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Description of results

Automatic sequences are sequences whose n-th term is produced by a finite state
machine from base k digits of n. By definition, automatic sequences can take only
finitely many values. Allouche and Shallit [AS], [AS2] have generalized the notion
of automatic sequences to a wider class of regular sequences and demonstrated their
ubiquity and links with multiple branches of mathematics and computer science.
The problem of demonstrating that a certain sequence is or is not automatic or
regular has been widely studied, particularly for sequences of arithmetic origin.
We continue this study for sequences that arise from generalized polynomials, i.e.
expressions involving algebraic operations and the floor function via dynamical and
ergodic methods. This is possible because by the work of Bergelson and Leibman
generalized polynomials are strongly related to dynamics on nilmanifolds. The
results obtained lead to a number of interesting questions concerning zero sets of
generalized polynomials that we hope will be of independent interest.

In [AS2, Theorem 6.2] it is proved that the sequence (f(n))n≥0 given by f(n) =
bαn+βc for real numbers α, β is regular if and only if α is rational. The method used
there does not immediately generalise to higher degree polynomials in n, but the
proof implicitly uses rotation on a circle by an angle of 2πα. Replacing the rotation
on a circle by a skew product transformation on a torus (as in Furstenberg’s proof
of Weyl’s equidistribution theorem), we easily obtain the following result.

Theorem A. Let p ∈ R[x] be a polynomial. Then the sequence f(n) = bp(n)c, n ≥
0 is regular if and only if all the coefficients of p except possibly for the constant
term are rational.

In fact, we show the stronger property that for an integer m ≥ 2 the sequence
f(n) mod m is not automatic unless all the coefficients of p except for the constant
term are rational, in which case it is periodic. It is natural to inquire whether a
similar result can be proven for more complicated expressions involving the floor
function such as e.g. f(n) = bαbβn2 + γc2 + δn + εc. Such sequences are called
generalized polynomial and have been intensely studied. The main motivation for
this project is the following conjecture.

Conjecture A. Suppose that a sequence f is simultaneously automatic and gen-
eralised polynomial. Then f is ultimately periodic.

(We say that a sequence f is ultimately periodic if it coincides with a periodic
sequence except at a finite set.)

We are able to partially resolve this conjecture. First of all, we prove that the
conjecture holds except on a set of density zero. In fact, in order to obtain such a
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result, we only need a specific property of automatic sequences. For the purpose of
stating the next theorem, let us say that a sequence f : N→ X is weakly periodic if
for any restriction of f to an arithmetic sequence, f ′(n) = f(an+b), a ∈ N, b ∈ N0,
there exist q ∈ N, r, s ∈ N0 with r 6= s, such that f ′(qn + r) = f ′(qn + s). Of
course, any periodic sequence is weakly periodic, but not conversely. All automatic
sequences are weakly periodic, which follows from the finiteness of kernels.

Theorem B. Suppose that a sequence f : N→ R is weakly periodic and generalised
polynomial. Then there exists a periodic function p and a set Z ⊂ N of (upper
Banach) density zero such that f(n) = p(n) for n ∈ N \ Z.

To obtain stronger bounds on the size of the exceptional set Z, we need to restrict
to automatic sequences and exploit some of their finer properties.

Theorem C. Suppose that a sequence f : N → R is automatic and generalised
polynomial. Then there exists a periodic function p and a set Z ⊂ N such that
f(n) = p(n) for n ∈ N \ Z and

sup
M
|Z ∩ [M,M +N)| = O

(
logC N

)
as N →∞ for a certain constant C.

While Theorem C does not resolve Conjecture A, our proof thereof greatly re-
stricts the number of possible counterexamples. In fact, in order to prove Conjecture
A, it would suffice to prove that the characteristic sequence of powers of an integer
k ≥ 2 given by

gk(n) =

{
1, if n = kt for some t ≥ 0;

0, otherwise

is not generalized polynomial.

Theorem D. Let k ≥ 2 be an integer. Then one of the following statements holds:

(i) All sequences which are simultaneously k-automatic and generalised poly-
nomial are ultimately periodic.

(ii) The characteristic sequence gk of the powers of k is generalised polynomial.
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Efficient repetition-free strings generator

Anton Chaplygin

Ural Federal University

Repetitions in strings (words) is a popular topic in both combinatorics of words and

stringology. A novel approach in this area is the generation of repetition-free strings by local

resampling algorithms, inspired by Moser and Tardos’s constructive proof of the Lovasz local

lemma [2].

Let us be more precise. Consider a string s = (uv)ku for some integer k ≥ 1, we say s is

a repetition with a period p = |uv| and an exponent β = |s|
p

, or, simply, β-repetition. One

may notice that β can be any rational and β ≥ 1. A string is β-repetition-free if it does not

contain a repetition with exponent larger or equal to β.

A well known example of β-repetitions is squares (β = 2). A generator of square-free

strings from a random source have been proposed by Arseny Shur in [3] along with the

asymptotic formula giving the expected number of random letters used by the generator to

construct a square-free string of length n depending on a fixed alphabet size.

