Fast Nonnegative Least Squares through flexible Krylov subspaces

Silvia Gazzola

Department of Mathematical Sciences

NL2A, CIRM (France) October 28, 2016

What is this talk about?

Solution of

$$\min_{\mathbf{x} \in \mathbb{R}^{N}} \|b - A\mathbf{x}\|_{2}, \quad A \in \mathbb{R}^{N \times N}, \quad b \in \mathbb{R}^{N},$$

coming from suitable discretization of

$$\int_{\Omega} k(s,t)f(t)dt = g(s).$$

Solution of

$$\min_{\mathbf{x} \in \mathbb{R}^{N}} \|b - A\mathbf{x}\|_{2}, \quad A \in \mathbb{R}^{N \times N}, \quad b \in \mathbb{R}^{N},$$

coming from suitable discretization of

$$\int_{\Omega} k(s,t)f(t)dt = g(s).$$

Modeling inverse problems:

- the process k, the output g $(g = g^{ex} + \varepsilon)$ are known;
- the input *f* is unknown.

Solution of

$$\min_{\mathbf{x} \in \mathbb{R}^N} \|b - A\mathbf{x}\|_2, \quad A \in \mathbb{R}^{N \times N}, \quad b \in \mathbb{R}^N,$$

coming from suitable discretization of

$$\int_{\Omega} k(s,t)f(t)dt = g(s).$$

Modeling inverse problems:

- the process k, the output g $(g = g^{ex} + \varepsilon)$ are known;
- \blacksquare the input f is unknown.

Ill-posed problems; appear in a variety of applications.

Solution of

$$\min_{\mathbf{x} \in \mathbb{R}^{N}} \|b - A\mathbf{x}\|_{2}, \quad A \in \mathbb{R}^{N \times N}, \quad b \in \mathbb{R}^{N},$$

coming from suitable discretization of

$$\int_{\Omega} k(s,t)f(t)dt = g(s).$$

Modeling inverse problems:

- the process k, the output g $(g = g^{ex} + \varepsilon)$ are known;
- the input *f* is unknown.

Ill-posed problems; appear in a variety of applications.

An example: image deblurring and denoising.

What is this talk about?

Solution of

$$\min_{\mathbf{x} \in \mathbb{R}^N} \|b - A\mathbf{x}\|_2, \quad A \in \mathbb{R}^{N \times N}, \quad b \in \mathbb{R}^N,$$

coming from suitable discretization of

$$\int_{\Omega} k(s,t)f(t)dt = g(s).$$

Modeling inverse problems:

- the process k, the output g $(g = g^{ex} + \varepsilon)$ are known;
- the input *f* is unknown.

Ill-posed problems; appear in a variety of applications.

An example: image deblurring and denoising.

What is this talk about?

Solution of

$$\min_{\mathbf{x} \in \mathbb{R}^N} \|b - A\mathbf{x}\|_2, \quad A \in \mathbb{R}^{N \times N}, \quad b \in \mathbb{R}^N,$$

coming from suitable discretization of

$$\int_{\Omega} k(s,t)f(t)dt = g(s).$$

Modeling inverse problems:

- the process k, the output g $(g = g^{ex} + \varepsilon)$ are known;
- the input *f* is unknown.

Ill-posed problems; appear in a variety of applications.

An example: image deblurring and denoising.

available

$$x = A^{\dagger}b$$

(Nonnegative) LS problems

Regularization...

$$x = A^{\dagger}b$$

Regularization...

(Nonnegative) LS problems

$$x = A^{\dagger}b$$

$$x = (A^T A + \lambda I)^{-1} A^T b$$

$$x = A_k^{\dagger} b$$

$$x = A^{\dagger} b$$

$$x = (A^T A + \lambda I)^{-1} A^T b$$

$$x = A_k^{\dagger} b$$

Nonnegative constraints!

$$\min_{x \ge 0} \|b - Ax\|_2$$

Outline

- Nonnegative LS problems
- Brief survey of the available methods
- Krylov methods for unconstrained problems
- 2 Flexible Krylov subspaces
 - The need of introducing "flexibility"
 - Deriving FCGLS
 - MFCGLS for nonnegative LS problems
- 3 Numerical Experiments
 - Restoration of Astronomical Images
 - CT Reconstruction
- 4 Looking at Poisson noise
 - Modeling Poisson Noise
 - CP-MFCGLS
- 5 Final Remarks

