode 2

Mode 3
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3D fluorescence spectroscopy and tensors

T =

R∑
r=1

ā(1)
r ◦ ā(2)

r ◦ ā(3)
r
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Remark: all the involved quantities are nonnegative.
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Objective: tensor decomposition

I Input:

I Observed tensor T : observation of an original (unknown) tensor T
possibly degraded (noise).

I Output:

I Estimated loading matrices Â(n) for all n ∈ {1, 2, 3}
I Difficulty:

I Rank R unknown (i.e. R̂ 6= R): generally i) estimated or ii) overestimated.

Formulate the problem under a variational approach.

Proposed approach
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Minimization problem
I Standard problem:

minimize
x∈RL

F(x)︸ ︷︷ ︸
Fidelity

+ R(x)︸ ︷︷ ︸
Regularization

.

I Taking into account several regularizations (J terms):

R(x) =

J∑
j=1

Rj(x)

I For large size problem or for other reasons, can be interesting to work
on data blocks x(j) of size Lj (x = (x(j))1≤j≤J)

R(x) =

J∑
j=1

Rj(x(j))

Technical assumptions: F ,R andRj are proper lower semi-continuous
functions. F is differentiable with a β-Lipschitz gradient. Rj is assumed to
be bounded from below by an affine function, and its restriction to its
domain is continuous.
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Proximity operator

I let ϕ : R→ ]−∞,+∞] be a proper lower semi-continuous function.
The proximity operator is defined as

proxϕ : R→ R : v 7→ arg min
u∈R

1
2
‖u− v‖2

+ ϕ(u),

I let ϕ : RL → ]−∞,+∞] be a proper lower semi-continuous function.
The proximity operator associated with a Symmetric Positive Definite
(SPD) matrix P is defined as

proxP,ϕ : RL → RL : v 7→ arg min
u∈RL

1
2
‖u− v‖2

P + ϕ(u),

where ∀x ∈ RL, ‖x‖2
P = 〈x,Px〉 and 〈·, ·〉 is the inner product.

Remark : Note that if P reduces to the identity matrix, then the two
definitions coincides.
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Criterion to be minimized

minimize
x∈RL

F(x) +

J∑
j=1

Rj(x(j))

Some solutions (non exhaustive list, CPD oriented):
I Proximal Alternating Linearized Minimization (PALM) [Bolte et al., 2014]

I A Block Coordinate Descent Method for both CPD and Tucker
decomposition [Xu and Yin, 2013]

I An accelerated projection gradient based algorithm [Zhang et al., 2016]

I Block-Coordinate Variable Metric Forward-Backward (BC-VMFB)
algorithm [Chouzenoux et al., 2016]

Advantages of the BC-VMFB: flexible, stable, integrates preconditionning,
relatively fast.
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Block coordinate proximal algorithm

1: Let x0 ∈ domR, k ∈ N and γk ∈]0,+∞[ // Initialization step
2: for k = 0, 1, ... do // k-th iteration of the algorithm
3: Let jk ∈ {1, ..., J} // Processing of block number jk (chosen, here,

according to a quasi cyclic rule)
4: Let Pjk (xk) be a SPD matrix // Construction of the preconditioner Pjk (xk)
5: Let∇jkF(xk) be the Gradient // Calculation of Gradient
6: x̃(jk)

k = x(jk)
k − γkPjk (xk)

−1∇jkF(xk) // Updating of block jk according to a
Gradient step

7: x(jk)
k+1 ∈ prox

γ−1
k Pjk (xk),Rjk

(
x̃(jk)

k

)
// Updating of block jk according to a

Proximal step
8: xj̄k

k+1 = xj̄k
k where j̄ = {1, ..., J} \ {j} // Other blocks are kept unchanged

9: end for
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Prox for CP decomposition
CP decomposition: decompose a tensor into a (minimal) sum of rank-1
terms.
Order 3:

T =

R∑
r=1

ā(1)
r ◦ ā(2)

r ◦ ā(3)
r = [[Ā(1), Ā(2), Ā(3)]], (1)

Tensor structure: naturally leads to consider 3 blocks corresponding to the
loading matrices A(1), A(2) and A(3).

minimize
A(n)∈RIn×R, n∈{1,2,3}

F(A(1),A(2),A(3))+R1(A(1))+R2(A(2))+R3(A(3)).