In my work, I extended the mentioned generator to produce β-repetition-free strings for

an arbitrary fixed exponent β > 1 and fixed alphabet Σ. The generation algorithm uses

the repetition detector by Dmitry Kosolobov [1] which finds the earliest occurrence of a

β-repetition in the string in the online fashion. It successively appends random symbols to

the end of the string and checks for a β-repetition occurrence. As soon as an occurrence is

detected, some its suffix is removed and the structure is rolled back to the corresponding

state. This algorithm works in O(N · log n) time, where n is a length of generated string and

N is a number of randomly generated symbols.

I implemented the algorithm as a software and used it to study the structure of infinite

β-repetition-free languages for different values of β and different alphabetic sizes. The most

important characteristic of a language, estimated by this software, is the conversion coeffi-

cient limn→+∞E(N
n

), where N is number of random symbols required by the algorithm to
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generate a β-repetition-free string of length n. The larger this coefficient is, the harder it is

for the random process to choose an infinite branch in the tree of all β-repetition-free words,

avoiding dead ends.

The program runs the algorithm for different values of n up to 106, multiple times for

each value, taking the mean values to estimate the expectation. The main experimental

results are as follows:

• For β = 2 the coefficients agree with the results of [3]

• For β = ( |Σ||Σ|−1
)+ with |Σ| ≥ 5 (minimal infinite repetition-free languages; ”+” means

that the exponent exactly β is permitted) the coefficients seem to tend to a limit ≈ 3.5

as |Σ| → ∞

• Σ = 4, β = (7
5
)+ (minimal quaternary repetition-free language) the biggest coefficient

was observed ≈ 300

• Σ = 3, β = (7
4
)+ (minimal ternary repetition-free language) is the most intriguing,

because this is the only language for which the algorithm fails to produce a string

longer than several hundred symbols. The behaviour of the algorithm on this language

will be our next object of study.
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The Černý conjecture and 1-contracting automata

Henk Don

1 Introduction

Let A = (Q,Σ, δ) be a deterministic finite automaton (DFA), where Q
denotes the state set, Σ the input alphabet, and δ : Q×Σ→ Q the transition
function. We denote the set of finite words over Σ by Σ?. The transition
function δ extends uniquely to a function δ : Q× Σ? → Q.

The automaton A is called synchronizing if there exists a word w ∈ Σ?

and q ∈ Q such that δ(q′, w) = q for all q′ ∈ Q. The word w is then said to
be a synchronizing word for A .

The following longstanding conjecture is due to Černý ([1], 1964):

Conjecture 1. If A is a synchronizing n-state automaton, then there exists
a synchronizing word for A of length at most (n− 1)2.

2 1-contracting automata

In this talk we look at n-state automata in which every (n−1)-subset of the
state set Q is reachable from Q. Such automata will be called 1-contracting.
A word with the property that it maps Q to an (n− 1)-subset of Q is called
1-deficient. If w is a 1-deficient word, the state that is not in the image of
w is said to be the excluded state. There also must be a unique state in the
image which is reached twice by w. This state will be called the contracting
state for w.

In a 1-contracting automaton, for every state q there exists a 1-deficient
word that excludes q. A collection W of words is called 1-contracting if for
all q it contains exactly one word wq which excludes q. To such a collection
we can associate a function σW on Q that maps each state q to the unique
contracting state for wq. This function will be called the state map induced
by W . If for some 1-contracting collection W the state map is a cyclic
permutation on Q, then the automaton is called aperiodically 1-contracting.
A formal definition is given below.

1



Definition 2. Let A = (Q,Σ, δ) be a DFA with n states. A is called
aperiodically 1-contracting if there exist words w1, . . . , wn ∈ Σ∗ and a cyclic
order q1 ≺ q2 ≺ . . . ≺ qn ≺ q1 on Q such that for all i = 1, . . . , n (and
interpreting qn+1 as q1)

δ(Q,wi) = Q \ {qi} and |δ−1(qi+1, wi)| = 2.

3 Main results

Our main result (which appears in [2]) is the following:

Theorem 3. Let A = (Q,Σ, δ) be an aperiodically 1-contracting DFA with
n states. If there exists an efficient 1-contracting collection W ⊆ Σ? for
which σW is a cyclic permutation on Q, then

1. The shortest synchronizing word of A has length at most (n− 1)2.

2. For every nonempty set S ⊆ Q of size k, there exists a word wS of
length at most n(n− k) such that δ(Q,wS) = S.

So, under the conditions of this theorem, the Černý conjecture holds
true. The second statement of the theorem is in fact even stronger, claiming
reachability of all subsets of Q, with a quadratic upper bound on the word
length.