(Nonnegative) LS problems

•000

■ Projected gradient

(Nonnegative) LS problems

■ Projected gradient

$$x_{m+1} = P_{+}(x_m + \alpha_m A^{T}(b - Ax_m)).$$

(Nonnegative) LS problems

Projected gradient

[Beck and Teboulle. FISTA, SIIMS, 2009]

$$x_{m+1} = P_+(x_m + \alpha_m A^T(b - Ax_m)).$$

■ Projected gradient
[Beck and Teboulle. FISTA, SIIMS, 2009]

$$x_{m+1} = P_+(x_m + \alpha_m A^T(b - Ax_m)).$$

Modified Residual-Norm Steepest Descent (MRNSD) [Nagy and Strakos. Enforcing nonnegativity in image reconstruction algorithms, Proc. SPIE, 2000]

■ Projected gradient
[Beck and Teboulle. FISTA, SIIMS, 2009]

$$x_{m+1} = P_{+}(x_{m} + \alpha_{m}A^{T}(b - Ax_{m})).$$

Modified Residual-Norm Steepest Descent (MRNSD) [Nagy and Strakos. Enforcing nonnegativity in image reconstruction algorithms, Proc. SPIE, 2000]

From the KKT conditions

$$XA^{T}(b-Ax)=0$$
, where $X=\operatorname{diag}(x)$, $x\geq 0$.

■ Projected gradient
[Beck and Teboulle. FISTA, SIIMS, 2009]

$$x_{m+1} = P_+(x_m + \alpha_m A^T(b - Ax_m)).$$

Modified Residual-Norm Steepest Descent (MRNSD)
 [Nagy and Strakos. Enforcing nonnegativity in image reconstruction algorithms, Proc. SPIE, 2000]

From the KKT conditions

$$XA^{T}(b - Ax) = 0$$
, where $X = diag(x)$, $x \ge 0$.

Fixed point iterations:

(Nonnegative) LS problems

Projected gradient

[Beck and Teboulle. FISTA, SIIMS, 2009]

$$x_{m+1} = P_+(x_m + \alpha_m A^T(b - Ax_m)).$$

Modified Residual-Norm Steepest Descent (MRNSD)

[Nagy and Strakos, Enforcing nonnegativity in image reconstruction algorithms, Proc. SPIE, 2000]

From the KKT conditions

$$XA^{T}(b-Ax)=0$$
, where $X=\operatorname{diag}(x)$, $x\geq 0$.

Fixed point

iterations:

$$x_{m+1} = x_m + \alpha_m \underbrace{X_m A^T(b - Ax_m)}_{=: d_m}$$
, where $X_m = \operatorname{diag}(x_m)$, $x_m \ge 0$.

(Nonnegative) LS problems

Projected gradient [Beck and Teboulle. FISTA, SIIMS, 2009]

$$x_{m+1} = P_+(x_m + \alpha_m A^T(b - Ax_m)).$$

 Modified Residual-Norm Steepest Descent (MRNSD) [Nagy and Strakos. Enforcing nonnegativity in image reconstruction algorithms, Proc. SPIE, 2000]

From the KKT conditions

$$XA^{T}(b - Ax) = 0$$
, where $X = diag(x)$, $x \ge 0$.

Fixed point (or gradient descent) iterations:

$$x_{m+1} = x_m + \alpha_m \underbrace{X_m A^T(b - Ax_m)}_{=: d_m}$$
, where $X_m = \operatorname{diag}(x_m)$, $x_m \ge 0$.

■ Projected gradient
[Beck and Teboulle. FISTA, SIIMS, 2009]

$$x_{m+1} = P_+(x_m + \alpha_m A^T(b - Ax_m)).$$

Modified Residual-Norm Steepest Descent (MRNSD)
 [Nagy and Strakos. Enforcing nonnegativity in image reconstruction algorithms, Proc. SPIE, 2000]

From the KKT conditions

$$XA^{T}(b-Ax)=0$$
, where $X=\operatorname{diag}(x)$, $x\geq 0$.

Fixed point (or gradient descent) iterations:

$$x_{m+1} = x_m + \alpha_m \underbrace{X_m A^T(b - Ax_m)}_{=: d_m}$$
, where $X_m = \operatorname{diag}(x_m)$, $x_m \ge 0$.

