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GCD and LCM of polynomials

0 Computation of the Greatest Common Divisor (GCD) of polynomials.

= |t i1s linked with the computation of zeros of system representations.

= Solution of polynomial (matrix) Diophantine equations and applications to
control design problems, i.e. computation of stabilizing controllers.

= Network theory, Communications, Computer Aided Design,
Image restoration, Signal processing.

0 Computation of the Least Common Multiple (LCM) of polynomials.

= |t is linked with the derivation of minimal representations of rational models.

= Integral part of algebraic synthesis methods in control design.
* Squaring down problem.
* Pole assignment by dynamic precompensation.
 Approximate Pole —Zero cancelations in systems and almost zeros.
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GCD and LCM of polynomials

Given a pair of real polynomials P = { p,(s), p,(s) } the GCD and LCM
problems are naturally interlinked:

P1(S) - P2(s) = ged{P} - lem{P}

Fundamental differences:

1. For an arbitrary set of polynomials the existence of a non-trivial GCD
IS not always guaranteed (non-generic property), but the LCM always
exists (generic property).

2. The degree of the GCD is always less than (or equal to) the minimum
degree of the original polynomials, but the degree of the LCM is
always greater than (or equal to) the maximum degree of the original
polynomials.
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Computation of the ALCM of polynomials

D. Christou, N. Karcanias, and M. Mitrouli, Approximate Least Common Multiple of
several polynomials using the ERES Division algorithm, Linear Algebra and its
Applications, 511, (2016), 141-175

Given a set of several real polynomials in one variable, we aim to:

1. Provide a definition for the approximate LCM (ALCM) of sets of several
polynomials.

2. Develop a method for the computation of the ALCM by avoiding root-
finding and GCD computations.

3. Develop an efficient numerical procedure for the computation of the ALCM
which allows the derivation of approximate solutions when inaccurate data
are given.
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Approximate LCM of polynomial sets

We consider sets of many polynomials of the form:

Phrn = {pt-(s) eR[s], i=1,2,...,h with d; = deg{p;} >0 and n = mlax(dt)}
(1)

d .
(o) — E: (1) j B ~; Generic form
pi(s) . € s l(s) = ?:ﬂ: aj s d =sum of d

Since d; < n < d for all 7 = 1..h, according to the Euclidean identity there exist
real polynomials g;(s) (quotients) and r;(s) (remainders) such that

I[(s) = qi(s) pi(s) + ri(s)
with deg{q;} = d — d; and deg{r;} < d; — 1.
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Example: LCM matrix representation

i p,(s) =2s” —14s+20,

— 4.5 4 3 2
) d=5. n=2 £(s) = 055° + 0,,S" + 0,35° + 0,5 + a4S + 0
p,(S) =2s" —22s+36, )

i pz(s) =s—3 as d, a; a, a, a 0 0 (di+1)X
0 a; a, a; a; a, ap 0 (d+n+1)
(2 —14 20 ] ] i i T 0 0 g oy @y dy Gy Gy
n* —14 20 4] ] ] 1] LEE ay @z az a; ag 0 g
3 _14 @ d+1)x(d+n+1 s Oy Gz dz Oy dg
00 2 14 20 ‘u 0 0 ( ) ( ) 0 0 a. a, a, a, a, a
o0 0 21 W 0D 0 a. a, @, a, @ d, O
o0 0 0 2 - M0 D 0 a. a, a, a, a, a,
00 0 0 0 a 14 20
2 22 350 0 i 0 0 ] )
D2 =22 % 0 0 0 D %3 T2 G G 0 g g g g g g g g g g g g g
5 : 02 42 41 fo
E: E: : :”: “ ; :; E: 00 g6 g 0 0 0 0 0 0 0 0 0 0 0 0
v o ; , _2" '; w0 00000 0C¢,¢;9q¢, ¢, 0 0 0 0 0 0 0 0
- ) o ) _J_ _;? y 00000 O0O0C¢,9q¢;,4, ¢, 0 0 0 0 0 0 0
— - o000 000 0 04,954, ¢, 0 0 0 0 0 0
0 1 -3 0 0 0 0 0 ————
o 00 0O0CO0CO0 D0 O0OTO0O OO0 0 ¢,q;0¢;q,q, 0
o0 1 -3 0 i 0 0 000 0000 0000 0 0 o o g g0 o
b 0D 0 1 -3 0 0 0 ) Te T2 T2 01 G
00 0 0 1 -3 0 0 . o
o0 0 0 0 1 -3 0 L — . P
Lo 0 0 0 0 i 1 -3 | Q
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Approximate LCM of polynomial sets

