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Fast and backward stable computation of the eigenvalues of matrix polynomials

The problem

We are interested in solving Polynomial Eigenvalue Problems,
that is finding the eigenvalues λ such that:

detP(λ)v = 0, P(λ) =
d∑

j=0

Pjλ
j , Pj ∈ Cm×m.

Only square (m ×m) matrix polynomials.

We are mainly interested in the eigenvalues.

We want a method with an optimal asymptotic cost.

2 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

The problem

We are interested in solving Polynomial Eigenvalue Problems,
that is finding the eigenvalues λ such that:

detP(λ)v = 0, P(λ) =
d∑

j=0

Pjλ
j , Pj ∈ Cm×m.

Only square (m ×m) matrix polynomials.

We are mainly interested in the eigenvalues.

We want a method with an optimal asymptotic cost.

2 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

The classical way

The usual strategy to solve a PEP is to build the Frobenius
companion linearization:

W − λV =


0m . . . 0m −P0

Im −P1

. . .
...

Im −Pd−1

− λ


Im

. . .

Im
Pd


and solve it via the QZ method. The cost is cubic in the size
=⇒ O(m3d3) flops.

We claim that we can do better than that!
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Fast and backward stable computation of the eigenvalues of matrix polynomials

What should be the optimal cost?

Let’s look at some specific cases we are all familiar with:

d = 1 Eigenvalues of an m ×m matrix pencil: we
expect the cost to be O(m3).

m = 1 Roots of a scalar polynomial: exploiting the
structure we are able to do that in O(d2) flops
(in a proven backward stable way!).

By combining the above remarks, we aim for O(d2m3) flops.
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Some background

We extend the work of Aurentz et al. for the scalar case,
which exploits writing a scalar companion matrix in a special
structured form.

Let p(λ) be a scalar (monic) polynomial of degree d . Its roots
are the eigenvalues of the companion matrix:

−p0
1 −p1

. . .
...

1 −pd−1

 =


1

1
. . .

1

+


−p0 − 1
−p1
...

−pd−1

 eTd
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Unitary plus low rank structure

The companion matrix is unitary plus rank 1, and this
structure is preserved by the QR (or QZ) iterations. How to
parametrize it?

Step 0: Enlarge the matrix by adding a row and a column:
−p0 1

1 −p1
...

. . .
...

...
1 −pd−1 0

0 . . . . . . 0 0


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Fast and backward stable computation of the eigenvalues of matrix polynomials

Unitary plus low rank structure

The companion matrix is unitary plus rank 1, and this
structure is preserved by the QR (or QZ) iterations. How to
parametrize it?

Step 1: Compute its QR factorization

QR =
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0 1
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Unitary plus low rank structure

The companion matrix is unitary plus rank 1, and this
structure is preserved by the QR (or QZ) iterations. How to
parametrize it?

Step 2: Decompose the R factor as unitary plus rank 1:

R = Y + xyT =


1 0 0

. . . 0
...

1
...

...
0 1

0 . . . . . . 1 0

+


−p1
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Unitary plus low rank structure

The companion matrix is unitary plus rank 1, and this
structure is preserved by the QR (or QZ) iterations. How to
parametrize it?

Step 3: “Roll up” the column with the coefficients

C


−p1
...

−pd−1

−p0
−1

 = αe1,

and set B := C∗Y , y = αeTd , so W = QC∗(B + e1y
T ).
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Core transformations
The matrices Q, C, and B are sequences of core
transformations, that are essentially 2× 2 matrices. We can
write R as:

��
��

��
��

��
��

��
��

C∗ = C∗
n · · ·C∗

1

��
��
��
��
��
��
��
��

B = B1 · · ·Bn

+

1
0
0
0
0
0
0
0
0
e1

×××××××××

yT

R

.
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Representing the leading coefficients

The same kind of factorization can be done for the leading
coefficient, but there is no need for the Q.

We have

V = C∗
V (BV + e1y

T
V ), W = QC∗

W (BW + e1y
T
V ).

Basic idea for the QZ: perform unitary similarities with core
transformations until W is upper triangular.

In our language, that means Q = I .
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Fast and backward stable computation of the eigenvalues of matrix polynomials

The matrix polynomial case

We know how to perform the QZ efficiently on unitary plus
rank 1 matrices. What about unitary plus rank m?

Treating the unitary plus rank m directly is difficult, and
easily leads to high complexities in m, or instabilities.

