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Wavefield simulations in geophysics

Seismic surveys in geophysics

Land seismics Marine seismics



Wavefield simulations in geophysics

Challenges in wavefield simulations

Multiple spatial scales: survey domains vs thin waveguides

Multiple time scales

Consequently, discretized problem has up to of order 1010 unknowns

Efficient parallelization is required



Wavefield simulations in geophysics

Elastic wave propagation

Linear wave equation

Au +
d2u

dt2
= 0, u|t=0 = g , u′|t=0 = 0

A = A∗ ≥ 0, b, u(t) ∈ RN , A ∈ RN×N

A is of graph-Laplacian type, N is very large. Soluton can be expressed in
terms of matrix function u(t) = cos (t

√
A)g

Goal: efficiently parallelizable reduced-order model for SPATIAL
discretization with minimum number of state variables

Will exploit intimate connection between

Projection-based model reduction

Rational approximation (of the transfer function)

Stiltjes continued fraction

Spectrally matched finite-difference grids
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Sketch of MSMROM method

Multi-scale mimetic ROM at-a-glance



Sketch of MSMROM method

Multi-scale mimetic ROM at-a-glance

Details below:

Sparse ROM construction

Conjugation of adjacent ROMs
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1D example

1D example with two subdomains

We start with model problem for operator

(σux)x − λu, x ∈ [−1; 1], u|x=1 = u|x=−1 = 0

with σ(x) > 0, λ ∈ C \ R− and two subdomains [−1; 0] and [0; 1]
Conjugation conditions: u(0−) = u(0+) = u0 and
σ du
dx (0−) = σ du

dx (0+) = f
E.g., this eqn. can be obtained after the Laplace transform of wave
problem on [0, 1]× t.
Consider [0; 1]. Let

Au − λu = b,

obtained from discretization of
(σux)x − λu = 0, σ d

dx u|x=0 = −1, u|x=1 = 0
We define the Neumann-to-Dirichlet (NtD) map a.k.a.
current-to-voltage, transfer, impedance or Weyl function f (λ) as

f (λ) = b∗u = b∗(A− λI )−1b.



1D example

1D example: SISO reduced order model

For projection subspace Vk and orthogonal basis Vk in it:
f (λ) ≈ fk(λ) = b∗k(Ak − λI )−1bk where bk = V ∗k b, Ak = V ∗k AVk

fk satisfies 2k matching conditions

Observation #1:

Vk can be chosen such that Ak = Tk is tri-diagonal (Lanczos
decomposition of arbitrary Ak : Tk = Q∗AkQ = Q∗V ∗k AVkQ) and
fk(λ) = ||bk ||2e∗1 (Tk − λI )−1e1

Observation #2:

Tk can be diagonally transformed such that fk(λ) = u1 where u1, . . . , uk
satisfy

γ̂i (γi (ui+1 − ui )− γi−1(ui − ui−1))− λui = 0, i > 0

with γ̂0 (γ0(u1 − u0))− λu0 = −γ̂0, uk+1 = 0



1D example

Takeaway

fk(λ) = u1 where u1, . . . , uk satisfy

γ̂i (γi (ui+1 − ui )− γi−1(ui − ui−1))− λui = 0, i > 0

with γ̂0 (γ0(u1 − u0))− λu0 = −γ̂0, uk+1 = 0

There is one-to-one correspondence between SISO ROM and
three-point finite-difference scheme with positive steps

Equivalent to representation of Stieltjes function fk(λ) in terms of
continued s-fraction.

For uniform medium hj = 1
γj

and ĥj = 1
γ̂j

are grid steps of so-called

spectrally–matched grid

Time-domain equations: replace λ by d2

dt2



1D example

1D example: conjugation of two intervals

Interval [−1; 0]:

γ̂1
i

(
γ1
i (u1

i+1 − u1
i )− γ1

i−1(u1
i − u1

i−1)
)
− λu1

i = 0, i < 0

with γ̂1
i

(
−γ1

i (u1
−1 − u1

0)
)
− λu1

0 = f γ̂1
0 , u

1
−k−1 = 0

Interval [0; 1]:

γ̂2
i

(
γ2
i (u2

i+1 − u2
i )− γ2

i−1(u2
i − u2

i−1)
)
− λu2

i = 0, i > 0

with γ̂2
i

(
γ2
i (u2

1 − u2
0)
)
− λu2

0 = −f γ̂2
0 , u

2
k+1 = 0

Eliminating flux f , we obtain

γ̂i (γi (ui+1 − ui )− γi−1(ui − ui−1))− λui = 0, |i | ≤ k

with uk+1 = u−k−1 = 0, (γ̂0)−1 =
(
γ̂1

0

)−1
+
(
γ̂2

0

)−1

We can achieve spectral convergence of the NtD map using the
simplest second order finite-difference (FD) scheme with the
three-point stencil.
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Multi-dimensional example

Multi-dimensional example: two subdomains

For simplicity, consider
nonsingular frequency-domain
operator ∇ · (Λ · ∇u)− λu on
Ω ∈ R2 with Dirichlet
conditions.