4 Outline of the talk

In the talk I will introduce Černý’s conjecture and demonstrate that it is
quite straightforward to find a cubic upper bound for the length of the
shortest synchronizing word. Then I will discuss the notion of 1-contracting
automata and try to explain the ideas behind this definition. Next, I will
present the main result and sketch the proof. If time permits, I will discuss
some examples that fit into the class of aperiodically 1-contracting automata.
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On the Gap Between Separating Words and

Separating Their Reversals

Farzam Ebrahimnejad∗

Department of Computer Engineering,
Sharif University of Technology

Abstract

The function sep(w, x) is defined as the size of the smallest de-
terministic finite automaton that accepts w and rejects x. In 1986,
Goralcik and Koubek [2] introduced the separating words problem,
which asks for good upper and lower bounds on

S(n) := max
w 6=x∧|w|,|x|≤n

sep(w, x).

Goralcik and Koubek [2] proved S(n) = o(n). Besides, the best known

upper bound so far is O(n2/5 (log n)
3/5

), which was obtained by Rob-
son [3]. A recent paper by Demaine et al. [1] surveys the latest results
about this problem, and while proving several new theorems, it also
introduces three new open problems, all of which have remained un-
solved until now. In this paper, we solve the first open problem stated
in that paper, which asks whether∣∣sep(w, x)− sep(wR, xR)

∣∣
is bounded or not. We prove that this difference is actually unbounded.
In order to do so, for all positive integers k ∈ N, we will construct two
words

w = u0nv, x = u0n+(2n+1)!v,

for some u, v ∈ { 01, 11 }+
(

0+ { 01, 11 }+
)∗

, such that sep(w, x) −
sep(wR, xR) approaches infinity as k approaches infinity. We show that
under certain conditions, we can set u, v so that it requires relatively
few states to separate wR, xR. But while preserving these conditions,
we set u, v so that it will require exponentially more states, with re-
spect to k, to separate w and x. We do that by using the regular
language Gk, which is described in the paper, and has some interest-
ing characteristics. We show that for all k ∈ N, there exists zk ∈ Gk

∗Email address: febrahimnejad@ce.sharif.edu
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such that if a DFA with less than 2k states accepts zk, then it should
also accept a word in { 1, 2 }∗ −Gk.

Keywords: Words separation; Finite automata.

This paper has been submitted to the journal of Theoretical Computer
Science. The full version is available at arXiv:1605.04835 [cs.FL] .
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Densities of sets defined by sum-of-digits function

We present two works, joint with respectively Alexander Prikhodko
and Pascal Hubert, where we study properties of densities of sets de-
fined by the sum-of-digits functions in base 2. To be more precise, we are
interested, for any a ∈ N and any d ∈ Z, in the following set:

Ea,d := {n ∈ N | s2(n+ a)− s2(n) = d}

where
s2 : N → N

n 7→
m∑
k=0

nk.

if n =
m∑
k=0

nk2
k.

Bésineau proved that such sets admit a partition into arithmetic pogres-
sions and thus that they admit asymptotic densities. The quantity s2(n +
a) − s2(n) appears naturally when studying the autocorrelation funcrion of
some arithmetic functions. Denote µa(d) the asymptotic density of Ea,d,
that is to say:

µa(d) = lim
N→+∞

1

N
(#Ea,d ∩ {0, ..., N − 1}) .

Remark that for any a, µa is a probability measure on Z. We study the
asymptotic properties of the probability measures as a goes to +∞. We
prove the following property:

Proposition 1. For any a ∈ N and any d ∈ Z, there exists a finite set
Sa,d ⊂ {0, 1}∗, possibly empty, such that:

n ∈ Ea,d ⇔ ∃w ∈ {0, 1}∗,∃s ∈ Sa,d, n = ws.

We give explicite construction of the sets Sa,d by recurrence properties
on a. This has a direct corollary on µa:

µ2a(d) = µa(d), µ2a+1(d) =
1

2
(µa(d− 1) + µa+1(d+ 1)) .

This allows not only to compute the probability measures explicitly in a
simple manner, but also, by applying Fourier transform on both sides of the
equations, we have recurrence relations between the characteristic functions
of the probability measures µa. This allows us to write the characteristic
function of µa as a product of matrices. With such a writing we prove the
following:
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Theorem 2. Let l(a) denote the number of occurrences of the word “01′′ in
a. There exists a constant C > 0 such that:

∀a ∈ N, ‖µa‖l2(Z) ≤ C (l(a))
−1
4 .

Moreover, the study of the characteristic function of µa, still as a product
of matrices, allows a to prove the following:

Theorem 3. For any a, the mean of µa is 0 and its variance, denoted
Var(µa) satisfies:

l(a)− 1 ≤ Var(µa) ≤ 4l(a) + 2

This raised the question as to know whether or not, for a given sequence
an, the sequence (Var(µan)/l(an))n∈N converges. We partially answer this
question in a joint work with Pascal Hubert.

Let X = (Xk)k∈N ∈ {0, 1}N. Define the associated sequence of integers
(aX(n))n∈N by:

∀n ∈ N, aX(n) =
n−1∑
k=0

Xk2
k.