Proposed optimization problem

Some of the fastest classical approaches: Fast HALS [Phan et al., 2013] and
N-Way [Bro, 1997].

14 / 27



Introduction Proximal tools Application to CPD Numerical simulations Conclusion and future work

Tensor matricization

I T(n)
In,I−n

∈ RIn×I−n
+ the matrix obtained by unfolding the tensor T in the

n-th mode where the size I−n is equal to I1I2I3/In

I Tensor expressed under matrix form as

T(n)
In,I−n

= Ā(n)(Z(−n)
)>, n ∈ {1, 2, 3}

where

Z(−1)
= Ā(3) � Ā(2) ∈ RI−1×R

+ ,

Z(−2)
= Ā(3) � Ā(1) ∈ RI−2×R

+ ,

Z(−3)
= Ā(2) � Ā(1) ∈ RI−3×R

+ ,
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Function choice
I F(A(1),A(2),A(3)): quadratic data fidelity term

F(A(1),A(2),A(3)) =
1
2
‖T −[[A(1),A(2),A(3)]]‖2

F =
1
2
‖T(n)

In,I−n
−A(n)Z(−n)>‖2

F

I Rn(A(n)): block dependent penalty terms enforcing sparsity and
nonnegativity

Rn(A(n)) =

In∑
in=1

R∑
r=1

ρn(a(n)
inr ) ∀n ∈ {1, 2, 3}

where loading matrices are defined element wise as
A(n) = (a(n)

inr )(in,r)∈{1,...,In}×{1,...,R} and

ρn(ω) =

{
α(n)|ω|π

(n)
if η(n)

min ≤ ω ≤ η
(n)
max

+∞ otherwise

α(n) ∈]0,+∞[, π(n) ∈ N∗, η(n)
min ∈ [−∞,+∞[ and η(n)

max ∈ [η
(n)
min,+∞].

⇒ block dependent but constant within a block regularization
parameters.
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Preconditionning

Precontionning similar to the one used in NMF [Lee and Seung, 2001].
The matrix P for the n-th block can be defined as follows ∀n ∈ {1, 2, 3}

P(n)(A(1),A(2),A(3)) = A(n)(Z(−n)>Z(−n))� A(n) ,

Remark: ∀n ∈ {1, 2, 3}, A(n) must be non zero.
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Gradient and proximity operator

I Gradient matrices of F with respect to A(n) for all n = 1, . . . , 3, defined
as

∇nF(A(1),A(2),A(3)) = −(T(n)
In,I−n

− A(n)Z(−n)>)Z(−n).

I Proximity operator given by (∀y = (y(i))i∈{1,...,RIn} ∈ RRIn))

proxγ[k]−1P(n)[k],Rn
(y) =

(
prox

γ[k]−1p(n)
i [k],ρn

(y(i))
)

i∈{1,...,RIn}
.

where ∀i ∈ {1, ...,RIn}, we have (∀υ ∈ R)

prox
γ[k]−1p(n)

i ,ρn
(υ) = min

{
η(n)

max,max
{
η
(n)
min, prox

γ[k]α(n)(p(n)
i [k])−1| . |π(n) (υ)

}}
(separable structure, diagonal preconditionning matrices,
componentwise calculation)
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Proximal algorithm for tensor decomposition

matrices An
[0]

Inputs:
1) Initial loading

2) Stepsize choice γ
3) Iteration k = 0

Yes

Choose
randomly a
block
n ∈ {1, 2, 3}
to be updated

Preconditioner
P(n)

[k]

Partial gradient
∇n[k]

Gradient step

Proximal stepIs
stopping
criterion
reached ?

prox
γ−1P(n)[k],Rn

Ã(n)
[k] = A(n)

[k]
−γ∇n[k]� P(n)

[k]

(Ã(n)
[k])

Other blocks
unchanged

at kmatrices Â(n)
Estimated loading
Outputs:

No k ← k + 1

Figure: BC-VMFB algorithm for CPD.
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Computer simulation: simulated spectroscopy-like data
I Simulated tensor: (uni or bimodal type) emission and excitation

spectra, random concentrations⇒ T ∈ R100×100×100
+ and R = 5.