Unitary plus rank m representations can be cumbersome
to work with: it is very difficult to get efficient
implementations.

. . . so we do what mathematician always do: we go back
to the previous case.
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Fast and backward stable computation of the eigenvalues of matrix polynomials

A nice factorization trick

Let W be the (block) companion of a matrix polynomial
P(λ). Assume the constant coefficient P0 is lower triangular.
Then we have:

W = W1 . . .Wm,

where Wi are scalar companion matrices of polynomial having
as coefficients (some of) the coefficients of P(λ),
appropriately permuted.

In particular, the factorization can be computed at no cost!
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Fast and backward stable computation of the eigenvalues of matrix polynomials

An example



0 α1

1
...

. . .
...

. . . αmd−1

1 αmd





0 β1

1
...

. . .
...

. . . βmd−1

1 0



11 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

An example



α1 0
... β1

1
...

...
. . .

...
...

1 αmd βmd−1


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Fast and backward stable computation of the eigenvalues of matrix polynomials

Almost the same trick for the leading coefficient

We can factor the leading coefficient in a similar way, if we
assume Pd to be upper triangular

V = V1 . . .Vd

V is upper triangular, and Vj are all elementary Gauss
transformations. Again, no computations needed!

12 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

Almost the same trick for the leading coefficient

We can factor the leading coefficient in a similar way, if we
assume Pd to be upper triangular

V = V1 . . .Vd

V is upper triangular, and Vj are all elementary Gauss
transformations. Again, no computations needed!

12 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

Almost the same trick for the leading coefficient

We can factor the leading coefficient in a similar way, if we
assume Pd to be upper triangular

V = V1 . . .Vd

V is upper triangular, and Vj are all elementary Gauss
transformations. Again, no computations needed!

12 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

A quick look at Gaussian decomposition


1 α1

. . .
...

. . .
...

αmd



1 β1

. . .
...

βmd−1

1


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Fast and backward stable computation of the eigenvalues of matrix polynomials

A quick look at Gaussian decomposition


1 β1 α1

. . .
...

...

βmd−1

...
αmd


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Fast and backward stable computation of the eigenvalues of matrix polynomials

The required structure

In order to compute these decompositions we need the initial
structure of the matrix polynomial to be

Pd Pd−1 Pd−2 · · · P1 P0

Not restrictive, can be computed by QZ-like algorithm.

Our pencil is now

W1 . . .Wm − λV1 . . .Vm,

which we can solve as a product eigenvalue problem!
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Fast and backward stable computation of the eigenvalues of matrix polynomials

What’s missing

Hessenberg-Triangular reduction The matrices Vj are upper
triangular, but each of the Wj is upper
Hessenberg, thus the product is m-Hessenberg.
We need to eliminate m − 1 subdiagonals.

Chasing We can implement the chasing passing rotations
through the triangular factors.

To understand how this works, we need some basic operations
with core transformations.
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Using core transformations

Fusion: �� �� Turnover: ��
��
��
��
,

��
��
��
�� .

And then we need to pass rotation through upper triangular
matrices:

���� or ����
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Exploiting the structure

Since we have structured upper triangular matrices, we can
pass rotation through them in a fast way:

(recall that R = C∗(B + e1y
T ))

��

G̃i

��

Gi

is computed as

��
��
��
��
����

��
��
��
��

G̃i

��
�� ��

G i
��

17 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

Hessenberg-Triangular reduction
The QZ and the Hessenberg-Triangular reduction are
(formally) equivalent to the Hessenberg reduction and QR on
WV−1.

We can write our factorization in a structured form:

WV−1 = W1 . . .WmV
−1 = QR1 . . .QRmV

−1

��
��
��
��
��

R1

��
��
��
��
��

R2

��
��
��
��
��

R3 V−1
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Hessenberg-Triangular reduction

��
��

��
��
��
��
��

R1 ��
����

��
��
��
��

R2

��
��
��
��
��

R3 V−1

�� ��

��
��
��
��
��

R1

��
��
��
��
��

R2 ��
��
��
��

R3 V−1
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��
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��
��
��
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�� ��

��
��
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Hessenberg-Triangular reduction

��
��
��
��
�� ��

R1

��
��
��
��
����
��

R2 ��
��
��
��

��
��

R3
��

V−1

��

��
��
��
��
�� ��

R1

��
��
��
��
��

R2 ��
��
��
��

R3 V−1

O(md) turnovers per core transformation and O(m2d)
transformations to annihilate =⇒ O(m3d2) flops.
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Hessenberg-Triangular reduction
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Chasing core transformations

The same ideas can be used to chase core transformations
until Q ≈ I . We put a ˜ on the matrices and transformations
obtained after HT-reduction.
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Chasing core transformations

The same ideas can be used to chase core transformations
until Q ≈ I . We put a ˜ on the matrices and transformations
obtained after HT-reduction.