Let P denote the balanced Bernoulli measure on {0, 1}N. We have the fol-
lowing:

Proposition 4. There exists a set U ⊂ {0, 1}N such that P = 1 and:

∀X ∈ U, Var(µaX(n)) ∼
n

2
.

This motivates the following renormalisation. For any X ∈ U and n ∈ N,
define µ̃Xn ∈ l1

(√
2
nZ
)
by:

∀x ∈
√

2

n
Z, µ̃Xn (x) = µaX(n)

(√
n

2
x

)
.

We have the following:

Theorem 5. For any X ∈ U ,

µ̃Xn ⇀ N (0, 1).

This is proved by computing the moments of µ̃Xn thanks to its charac-
teristic function which is given by a product of matrices and by showing the
convergence of these moments towards those of the normal law.
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Entropy of topologically mixing subshifts

The entropy is a topological invariant of dynamical systems measuring their complexity. We study

the in�uence of topological mixing hypothesis on the entropy of e�ective one dimensional subshifts,

and two dimensional subshifts of �nite type. We would like to present some results about one di-

mensional subshifts. The main result is that the entropies of O(n)-topologically mixing e�ective one

dimensional subshifts are exactly the Π1-computable numbers. Under some low mixing condition,

that is to say O(f(n))-mixing with f(n) growing su�ciently slowly, the entropies of such subshifts

are all computable numbers. We ask the following questions : can we reduce the gap between these

two behaviors ? Could we realize every computable number as the entropy of a low mixing sub-

shift ? We would like also to talk about two dimensional SFTs. We know that O(log(n))-mixing

SFTs have a computable entropy and have a dense set of periodic points. What happen if we take

a greater intensity of mixing ? Can we produce some O(n)-mixing aperiodic SFT? What are the

entropies of O(n)-mixing SFTs ?
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On the number of synchronizing colorings of
digraphs

Vladimir V. Gusev

joint work with Elena V. Pribavkina and Marek Szykua

Let A = (Q,Σ, δ) be a finite deterministic complete automaton with an
alphabet Σ, a set of states Q and a transition function δ. The automaton A
is synchronizing if there exist a word u and a state p such that for every state
q ∈ Q we have q · u = p, where q · u denotes the image of q under the action of
u. Any such word u is called synchronizing (or reset) word for A . The length
of the shortest synchronizing word rt(A ) is called the reset threshold of A .
Synchronizing automata naturally appear in algebra, coding theory, industrial
automation, discrete dynamical systems, etc. A brief survey of the theory of
synchronizing automata may be found in [8].

Two fundamental problems about synchronizing automata that were inten-
sively investigated in the last decades are the Černý conjecture and the road
coloring problem. The former states that the reset threshold of an n-state au-
tomaton is at most (n − 1)2 [3]. Despite intensive research efforts it remains
open for already half a century. The latter problem states a certain connection
between primitive digraphs and synchronizing automata, which we will explain
shortly, and was recently resolved by Trakhtman [7] after crucial insight by Cu-
lik, Karhumäki, and Kari [4]. My talk is devoted to the generalizations of the
road coloring theorem.

The road coloring theorem. The underlying digraph G(A ) of an au-
tomaton A is a digraph with Q as a set of vertices, and for each u ∈ Q, x ∈ Σ
there is an edge (u, u · x). We allow loops and multiple edges, thus G(A ) has
a fixed out-degree equal to the cardinality of the alphabet Σ, i.e., G(A ) is a
|Σ|-out-regular digraph.

Vice versa, given a digraph G with a fixed out-degree k and a finite alphabet
Σ with k letters, we can obtain a deterministic finite automaton by distributing
the letters of Σ over the edges of G. Any automaton obtained in this way is
called a coloring of G. A digraph is primitive if there exists a number t such that
for any two vertices u and v there exists a path from u to v of length exactly
t. An automaton is strongly connected if its underlying digraph is strongly
connected.

Theorem 1 (Road coloring theorem) A strongly connected digraph G with
a fixed out-degree k has a synchronizing coloring if and only if it is primitive.

This theorem was stated as a conjecture in 1977 [1]. The authors’ original mo-
tivation comes from symbolic dynamics. Namely, synchronizing coloring defines
a morphism from a shift of finite type given by G to a full shift over Σ with
special properties, see [2].

The origin of the terminology is as follows. A digraph G represents a network
of one-way roads. A coloring of G defines labels of the roads that can be
perceived by drivers. If the coloring is synchronizing then the drivers who
are unaware of their current location have the following strategy to relocate
themselves: they can simply follow roads labelled by a synchronizing word and
their final position will be well defined.
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Although the road coloring theorem gives an answer for a principal connec-
tion between digraphs and synchronizing automata, there are still basic quanti-
tative questions that remain unanswered. Namely, how many synchronizing col-
orings a primitive digraph G can have and what is the number of synchronizing
colorings of an average (or random) digraph? These questions were addressed
in our recent works [5, 6].