Definition 1. Given a set of several polynomials P}, ,,, the exact least common
multiple of the polynomials of the set is a polynomial of the smallest possible
degree ¢ < hn, such that: L
L=Q-P

Equivalently, using an appropriate matrix norm, denoted by || - ||, the next
equality is satisfied:

o~ o

IL-Q-P|=0

Definition 2. Given a set of several polynomials P, and a specified small
tolerance e, the approrimate least common multiple of the set, denoted by
ALCM, is a polynomial of the smallest possible degree ¢ < hn, such that the
next inequalities are satisfied:

IL-Q-Pl<c & |R|<e
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Approximate LCM of polynomial sets

p, £ diag[d_l_l}{gti}:

- C{{i? w0 0 |
_ 0 Ctd? EEE?—I ng} 0 P,
N . . . . ; P—| : | e phdth)x(d+n+1)
Qi = diag(d,-ﬂ){ﬂti} € RU+Dx(d+Y) Q = diag {Q1,Q2,...,Qn} € R(@+h)x(hd+h)
Ry |
R; = [Od+n—d- |dia’g{d-+1){£i‘}] = R(di+1)x(d+n+1) ﬁ — e R(d+h}xfd+n+1)
Ry
L;
L, &£ [On_d. |diag(d,+1}{af}] c R(di+1)x(d+n+1) L= e R(d+h)x(d+n+1)
T i Lh
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Computation of the LCM without using the GCD

The Hybrid LCM method

The current approach for the computation of the LCM involves:

A. An appropriate transformation process (symbolic procedure) to formulate a
system of linear equations derived from the polynomials of the original set.

B. The formulation of an optimization problem (numerical procedure) to solve
the above system of linear equations in the approximate sense (ALCM).

Lemma Given a set of real polynomials P = {pf_(s) cRls], i=1,2,..., h}
the LCM of P is a real polynomial with degree ¢ < Z?:] deg{pi(s)} and every
polynomial p;(s) divides evenly into LCM.

LCM: 1(s)=q,(s)-pi(s)+1r(s) with |r,(s)=0f<—— Remainder
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Computation of the ALCM: The ERES Division Algorithm

mainly for the symbolic computation of the
quotient and the remainder from the division
of two polynomials in one variable.

The ERES Division algorithm™ is developed a(s) | eres [ b(s)
3o | =2 [0

r(s). aes) )

DELETION
ROW
> SHIFTING »  OF ZERO
P SWITCHING COLUMNS
LU
FACTORIZATION

a )

D. Christou, N. Karcanias, and M. Mitrouli, Matrix representation of the shifting operation and numerical
* properties of the ERES method for computing the greatest common divisor of sets of many polynomials, J.
Comput. Appl. Math. 260 (2014) 54-67.
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Computation of the ALCM: The ERES Division Algorithm

The Extended-Row-Equivalence & Shifting (ERES) division algorithm is an

iterative procedure which performs the division of two polynomials by using
matrix transformations.

Example: We consider two polynomials a(s) and b(s).

a(s) = 2s°+3s°—Ts— 32, deg{a(s)} =m =3

b(s) = s*+4s+5, deg{b(s)} =n =2
Their coefficients form a matrix P.

[2 3 -7 -32 v d
P=1lo 1 4 5|€K

According to the Euclidean identity, it holds:

a(s) 2s°43s*—T7s—32 (25— 5) + 3s—17

b(s) s2+4s+5 s2+4s+5
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Computation of the ALCM: The ERES Division Algorithm

After » = m — n +1 iterations, the ERES division algorithm provides the 2x2
matrix Q, of the quotient and the (m+1)>(n+1) matrix S, which corresponds to

the iterative application of the shifting operation to the initial matrix P and the
deletion of the trailing zero columns.

