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@ Wavefield simulations in geophysics
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Wavefield simulations in geophysics

Challenges in wavefield simulations

Multiple spatial scales: survey domains vs thin waveguides
Multiple time scales
Consequently, discretized problem has up to of order 101° unknowns

Efficient parallelization is required




Wavefield simulations in geophysics

Elastic wave propagation

Linear wave equation
d?u

AU+F

= 07 u|t:0 = ga ul‘tZO — 0
A=A*>0, bu(t)c RN, A e RN*N
A is of graph-Laplacian type, N is very large. Soluton can be expressed in
terms of matrix function u(t) = cos (tv/A)g

Goal: efficiently parallelizable reduced-order model for SPATIAL
discretization with minimum number of state variables

Will exploit intimate connection between
@ Projection-based model reduction
e Rational approximation (of the transfer function)
@ Stiltjes continued fraction

@ Spectrally matched finite-difference grids
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Sketch of MSMROM method

Multi-scale mimetic ROM at-a-glance




Sketch of MSMROM method

Multi-scale mimetic ROM at-a-glance

Details below:

@ Sparse ROM construction

@ Conjugation of adjacent ROMs ﬁ
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1D example

1D example with two subdomains

@ We start with model problem for operator
(oux)x — Au, x € [-1;1], ulx=1 = U|x=—1=0

with o(x) > 0, A € C\ R_ and two subdomains [—1;0] and [0; 1]
e Conjugation conditions: u(0-) = u(0+) = u° and
o9 (0-) = 09L(04) = f
o E.g., this eqn. can be obtained after the Laplace transform of wave
problem on [0, 1] X t.
o Consider [0;1]. Let
Au— Au=b,
obtained from discretization of
(oux)x — Au=0, Ud%u\xzo =-1, ulx=1=0
o We define the Neumann-to-Dirichlet (NtD) map a.k.a.
current-to-voltage, transfer, impedance or Weyl function f(\) as

f(\) = b*u = b*(A— \)"Lb.



1D example: SISO reduced order model

For projection subspace V) and orthogonal basis Vj in it:
f(A) = f(X) = bi(Ax — M) 7Lbx where by = Vb, A = VAV,
f satisfies 2k matching conditions

Observation #1:

Vi can be chosen such that Ay = Ty is tri-diagonal (Lanczos
decomposition of arbitrary Ax: T = Q*AxQ = Q* VAV, Q) and
fi(X) = [|bi] Pef (Tk — M) te

Observation #2:

Ty can be diagonally transformed such that fi(\) = u1 where w1, ..

satisfy
¥i (viuizr — ui) = vic1(ui — vi—1)) = Aw; =0, i >0

with 9o (yo(u1 — o)) — Auo = —Ho, uUk+1 =0

-y Uk




1D example

Takeaway

fx(A\) = u1 where uq, ..., uy satisfy
i (Vi(uiyr — ui) = vie1(ui — uji—1)) — Au; =0, i >0

with 4o (yo(u1 — wo)) — Auo = —Ho, k1 =0
@ There is one-to-one correspondence between SISO ROM and
three-point finite-difference scheme with positive steps

e Equivalent to representation of Stieltjes function fx() in terms of
continued s-fraction.

@ For uniform medium h; = % and /A7j = % are grid steps of so-called
J J
spectrally-matched grid

@ Time-domain equations: replace A by j—;



1D example

1D example: conjugation of two intervals

e Interval [-1;0]:
’AY,'l (%‘1(‘4/1+1 - Ull) - ’Yil—l(Uil - uil—l)) - )\Uil =0,71<0
with 47 (=7 (uly — 1)) — Aug = fAg, vty =0
e Interval [0; 1]:
A7 (VP (g — uF) = 7Pa(uf — ufy)) = AuF =0, i >0
with 92 (+2(u2 — 18)) ~ AR = ~F9F. 2, = 0
@ Eliminating flux f, we obtain
Fi (viluigr — ui) = vier(ui — uj—1)) = Au; =0, |i| < k

with Ugy1 = U1 — 0, (”5/0)_1 = (’I)\/%)il + (’3’(2))71

@ We can achieve spectral convergence of the NtD map using the
simplest second order finite-difference (FD) scheme with the
three-point stencil.
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Multi-dimensional example

Multi-dimensional example: two subdomains

e For simplicity, consider
nonsingular frequency-domain
operator V - (A - Vu) — Au on

oS o Q € R? with Dirichlet
conditions.