In my talk I will present two conjectures that generalize the road coloring
theorem. Furthermore, I will describe our recent work to prove these conjectures
based on the spectral properties of the adjacency matrix A(G) of a digraph G.
Namely, we used the structure of the dominant eigenvector ~v of A(G) to obtain
bounds on the number of synchronizing colorings of G. Using this technique
we were able to prove one of the conjectures in a special class of digraphs and
reformulate the other.
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On the numbers of ergodic lifts over ergodic measures for finite-to-one
factor maps between shifts of finite type

Uijin Jung

Let f be a finite-to-one factor map between two mixing shifts of finite type X and Y with the
same topological entropy. It is well known that there is a natural number d, called the degree of
f, such that almost all points in Y have d preimages in X. The degree of f plays an important role
in the study of finite-to-one factor maps between symbolic dynamical systems. Since f naturally

induces a factor map between the sets of invariant measures of X and Y, it is natural to ask
whether there is a relation between the degree and the number of ergodic lifts over a measure on

Y. The degree is also an upper bound on the number of ergodic lifts over a fully supported
measure on Y. Also, for each fully supported Markov measure on Y, it is known that there is only
one invariant measure of X over it. We show that there is also a fully supported ergodic invariant
measure on Y for which there exists exactly d ergodic invariant measures mapping to it. Then we

discuss on the possible set of the numbers of ergodic lifts over ergodic measures on Y.
This is a joint work with Jisang Yoo.
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Quest for Short Identities in Transformation

Semigroups and Symmetric Groups

This research was mainly motivated by the separating words problem, for-
mulated by Goralcik and Koubek in 1986 [1], which is stated as follows. Let
Sep(n) be the minimum number such that for any two words with length less
or equal than n there is a deterministic finite automaton with Sep(n) states
that accepts exactly one of them. The problem is to find the asymptotics of
the function Sep. The known lower bound for Sep(n) is log n + o(log n), and
the best upper bound, obtained by Robson [2] is O(n2/5(log n)3/5). There is a
version of the problem, in which all automata are permutational. We denote the
analog of the function Sep for permutational automata by Sepp. In this case
the lower bound is the same as the lower bound for Sep, and the upper bound
also belongs to Robson [3] and is O(n1/2). Such a huge gap suggests that any
of these bounds can be very loose.

To improve the lower bound, one needs to find short identities in full trans-
formation semigroups Tk and symmetric groups Sk. This connection stems from
the following simple facts:

Fact 1. Sep(n) ≤ k iff each identity u = v in Tk satisfies max{|u|, |v|} > n.

Fact 2. Sepp(n) ≤ k iff each identity u = v in Sk satisfies max{|u|, |v|} > n.

Trivially, Tk and Sk satisfy the unary identities

xk−1+lcm{1,. . . ,k} = xk−1 (1)

and
xlcm{1,. . . ,k} = 1 (2)

respectively. In addition, it is known that for any non-unary identity there is a
binary identity of the same length. Thus, I searched for shorter binary identities
for small values of k. The main results, obtained through various computational
experiments, are as follows.

For k = 4:

- T4 has no identities shorter than the unary identity (1) (the same result
for T3 was known, as well as the shortest identities for S3 and S4).

For k = 5:
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- T5 has no identities of length ≤ 40 (this result uses an exhaustive search
of identities in S5 up to length 33 made by K. Startsev; his search reveals
just two identities of length 32);

- S5 satisfies the following identity of length 34:

(xy)12(yx)5 = (yx)5(xy)12 (3)

- T5 satisfies the following identity of length 48, obtained from (3) by adding
appropriate prefixes and suffixes to both sides:

(xy)15(yx)5(xy)4 = (xy)3(yx)5(xy)16 (4)

Moreover, our guess, supported by some partial search, is that (4) is the
shortest identity in T5.

For k ≥ 6:

- no short identity in Tk was found yet;

- the shortest identities in Sk of the form

(xy)a(yx)b = (yx)b(xy)a (5)

were found up to k = 23; for example, for k = 23 such an identity has
length 2332920, while lcm{1, .., 23} = 5354228880;

- even shorter identities in Sk of the form

(xy)a(yx)b(xy)c(yx)d = (yx)d(xy)c(yx)b(xy)a (6)

were found for k = 6, . . . , 12; for example, S6 has a unique shortest identity
of length 32, and S7 has an identity of length 76.

These results are a part of the paper [4].
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INVARIANT MEASURES OF B-FREE SHIFTS

JAKUB KONIECZNY, MICHAL KUPSA, AND DOMINIK KWIETNIAK

A set A ⊂ Z is periodic if it is a �nite union of in�nite arithmetic progressions.
Note that characteristic functions of periodic sets are exactly periodic {0, 1}-valued
sequences over Z. Let

d̄(A) = lim sup
n→∞

|A ∩ {0, 1, . . . , n− 1}|
n

.

For A,B ⊂ Z the formula d̄(A÷B) introduces a pseudometric on P(Z). Following
Bergelson and Ruzsa, we call a set A ⊂ Z rational if it belongs to the d̄ closure of
the family of periodic sets.