Ω = Ω1 ∪ Ω2, S = Ω1 ∩ Ω2

Conjugation conditions u|S−0 = u|S+0 = U0,
Λ · ∇u|S+0 = Λ · ∇u|S−0 = f

Let Au − λu = b approximates ∇ · (Λ · ∇u)− λu = b, Λ · ∇u|S = 0,
u∂Ω1\S = 0

We define the (approximate) transfer function F (λ) at Ω2 as

F (λ) = B∗u = B∗(A− λI )−1B

where colspan{B} approximate solution on S



Multi-dimensional example

MIMO reduced order model

For projection subspace Vk and orthogonal basis Vk in it:
F (λ) ≈ Fk(λ) = B∗k (Ak − λI )−1Bk where Bk = V ∗k B, Ak = V ∗k AVk

Similar to 1D, orthogonal+diagonal transform results in block
tridiagonal finite-difference scheme

Γ̂i

(
Γi (U

i+1 − U i )− Γi−1(U i − U i−1)
)
− λU i = 0, i > 0

with Γ̂0

(
Γ0(U1 − U0)

)
− λU0 = −Γ̂0, Uk+1 = 0 and Fk(λ) = U1

Here Γi and Γ̂i are block symmetric m ×m matrices where
m = dim{colspan{B}}
For efficient implementation, compressed set of input-output B is
required

Proper choice of Vk is crucial: we used
Vk = span{B,A−1B, . . . ,A−k+1B}



Multi-dimensional example

Examples of boundary basis functions

Frequency-limited POD-type reduction
Rigorously proven limit of 2ppw (compared to π ppw for polynomial
even in homogeneous medium)

Figure: Homogeneous boundary Figure: Fluid-filled fracture in
homogeneous boundary



Multi-dimensional example

Conjugation of two subdomains

Subdomain Ω1:

Γ̂1
i

(
Γ1
i (U1

i+1 − U1
i )− Γ1

i−1(U1
i − U1

i−1)
)
− λU1

i = 0, i < 0

with Γ̂1
i

(
−Γ1

i (U1
−1 − U1

0 )
)
− λU1

0 = Γ̂1
0f̃ , U

1
−k−1 = 0

Subdomain Ω2:

Γ̂2
i

(
Γ2
i (U2

i+1 − U2
i )− Γ2

i−1(U2
i − U2

i−1)
)
− λU2

i = 0, i > 0

with Γ̂2
i

(
Γ2
i (U2

1 − U2
0 )
)
− λU2

0 = −Γ̂2
0f̃ , U

2
k+1 = 0

Eliminating flux f , we obtain

Γ̂i (Γi (Ui+1 − Ui )− Γi−1(Ui − Ui−1))− λUi = 0, |i | ≤ k

with Uk+1 = U−k−1 = 0,
(

Γ̂0

)−1
=

(
Γ̂1

0

)−1
+
(

Γ̂2
0

)−1

Time-domain formulation is obtained by replacing λ by d2

dt2
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General formulation of MSMROM method

General formulation for multiple subdomains

Assume that boundary basis functions at adjacent boundaries do not
interact
Interior nodes within subdomain Ωα:

Γ̂αi
(
Γαi (Uα

i+1 − Uα
i )− Γαi−1(Uα

i − Uα
i−1)

)
− d2

dt2
Uα
i = 0,

For the unknown Uαβ
0 at boundary between subdomains Ωα and Ωβ:

Γ̂αβi

(
(Γαi (Uα

1 − Uα
0 )) |β +

(
Γα1 (Uβ

1 − Uβ
0 )
)
|α
)
− d2

dt2
Uαβ

0 = 0,



General formulation of MSMROM method

MSMROM algorithm summary

Offline preprocessing

A sparse ROM transfer function of every subdomain is computed. It
accurately represents interaction of the subdomain with neighbors

Costly but embarrassingly parallel

Performed just ONCE for entire time-domain simulation for ALL
SOURCES

Compression of boundary basis functions is crucial

Optimal ROM may allow to reduce the state variables up to a Nyquist
limit of 2 ppw (work in progress)

Online computing

Obtained reduced order spectrally convergent sparse system is solved
via time-stepping (or any other solver)

The minimal communication cost between subdomains. Ideal for
HPC, in particular for GPU



General formulation of MSMROM method

Drawing analogies

Domain decomposition in the frequency domain: split the domain
into subdomains interacting via NtD or DtN map, however then we
reduce it and sparsify

Spectral elements: partial case for homogeneous subdomains but can
do significantly better, moreover applicable for heterogeneous ones

Homogenization: constructs effective dispersive medium for domain
sizes of order of the wavelength
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Numerical example

Scattering by 3D liquid filled fractures in anisotropic
elastic background with cavities

Left: elastic model with water filled fracture; distances in meters;
pulse Ricker wavelet. Right: simulation results for full and reduced
models.

Dimensionality reduction is 1800 vs 192000, speedup = 10 on serial
processor
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Conclusions

Conclusions

We developed ROM-based sparse spatial discretization technique for
wave equations

Handles problems with unlimited complexity: arbitrary
heterogeneuities, anisotropy

Spectral convergence on arbitrary grid independent of the model

Minimal interaction between ROMs in adjacent subdomain makes it
perfect for HPC implementation, including GPU

Can be formulated in terms of arbitrary non-negative matrix (no PDE
is necessary)

Future work

Optimal model reduction allows to reduce the unknowns up to Nyquist
limit
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