-3 -5 %
Sy = L > 0 . 1 4 5
5 R. =0, -P.-8S, =
0 1 2] T o o3 -7
Q, — 0 1 10 1 Then, the remainder of the division
T 11 —-2-5)| |1 3] )

a(s)/b(s) is given by the last row of R,

52
S =3s—7
1
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The Hybrid ALCM algorithm

Given a set of univariate monic polynomials: P = {p;(s) € R[s], i = 1,2,....h}

—_—

e Stepl
Form the LCM of the polynomial set d d; = deg{p;(s)}
symbolically for the maximum degree d : I(s) = Z ay s" { h
k=0 d= z d;

e Step 2 , =
Compute the remainders of the divisions:

) (1) di—1

ri(s) = ré?} i -rgi' S+ ... +rg_s

: _ : [(s) ERES r;i(s)
by using the ERES Division algorithm: (s | 7T > .,

SYMBOLIC IMPLEMENTATION

CONFERENCE ON NUMERICAL LINEAR ALGEBRA AND APPLICATIONS, 24-28 OCTOBER 2016, CIRM, LUMINY, FRANCE



The Hybrid ALCM algorithm

ERES Division algorithm ———p ;= [?“3)_1 ~~~~~ i, é}} € R*
Every coefficient r, () is a linear combination of the coefficients o, of the LCM.
Ean 9 a4 +...+fdi 1a1+f lnaﬂ' ™
I Tfil}—ﬂ B p—ﬂdﬂ’ + - +f£'z—2=1ﬂ* +fd —2,09@
) 1L et e+ fgdao
>r,=F-a
(d A, ad aqn
R } ! .
~ (1) () 1 0
Fi = {Fil-{d,:] = di=1d =*° d;—1.d;
Cfoa o foa | O 1]
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’ The Hybrid ALCM algorithm

e Step 3
Form a system of linear equations:
F | [T 1_ )
Fp-a=|']|a=
-Fh_ _E h._ > FP . E — Q
| d x (d+1) underdetermined
ri(s) =0, Vi=12....h J homogeneous linear system

For the matrices R and Fp it holds: Hﬁﬂp <vVn+1||Fpal2
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The Hybrid ALCM algorithm

e Step 4 [NUMERICAL IMPLEMENTATION]
Compute the actual degree and the coefficients of the ALCM.
Let p(Fp) and n(Fp) denote the rank and the nullity of Fy , respectively.

The rank of Fp s equal to the degree of the LCM of the set P.
p(Fp) = deg{l(s)}

If n(Fp) = 1 only one solution (up to scalar multiples) is obtained and
this is actually the generic solution:

[(s) = p1(s) - p2(s) - - pn(s)
If n(Fp) =v > 1, we can set exactly v free variables.

The least degree solution will be obtained if we set:

ag_pi1 =1 and ag_p10=...=aq=0
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Numerical computation of the ALCM

rank(Fp) =
Fp-a=0 <:>Fp+@+id_P+1 ap+Ffp =0 |Fp-a=—ayf, .
dx(d+1) f"ISt d-p l l last p columns dxp
underdetermined columns full-rank
h_omogeneous 0 Leading coefficient of oyerdetermined
linear system the LCM. linear system

1, if all the polynomials pi(s) are monic, i.e. c( D=1

a, =< lem cg,), 1= 1. h} if c are all integer numbers.

h o (@)
[ eq) s if Cd?; are real numbers.

The numerical computation of an approximate LCM can be obtained by solving:

) — minimum

Fp-ax~—ay/ HFP'@Jrﬂ’Pid—pH‘

“d—p+1

The above solution can be considered as an approximation in the least-squares sense.
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Numerical computation of the ALCM
using Least-Squares optimization

Theorem Let Pp., a set of real univariate polynomials, as defined by (1)

and a small specified tolerance € > 0. An ALCM of the set Py, ,, is given by the
solution of the least-squares problem

£ £ min
&

)ﬁ’P . é — (_ ﬂrﬂid_p+1)“2

where p is the numerical e-rank of the matriz ﬁp, a, 1s the leading coefficient of
the ALCM, and a is the vector of the remaining p — 1 coefficients of the ALCM.
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Example 2

P ={pi(s) €R, i=1,2,3} Maximum degree of LCM: d=3+3+3=9
pi(s)=(s+1) (s +2)

p2(s) = (s+2)(s+3) (s +4)

pa(s) = (s +4)° (s +5)

~1793 769  —321 129  —49 1T -5
Fp-a—0 —4868 2052  —836 324 —116 36 -8
— = —3076 1284  —516 196 —68 20 —4
—111645 26335  —6069 1351 —285 55 —9