Our motivating examples are sets of B-free integers. An integer is B-free if
it has no factor in a given set B ⊂ N. For example, the set of Bsq-free integers
where Bsq = {p2 : p prime} is just the set of square-free integers. These sets were
studied by Chowla, Davenport and Erd®s. Recently, Sarnak [7] initiated the study
of a symbolic dynamical system Xsq associated with Bsq. Abdalauoi, Lema«czyk,
and de la Rue [1] extended Sarnak's approach to B-free systems determined by
any B consisting of in�nitely many pairwise relatively prime integers, the sum
of whose reciprocals is �nite (we call such a set B an Erd®s set). Bartnicka et
al. [2] considered shift spaces associated with B-free integers for an arbitrary B.
These systems were also investigated by Cellarosi and Sinai [3], Kuªaga-Przymus,
Lema«czyk, and Weiss [4, 5], Peckner [6].

Writing elements of B ⊂ N as an increasing sequence b1, b2, . . . we may consider

the periodic set F
(k)
B of B(k)-free integers (here B(k) = {b1, . . . , bk}) as a periodic

approximation on FB. Indeed, it is often the case that FB is rational, that is

d̄(FB ÷F
(k)
B ) → 0 as k → ∞. Using the Davenport-Er®s theorem we formalize

the vague statement that FB ⊂ Z is approximated by F
(k)
B for any B and hence

we generalize the notion of a rational set.
A natural symbolic dynamical system (aka a shift space) associated with a set

A ⊂ Z arises from the identi�cation of A with its characteristic sequence a . Then
a is a biin�nite {0, 1}-valued sequence, which is a point in the space Ω = {0, 1}Z,
where {0, 1} is given the discrete topology and Ω is given the corresponding product
topology. The left-shift operator σ : Ω → Ω is a homeomorphism of Ω and the
closure Xa of the σ-orbit of is a shift space (it is closed, nonempty and σ-invariant).
This construction was used by Furstenberg in his proof of the Szemerédi theorem.
We say that Xa is a rational shift if A is a rational set. The B-free shift Xb is the
closure of the orbit of b ∈ Ω, where b is the characteristic function of the set of
B-free integers FB ⊂ Z.

Another shift space connected with FB is the B-admissible shift XB. It consists
of all B-admissible sequences in Ω, where we say that x = (xj)j∈Z ∈ Ω is B-

admissible if for every b ∈ B the set {j ∈ Z : xj = 1} is disjoint with a set bZ + r
for some 0 ≤ r < b. Since b is clearly a B-admissible sequence we see immediately
that Xb ⊂ XB. Furthermore, if B is an Erd®s set, then Xb = XB by [1, Cor. 2.6].
This is not the case in general and is a reason to introduce yet another construction.
A shift space over {0, 1} is hereditary if it is closed with respect to a coordinatewise
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multiplication by an arbitrary 0-1 sequence. Given a shift space X by X̃ we denote
the hereditary closure of X which is the smallest hereditary shift space containing
X. Note that the B-admissible shift is hereditary for every B, hence X̃B = XB

and we always have Xb ⊂ X̃b ⊂ XB.
We study invariant measures for hereditary closures of B-free and rational shifts.

We show that ergodic invariant measures of any shift space in that family are
abundant and their structure resemble invariant measures of a transitive uniformly
hyperbolic system: The ergodic measures are entropy dense. That is, any invariant
measure µ is a weak∗limit of a sequence of ergodic measures with Kolmogorov-
Sinai entropies also converging to the entropy of µ. This extends results from
[5, 2], where density, but not ergodic density of ergodic measures is proved for all
hereditary closures of B-free shifts in two directions: we add entropy to the picture
and broaden the class of shift spaces for which this result holds. For our purposes
we develop techniques of single orbit dynamics and heavily use d̄-pseudometric and
related concepts of independent interest. As a matter of fact these methods lead to
new, often shorter proofs, of many results from [4, 5], and [2] in our more general
setting. We also describe the ways in which a subset of Z is approximated by
periodic sets which leads to many intriguing questions of the combinatorial number
theoretic properties of theses sets.
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On arithmetic index in the Thue-Morse word

Parshina O. G.
Sobolev Institute of mathematic SB RAS, Russia

Université de Lyon, Université Lyon 1, Institut Camille Jordan, France

Let w be an infinite word over the finite alphabet Σ, |Σ| = t. A set
Aw(d) = {wcwc+dwc+2d · · ·wc+(k−1)d|c, k ∈ Z+} defined for every positive in-
teger d is the set of arithmetic subsequences in w obtained with the difference
d. If the arithmetic closure of w: ∪d∈Z+Aw(d) contains all finite words, the
word w is called arithmetic universal (AU-word)[1]. A well-known example
of a AU-word is the Thue-Morse word [2] defined as wTM = w0w1w2w3 · · · ,
where wi ∈ {0, 1} is the sum modulo 2 of digits in the binary representation
of i.