Active set methods [Morigi, Plemmons, Reichel, Sgallari. Hybrid multilevel-active set method for box-constr. Calcolo, 2011]

Krylov methods for unconstrained problems

Unconstrained LS problem:

(Nonnegative) LS problems

$$\min_{x\in\mathbb{R}^N}\|b-Ax\|_2^2.$$

Krylov methods for unconstrained problems

Unconstrained LS problem:

$$\min_{x\in\mathbb{R}^N}\|b-Ax\|_2^2.$$

Iterative methods such that:

 $\mathbf{x}_m \in \mathcal{K}_m(C,d)$, where

$$\mathcal{K}_m(C,d)=\operatorname{span}\{d,Cd,\ldots,C^{m-1}d\}\,,$$
 and $C=A,A^TA,AA^T,\ d=b,A^Tb,\ A^\ell b\,(\ell\geq 1).$

 $r_m := b - Ax_m$ satisfies some conditions, e.g.,

$$\min_{\hat{x}\in\mathcal{K}_m(C,d)}\|b-A\hat{x}\|_2^2.$$

Unconstrained LS problem:

$$\min_{x\in\mathbb{R}^N}\|b-Ax\|_2^2.$$

Iterative methods such that:

 $\mathbf{x}_m \in \mathcal{K}_m(C,d)$, where

$$\mathcal{K}_m(C,d) = \operatorname{span}\{d,Cd,\ldots,C^{m-1}d\}\,,$$
 and $C=A,A^TA,AA^T,d=b,A^Tb,A^\ell b\,(\ell \geq 1).$

 $r_m := b - Ax_m$ satisfies some conditions, e.g.,

$$\min_{\hat{x}\in\mathcal{K}_m(C,d)}\|b-A\hat{x}\|_2^2.$$

Extremely efficient!

Reichel & CO., Hansen & CO., Nagy & CO., Strakos & CO., Novati & CO [...]

Lewis, Sgallari, Morigi, Lanza, Calvetti, Hanke, Donatelli, Chung, Elden, Simoncini, Jensen, Rodriguez, Russo, O'Leary,

Plemmons, Jorgensen, Kilmer, Hnetynkova, Hochstenbach, Noschese, Dykes, Hayami, Ye, Saunders, Palmer, Huang, Jia [...]

Krylov methods (CGLS) in action

(Nonnegative) LS problems

Krylov methods (CGLS) in action

(Nonnegative) LS problems

Gradient Descent approach VS. Krylov Subspaces approach

Krylov methods (CGLS) in action

(Nonnegative) LS problems

Gradient Descent approach VS. Krylov Subspaces approach

They work efficiently as:

- they mimic the TSVD;
- $\mathcal{K}_m(C,d) \simeq \mathcal{K}_{m+1}(C,d)$ for small m.

Defining Krylov methods

000

[Axelsson. Iterative Solution Methods, Cambridge, 1994]

Defining Krylov methods

(Nonnegative) LS problems

[Axelsson, Iterative Solution Methods, Cambridge, 1994]

Explicitly computing the solution along descent directions:

$$x_{m+1} = x_m + \sum_{j=0}^m \alpha_j^{(m)} d_j$$

$$d_{m+1} = \bar{z}_{m+1} + \sum_{j=0}^{m} \beta_j^{(m)} d_j$$
.

(Nonnegative) LS problems

[Axelsson, Iterative Solution Methods, Cambridge, 1994]

Explicitly computing the solution along descent directions:

$$x_{m+1} = x_m + \sum_{j=0}^m \alpha_j^{(m)} d_j$$

$$d_{m+1} = \bar{z}_{m+1} + \sum_{j=0}^{m} \beta_j^{(m)} d_j$$
.

Requiring Ad_i orthogonal and minimal residual:

Defining Krylov methods

(Nonnegative) LS problems

[Axelsson, Iterative Solution Methods, Cambridge, 1994]

Explicitly computing the solution along descent directions:

$$x_{m+1} = x_m + \sum_{j=0}^m \alpha_j^{(m)} d_j$$

$$d_{m+1} = \bar{z}_{m+1} + \sum_{j=0}^{m} \beta_j^{(m)} d_j$$
.

Requiring Ad_i orthogonal and minimal residual:

- $\mathbf{x}_{m+1} = \mathbf{x}_m + \alpha_m d_m$, where $\alpha_m = \frac{(r_m, Ad_m)}{(Ad_m, Ad_m)}$;
- $\beta_i^{(m)} = -\frac{(A\bar{z}_{m+1},Ad_j)}{(Ad_i,Ad_i)}, \quad j=0,\ldots,m.$

Special case: CGLS.

The need of introducing "flexibility"

The need of introducing "flexibility"

Back the KKT conditions, most general case:

The need of introducing "flexibility"

Back the KKT conditions, most general case:

$$XA^{T}(b-Ax)=0$$
, $x\geq 0$

The need of introducing "flexibility"

Back the KKT conditions, most general case:

$$XA^{T}(b-Ax_{m})=0$$
, $x_{m}\geq 0$

■ make sure that $x_m \ge 0$ for each m.