Pp=|  —539054 125370 —28286 6090 —1214 210 —26

—632040 145656  —32424 6840 -1320 216 -24
—1101157 194017  -=33069 5385 —&821 113 -—13
—8219432 1421064 —235880 36936 —5288 648 —56

| —15521360 2645520 —430800 65680 —9040 1040 —80

OO =R OO M=o oM

o= O O F=) o0 ~)O
= o O = O O = OO

(9x10) g-rank (Fp)=p=7
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P ={pi(s) eR, i=1,2,3}
)= (s+1)(s+2)°
)= (s+2)(s+3)(s+4)
pa(s) = (s +4)° (s +5)

P (
P2 (

S

S

=

|
[=

\4

—1793
—4868
—3076
—111645
—539054
—632040
—1101157
—8219432

| —15521360

min

a

ﬁp'@_{_ia

‘2

Example 2
Maximum degree of LCM: d=3+3+3=9

769
2052
1284

26335
125370
145656
194017

1421064
2645520

20

Fp-a+f, ., -a+Fp-a=0
id—p—}—l FP
A
r A\
—321 129 —49 17 -5 1 0 0]
—836 324 —116 36 -8 0 1 0
—o16 196 —68 20 -4 0 0 1
—6069 | 1351 —285 % =9 1 0 0
—28286 | 6090 -—-1214 210 -26 O 1 O
—32424 | 6840 -—-1320 216 -24 0 0 1
—33069 | 5385 —821 113 —-13 1 0 O
—235880 | 36936 —5288 648 —-56 0 1 O
—430800 | 65680 —9040 1040 —-80 0 0 1 |
(9x10)

g-rank (Fp)=p=7
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Example 2

LS-QR

LS-SVD

LS-PInv

Residual

6.255761 - 10~ | 1.533661 - 10—

8.876500 - 1012

Relative error || 4.641785- 10~ | 1.535942 - 10~

1.405633 - 1011

 Residual ;

* Relative error :

* Exact solution:
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Example 3

Pz = {pi(s) eR, i=1,2,3}
m(s)=(s+1)(s+2+¢)
pa(s)=(s+2)(s+3)(s+4+¢)
pa(s) = (s+4)*(s+5)

Added Perturbation ¢ = 107
Coprime polynomials
Degree of exact LCM =9

Rational LCM method *

Degree of approximate GCD = 2
(Given by the Hybrid-ERES alg. for & = 10*)

Degree of approximate LCM = 9-2=7

Remainder norm :
[ul,=|P(s)—9(s)-1(s)|, = 1.296138 102

Hybrid LCM method:
No GCD computation.

Degree of approximate LCM = 7
(Given for g =10%)

Residual :

lullz = ||Fp -2+ £,||, = 1488148 100

* N. Karcanias, M. Mitrouli, Numerical computation of the Least Common

Multiple of a set of polynomials, Reliable computing 6 (4) (2000) 439-457.
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Computational complexity of the Hybrid-LCM algorithm

T(x)=1.36 10 «° log(x ) T(x)=1.27 10° «° log(x)
250 o - o
h=4 ' h =2..100 ,
n=2.100 (p T(K) n=4 T(K)
200 , A
-~ n o
Y 150 ¢
= -g
5 3
© 100
g g
= =
50
100 200 300 400
ERES iterations per polynomial (k) ERES iterations per polynomial (k)

Total estimated time for symbolic operations:  T'(x) = O (x° log(k)), k=hn—n+1

Total number of floating-point operations: ) (%l (nh)? + g (nh)p? + 5p3)

h = number of polynomials, n = the maximum degree of the polynomials,
p = the computed degree of the LCM (rank of the system’s matrix).
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Numerical stability of the Hybrid LCM algorithm

Theorem 4. The computed ALCM solution a’ = [0,...,0,a,,a,_1,..., a0
obtained from the H-LCM algorithm, is the exact solution of the nearby problem

(Fp+E)d'=0 (70)
where

1Bl < [ABp| +IAFI, +la,l ([Af .| +1871) (1)
8o, <-n+nye B, ana far, ], <elfuul,

AF|. < (6h—3p+41)pul|Fp|.+ O(u?)

Afle < (6h=3p+41)pulayl ||f, [ +Ow?

d—p—}—l‘

u = 27°% in 16-digits arithmetic precision
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Conclusions

The Hybrid LCM method:

e Combines symbolic and numerical procedures to compute the ALCM of sets
of several polynomials.

e Forms an over-determined linear system and computes the ALCM without
using any GCD method or root-finding procedures. The numerical rank of this
linear system defines the degree of the ALCM.

e The numerical computation of the ALCM is associated with a Least-Squares
optimization problem which provides the appropriate approximate solution.
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Thank you for
your attention!
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