Consider a word u of length n over Σ and define a number iw(u) =
mind{u ∈ Aw(d)}. The word u has an arithmetic index Iw(u) if Iw(u) is the
length of the t-ary notation of iw(u). In the case u does not belong to the
arithmetic closure of w we set Iw(u) = ∞. The object of the research is a
function maxu:|u|=n Iw(u).

The function maxu:|u|=n IwTM
(u) for the Thue-Morse word is considered.

By this moment, a lower and an upper bounds on the rate of growth of
this function have been obtained. A lower bound is based on the formula
of the factor complexity of wTM [3] and is equal to (n − log n − 2)/2. An
upper bound is based on the theorem about a distribution of arithmetic
progressions – arithmetic subsequences consisting of the same symbols – in
the Thue-Morse word formulated below.

Consider a function a(c, d) which outputs the length of an arithmetic
progression with starting symbol vc and difference d for positive integers c
and d in the Thue-Morse word. The function a(d) = maxc a(c, d) outputs
the length of the maximal arithmetic progression with the difference d.

Theorem 1 For all numbers n ≥ 1 the following holds:

max
d<2n

a(d) =

{
2n + 4, n ≡ 0 mod 2,

2n, otherwise.
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A similar result for the generalized Thue-Morse word over the ternary
alphabet one can find in [4].

A natural corollary from the theorem 1 is that the arithmetic index of
every binary word of the form 0n or 1n is not greater than log n. The upper
bound for arbitrary binary word of length n is 3n log n.

Computer experiments have been carried out for binary words of length
n ≤ 18. According to experiments the lower bound is closer to the real
growth of considered function.
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Palindromic Length in Linear Time

Mikhail Rubinchik, Arseny M. Shur
Ural Federal University
Ekateinburg, Russia

Palindromes are one of the most important repetitive structures in strings. During
the last decades they were actively studied in formal language theory, combinatorics on
words and stringology. Recall that a palindrome is any string S = a1a2 · · · an equal to
its reversal an · · · a2a1. There is a lot of papers concerning the palindromic structure of
strings. The most important problems in this direction include the search and counting
of palindromes in a string and the factorization of a string into palindromes.

There are two versions of the palindromic factorization problem. In the k-factorization
problem, it is required to factorize a string into a fixed number k of palindromes or establish
that no such factorization exists (this can be viewed as recognizing the language Palk).
The palindromic length problem asks to factorize a string into the minimal number of
palindromes. As was shown in [1], k-factorization can be solved in time O(kn). Another
algorithm for k-factorization, presented in [3], works in O(n log n) time independently
of k. There are two solutions [2, 4] of palindromic length problem in O(n log n) time.
In [3] we presented more practical algorithm with the same complexity. All the mentioned
algorithms are online, that is, they give the answer for each prefix of the input string
before reading the next symbol. The main question is, are there any faster algorithms?
This was open until now. In this talk we present a linear time online algorithm for the
palindromic length problem.

The algorithm uses the bit compression technique (so-called “four Russians’ trick”)
applied to a specific representation of the solution: instead of an array of n integers to
store the palindromic lengths of all prefixes of the processed string, we use only 2n bits to
store the differences between the consecutive elements of this array. The main procedure
is the computation of the new list of suffix-palindromes from the old list after appending
a new symbol; this procedure inevitably takes O(log n) time. We show how to apply this
procedure only O(n/ log n) times, reducing all other time expenses per iteration to O(1).
This allows us to get the overall linear time bound.
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Synchronization of Weakly Acyclic Automata

Andrew Ryzhikov
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The concept of synchronizing automata is widely studied in automata theory and has a lot

of different applications in such areas as manufacturing, biocomputing, semigroup theory and

many others [Vol08]. Let A = (Q,Σ, δ) be a deterministic finite automaton, where Q is the set

of its states, Σ is a finite alphabet and δ : Q × Σ → Q is a transition function. Note that our

definition of automata does not include initial and accepting states. An automaton is called

synchronizing if there exists a word that maps every its state to a fixed state q ∈ Q. A set S

of states of an automaton A is called synchronizing if there exist some word w ∈ Σ∗ and some

state q ∈ Q such that after reading the word w starting in any state s ∈ S, A ends up in q. The

word w is said to synchronize the set S.

An automaton is called binary if its alphabet has size two. A cycle in an automaton is a

sequence q1, . . . , qn of its states such that there exist letters x1, . . . , xn ∈ Σ with δ(qi, xi) = qi+1

for 1 ≤ i ≤ n − 1 and δ(qn, xn) = q1. A cycle is a self-loop if it consists of one state. An

automaton is called weakly acyclic if all its cycles are self-loops. Weakly acyclic automata

are called acyclic in [JM12] and partially ordered in [BF80]. Weakly acyclic automata arise

naturally in the synchronizing automata theory. For example, the automata in the reductions

proving the facts that the problem of finding a shortest synchronizing word is NP-complete for

binary automata [Epp90] and hard to approximate for automata with alphabet of non-constant

size [Ber14] are weakly acyclic.