o Q=01 Uy, 5:§1ﬂ§2

e Conjugation conditions u|s_o = u|si o = U°,

A- vu‘5+0 =A- Vu‘sfo =f

o Let Au— Au = b approximates V - (A- Vu) — Au= b, A- Vu|s =0,
Upa\s =0

o We define the (approximate) transfer function F(\) at Q5 as

F(\)=B*u=B*(A-\)"'B

where colspan{B} approximate solution on S



MIMO reduced order model

o For projection subspace Vi and orthogonal basis Vj in it:
F(A\) = Fi(X) = Bi(Ax — M) 1Bk where By = VB, Ax = VAV,
@ Similar to 1D, orthogonal+diagonal transform results in block
tridiagonal finite-difference scheme

[ (MU = U) = Ti_(UF = U 1) =AU =0, i >0
with [ (Fo(UY — U°)) — AU® = —Tg, Uky1 =0 and Fi(N) = Us

@ Here I} and IA_,- are block symmetric m x m matrices where
m = dim{colspan{B}}

o For efficient implementation, compressed set of input-output B is
required

@ Proper choice of Vy is crucial: we used
Vi = span{B,A"1B, ..., A"kt1B}



Multi-dimensional example

Examples of boundary basis functions
@ Frequency-limited POD-type reduction

e Rigorously proven limit of 2ppw (compared to 7 ppw for polynomial
even in homogeneous medium)
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Conjugation of two subdomains
@ Subdomain Q;:
FH(rHUl, — UY) —TH (U} = UL )) =AU =0, i<0

with £ (—=THUY, — U3)) = AU = T3F, U2, =0
@ Subdomain Q5:

FF (MF(U2 — UP) —TE0(UF = UZy) =AU =0, >0

with 2 (M2(U2 — U2)) — AUZ = —T3f, U2, =0
@ Eliminating flux f, we obtain

Ci(Ti(Uis1 — Up) = Ti—1(U; — UiZ1)) = AU; = 0, |i] < k

with Ux1 = U_-1 =0, (fo)il - (fé)il + <ﬁ%)71

@ Time-domain formulation is obtained by replacing A by j—;
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General formulation of MSMROM method

General formulation for multiple subdomains

() "@

@ Assume that boundary basis functions at adjacent boundaries do not
interact

@ Interior nodes within subdomain Q,:
fa (roafgjo « « « « d2 o
Fe (M (U — U) = TR (UF = Uy)) — EU" =0,
@ For the unknown US‘B at boundary between subdomains Q, and Qg:

P2 ((Po(Up — U)o+ (TR0 = U) o) — S5 U° =0



MSMROM algorithm summary

Offline preprocessing

@ A sparse ROM transfer function of every subdomain is computed. It
accurately represents interaction of the subdomain with neighbors

@ Costly but embarrassingly parallel

@ Performed just ONCE for entire time-domain simulation for ALL
SOURCES
@ Compression of boundary basis functions is crucial

@ Optimal ROM may allow to reduce the state variables up to a Nyquist
limit of 2 ppw (work in progress)

w

Online computing

@ Obtained reduced order spectrally convergent sparse system is solved
via time-stepping (or any other solver)

@ The minimal communication cost between subdomains. ldeal for
HPC, in particular for GPU




Drawing analogies

@ Domain decomposition in the frequency domain: split the domain
into subdomains interacting via NtD or DtN map, however then we
reduce it and sparsify

@ Spectral elements: partial case for homogeneous subdomains but can
do significantly better, moreover applicable for heterogeneous ones

@ Homogenization: constructs effective dispersive medium for domain
sizes of order of the wavelength
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Numerical example

Scattering by 3D liquid filled fractures in anisotropic
elastic background with cavities

———

v e o o
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o Left: elastic model with water filled fracture; distances in meters;
pulse Ricker wavelet. Right: simulation results for full and reduced
models.

@ Dimensionality reduction is 1800 vs 192000, speedup = 10 on serial
processor
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Conclusions

Conclusions

o We developed ROM-based sparse spatial discretization technique for
wave equations

@ Handles problems with unlimited complexity: arbitrary
heterogeneuities, anisotropy

@ Spectral convergence on arbitrary grid independent of the model

@ Minimal interaction between ROMs in adjacent subdomain makes it
perfect for HPC implementation, including GPU

e Can be formulated in terms of arbitrary non-negative matrix (no PDE
is necessary)

o Future work

o Optimal model reduction allows to reduce the unknowns up to Nyquist
limit
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