I Simulated observed tensor: T = T + B where B stands for an additive
white Gaussian noise

I 2 considered cases :
1. Perturbed case (noiseless): no noise added and R̂ = 6 (overestimation).
2. Perturbed case (noisy): B fixed such that SNR = 17.6 dB and R̂ = 6

(overestimation).
I Error measures

1. Signal to Noise Ratio defined as SNR = 20 log10
‖T ‖F

‖T̂ − T ‖F

2. Relative Reconstruction Error defined as RRE = 20 log10
‖T̂ − T ‖1

‖T ‖1

3. Estimation error: E1 = 10 log10

(∑3
n=1 ‖Â

(n)(1 : R)− Ā(n)‖1∑3
n=1 ‖Ā(n)‖1

)

4. Over-factoring error: E2 = 10 log10

‖ R̂∑
r=R+1

â(1)
r ◦ â(2)

r ◦ â(3)
r ‖1


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Numerical results

Elapsed time (s) BC-VMFB without penalty BC-VMFB with penalty N-way fast HALS

For 50 iterations 0.2 0.2 11 0.5
Noisy case To reach stopping conditions 102 75 8 8

(actual number of iterations) (48500) (36500) (43) (1856)
(SNR,E1, E2) dB (31.3, -12.5, 30.6) (32.7, -11.2, -409) (31.3, -12.5, 30.6) (31.3, -12.5, 30.6)

Noiseless case To reach stopping conditions 202 74 80 3.7
(actual number of iterations) (100000) (36500) (838) (308)

(RRE,E1, E2) dB (-75.1,-12.4,25.6) (-44.7, -15, -409) (-127.9,-8.7, 31.7) (-63.9, -6.1, 31.7)

Computation time comparison of BC-VMFB in two cases: with or without penalty,
with N-way [Bro, 1997] and fast HALS [Phan et al., 2013] using the same initial value in
the noiseless and noisy cases.
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Visual results: noiseless case
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Figure: FEEM of reference (left) - FEEM reconstructed using BC-VMFB without
regularization (middle) and with regularization α = 0.05 (right).
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Visual results: noiseless case
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Figure: R̂ = 6 - reference spectra / BC-VMFB without penalty / BC-VMFB with
penalty α = 0.05.
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Visual results: noisy case
Reference

λ ex 400

500

λ ex 400

500

λ ex 400

500

λ ex 400

500

λ ex 400

500

λem

λ ex

350 400 450 500

400

500

BC−VMFB without penalty

λem

350 400 450 500

BC−VMFB with penalty

λem

350 400 450 500
 

 

0.05

0.5

5

Figure: FEEM of reference (left) - FEEM reconstructed using BC-VMFB without
regularization (middle) and with regularization α = 0.05 (right).
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Visual results: noisy case
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Figure: R̂ = 6 - reference spectra / BC-VMFB without penalty / BC-VMFB with
penalty α = 0.05.
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Computer simulation: real experimental data - water
monitoring to detect pollutants

I Data were acquired automatically every 3 minutes, during a 10 days
monitoring campaign performed on water extracted from an urban river
⇒ tensor of size 36× 111× 2594.

I The excitation wavelengths range from 225nm to 400nm with a 5nm
bandwidth, whereas the emission wavelengths range from 280nm to
500nm with a 2nm bandwidth.

I The FEEM have been pre-processed using the Zepp’s method (negative
values were set to 0).

During this experiment, a contamination with diesel oil
appeared 7 days after the beginning of the monitoring.

Contamination

24 / 27



Introduction Proximal tools Application to CPD Numerical simulations Conclusion and future work

Results: what about the rank ?
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Results: concentrations
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Conclusion

I clear theoretical and mathematical framework for CPD decomposition;
I interesting properties of the proposed approach: reliability, robustness

versus noise and overestimation of the rank, good performance despite
model errors and relative quickness;

I promising results on simulated and real data.

Perspectives:
I extension to higher order tensor (in progress);
I possibility of considering missing data;
I study other preconditionning stategies.

Questions ?

Thank you !

?
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