One of the most important questions in the synchronizing automata theory is the famous

Černý conjecture stating that any n-state synchronizing automaton has a synchronizing word

of length at most (n− 1)2. For weakly acyclic automata, we prove a stronger property. Given

an automaton A, the rank of a word w is the number |{δ(s, w) | s ∈ Q}|.
Theorem 1. Let A be a synchronizing weakly acyclic automaton, and w be a word of

rank r with respect to A. Then there exists a word of length n−r and rank r with respect to A.

The problem of deciding whether the given automaton is synchronizing is solvable in poly-

nomial time [Vol08]. However, the problem of deciding whether the set S of states of a given

automaton A is synchronizing is PSPACE-complete (see [San05] for a survey on this subject),

even for binary strongly connected automata. For weakly acyclic automata, we prove that the

following results hold.

Theorem 2. Let S be a synchronizing set of states in a weakly acyclic n-state automaton A.

Then the length of a shortest word synchronizing S is at most n(n−1)
2 .

Corollary 1. The Sync State problem for weakly acyclic automata is in NP.

Theorem 3. The Sync Set problem is NP-complete for binary weakly acyclic automata.

Next, we introduce a related problem Max Sync Set of finding a synchronizing set of states

of maximum size in a given automaton. We investigate the complexity and approximability of

1



this problem. The proofs of the statements can be found in the pre-print on arXiv [Ryz16].

Theorem 4. The decision version of the Max Sync Set problem is PSPACE-complete

for binary automata.

Theorem 5. The problem Max Sync Set for weakly acyclic n-state automata over an

alphabet of cardinality O(n) cannot be approximated in polynomial time within a factor of

O(n1−ε) for any ε > 0 unless P = NP.

Theorem 6. The Max Sync Set problem for binary n-state automata cannot be approx-

imated in polynomial time within a factor of O(n
1
2
−ε) for any ε > 0 unless P = NP.

Theorem 7. The Max Sync Set problem for binary weakly acyclic n-state automata can-

not be approximated in polynomial time within a factor of O(n
1
3
−ε) for any ε > 0 unless P = NP.

Finally, we use the developed technique to show the inapproximability of the problem of

computing the rank of a subset of states. A rank of a set of states S ⊆ Q is the number

minw∈Σ∗ |{δ(s, w) | s ∈ S}|. This notion generalizes the rank of an automaton, which is the

rank of the set of all states of an automaton. The rank of an automaton can be computed in

polynomial time [Rys92].

Theorem 8. The problem Set Rank of computing the rank of a given subset of states in

an n-state binary weakly acyclic automaton cannot be approximated in polynomial time within

a factor of O(n
1
4
−ε) for any ε > 0 unless P = NP.
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Maximal Edit Distance to a
Synchronizing Coloring of a Graph

This research is focused on k-out-regular directed multigraphs on n vertices
with loops (called simply digraphs). The edges of such a digraph can be colored
by elements of some fixed k-element set in such a way that outgoing edges of
every vertex have different colors. Such a coloring corresponds naturally to an
automaton.

In 1977 Adler, Goodwyn and Weiss conjectured [1] that every primitive
digraph has a synchronizing coloring. This conjecture became widely known as
the road coloring problem and was proved by Trahtman in 2007 [3].

The main motivation for this work comes from the algorithmic issues related
to the road coloring problem. How to find a synchronizing coloring of a given
digraph? Trahtman’s proof provides an algorithm for this task working in time
O(n3). Later his construction was improved [2], providing a non-trivial algorithm
with a worst-case complexity O(kn2).

Both of this algorithms construct a synchronizing coloring by taking a random
coloring and successively changing it, until it becomes synchronizing. The natural
questions arise — what is the maximal number of such changes is needed, to
make any given coloring synchronizing and on what kinds of digraphs it can be
achieved?

Let %(G) be the maximal number of edits required to make a synchronizing
coloring from any coloring of digraph G.

In my research, an experimental and theoretical study on the maximal values
of such edit distance for graphs on n vertices is performed. The main results are
as follows:

1. Developed an efficient algorithm for enumerating non-isomorphic digraphs
and computing %(G).

2. Using this algorithm for small n and k, an extensive experiments are
performed, providing evidence to state a conjecture, giving the upper
bound of %(G) ≤ log2 n.

3. The series of graphs and their colorings achieving

a. %(G1m) = m = log2 n, for n = 2m and k = m+ 1.
The digraph G1m is Cayley graph of a group with generating set
{id; (1, 2); (3, 4); . . . ; (2m− 1, 2m)}.
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b. %(G2m) = m+ 1, for n = 2 · 3m and k = m+ 1.
The digraph G2m is Cayley graph of a group with generating set
{(1, 2, 3); (4, 5, 6); . . . ; (3m− 2, 3m− 1, 3m);
(1, 2)(4, 5) . . . (3m− 2, 3m− 1)}.

c. %(G3m) = m− 1, for n = m! and k = 2.
The digraph G3m is Cayley graph of the symmetric group Sm with
generating set {(1, 2, . . . , n− 1), (1, 2, . . . n)}
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