W̃ Ṽ−1 =

��
��
��
��
��

Q̃ R̃1R̃2R̃3Ṽ
−1
3 Ṽ−1

2 Ṽ−1
1

.
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Chasing core transformations

The same ideas can be used to chase core transformations
until Q ≈ I . We put a ˜ on the matrices and transformations
obtained after HT-reduction.

We compute the first transformation U1:

��

U∗
1

��
��
��
��
��

��
X1

��

U1
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Chasing core transformations

The same ideas can be used to chase core transformations
until Q ≈ I . We put a ˜ on the matrices and transformations
obtained after HT-reduction.

and then we chase it by executing a turnover and similarity:

��
��
��
��
��

��

U2

��
X2

��

U2
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Chasing core transformations

The same ideas can be used to chase core transformations
until Q ≈ I . We put a ˜ on the matrices and transformations
obtained after HT-reduction.

until we fuse it at the bottom:

��
��
��
��
�� ��

Xn−1
.
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Fast and backward stable computation of the eigenvalues of matrix polynomials

A quick flop count

A QZ sweep can be completed moving a core transformation
down of O(md) rows.

Each “movement” costs O(m) passthroughs and 1 turnover,
thus a QZ sweep amounts to O(m2d) flops.

Assuming O(md) steps are required to reach convergence, the
cost is O(m3d2).
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Complexity in d (4 x 4 matrix polynomial)

101 102
10−4

10−3

10−2

10−1

100
101
102
103

Degree (d)

R
un

ti
m
e
(s
)

Our algorithm
Unstructured QZ

Quadratic complexity
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Complexity in m (d = 10)

101 102
10−4

10−2

100

102

104

106

Size (m)

R
un

ti
m
e
(s
)

Our algorithm
Cubic complexity
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Fast and backward stable computation of the eigenvalues of matrix polynomials

Backward stability

Each passthrough and turnover introduces a small
backward error of the order of the unit roundoff u on
each of the unitary factors.

We can prove that the rank 1 part (of each factor) can be
recovered from the unitary one.

O(u) backward error on the unitary part introduces a
O(‖yj‖2u) backward error on the rank 1 part.

Total backward error of the Schur form (on the original
matrix pencil): O(‖V ‖2u) and O(‖W ‖)2u).

25 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

Backward stability

Each passthrough and turnover introduces a small
backward error of the order of the unit roundoff u on
each of the unitary factors.

We can prove that the rank 1 part (of each factor) can be
recovered from the unitary one.

O(u) backward error on the unitary part introduces a
O(‖yj‖2u) backward error on the rank 1 part.

Total backward error of the Schur form (on the original
matrix pencil): O(‖V ‖2u) and O(‖W ‖)2u).

25 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

Backward stability

Each passthrough and turnover introduces a small
backward error of the order of the unit roundoff u on
each of the unitary factors.

We can prove that the rank 1 part (of each factor) can be
recovered from the unitary one.

O(u) backward error on the unitary part introduces a
O(‖yj‖2u) backward error on the rank 1 part.

Total backward error of the Schur form (on the original
matrix pencil): O(‖V ‖2u) and O(‖W ‖)2u).

25 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

Backward stability

Each passthrough and turnover introduces a small
backward error of the order of the unit roundoff u on
each of the unitary factors.

We can prove that the rank 1 part (of each factor) can be
recovered from the unitary one.

O(u) backward error on the unitary part introduces a
O(‖yj‖2u) backward error on the rank 1 part.

Total backward error of the Schur form (on the original
matrix pencil): O(‖V ‖2u) and O(‖W ‖)2u).

25 / 27



Fast and backward stable computation of the eigenvalues of matrix polynomials

Backward stability
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Conclusions

The algorithm has the “optimal” complexity O(m3d2).

It is fast in practice even for small degrees.

It is proven backward stable.

Thank you for your attention!
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