Back the KKT conditions, most general case:

$$X^{(m)}A^T(b-Ax_m)=0$$
, $x_m\geq 0$

where, at the *m*th step, $X^{(m)} = \text{diag}(x_{m-1})$.

- variable "preconditioners";
- make sure that $x_m \ge 0$ for each m.

The need of introducing "flexibility"

Back the KKT conditions, most general case:

$$X^{(m)}A^T(b-Ax_m)=0$$
, $x_m\geq 0$

where, at the mth step, $X^{(m)} = \text{diag}(x_{m-1})$.

We need a Krylov method (CGLS) that handles:

- variable "preconditioners";
- \blacksquare make sure that $x_m > 0$ for each m.

[Simoncini and Szyld. Recent computational developments in Krylov meth, NLAA, 2007]

Flexible Krylov methods for regularization

"Preconditioners" that enforce "regularity"

[Saad. FGMRES. SISC, 1993]

Flexible Krylov methods for regularization

"Preconditioners" that enforce "regularity"

[Saad, FGMRES, SISC, 1993]

- $\min_{x \in \mathbb{R}^N} \|b Ax\|_2^2 + \lambda \|x\|_1 \equiv \min_{x \in \mathbb{R}^N} \|b AX^{(m)}x\|_2^2 + \lambda \|x\|_2^2$ [G. and Nagy. GAT for sparse reconstruction. SISC, 2014]
- $\min_{\mathbf{x} \in \mathbb{R}^N} \|b A\mathbf{x}\|_2^2 \longrightarrow \mathbf{x}_m = \mathbf{Z}_m \mathbf{y}_m$ [Morikuni, Reichel, Hayami. FGMRES for linear ill-posed pb. Appl.Numer.Math., 2014]
- $\| \min_{x \in \mathbb{R}^N} \| b Ax \|_2^2 + \lambda \| Lx \|_2^2$ $\min_{x \in \mathbb{R}^N} \|b - Ax\|_2^2 + \sum_{i=1}^{\ell} \lambda^{(i)} \|L^{(i)}x\|_2^2$

[Reichel, Yu. Tikhonov regularization via flexible Arnoldi. BIT, 2015]

Flexible Krylov methods for regularization

"Preconditioners" that enforce "regularity"

[Saad, FGMRES, SISC, 1993]

- $\min_{x \in \mathbb{R}^N} \|b Ax\|_2^2 + \lambda \|x\|_1 \equiv \min_{x \in \mathbb{R}^N} \|b AX^{(m)}x\|_2^2 + \lambda \|x\|_2^2$ [G. and Nagy. GAT for sparse reconstruction. SISC, 2014]
- $\min_{\mathbf{x} \in \mathbb{R}^N} \|b A\mathbf{x}\|_2^2 \longrightarrow \mathbf{x}_m = \mathbf{Z}_m \mathbf{y}_m$ [Morikuni, Reichel, Hayami. FGMRES for linear ill-posed pb. Appl.Numer.Math., 2014]
- \blacksquare min_{$x \in \mathbb{R}^N$} $||b Ax||_2^2 + \lambda ||Lx||_2^2$ $\min_{x \in \mathbb{R}^N} \|b - Ax\|_2^2 + \sum_{i=1}^{\ell} \lambda^{(i)} \|L^{(i)}x\|_2^2$

[Reichel, Yu. Tikhonov regularization via flexible Arnoldi. BIT, 2015]

now... deriving FCGLS

If no preconditioners: CGLS

Input: A, b, x_0 .

Initialize:
$$r_0 = b - Ax_0$$
, $\bar{z}_0 = A^T r_0$.

Take $d_0 = \bar{z}_0$.

For $m = 0, \ldots$, till a stopping criterion is satisfied

- Set $\alpha_m = \frac{(r_m, Ad_m)}{(Ad_m, Ad_m)}$.
- Update $x_{m+1} = x_m + \alpha_m d_m$.
- Update $r_{m+1} = r_m \alpha_m A d_m$.
- \blacksquare Compute $\bar{z}_{m+1} = A^T r_{m+1}$.

- $\blacksquare \text{ Set } \beta_m = -\frac{(A\bar{z}_{m+1}, Ad_m)}{(Ad_m, Ad_m)}.$
- Update $d_{m+1} = \bar{z}_{m+1} + \beta_m d_m$.

Input: A, L, b, x_0 .

Initialize: $r_0 = b - Ax_0$, $z_0 = A^T r_0$.

Compute $\overline{z}_0 = Lz_0$.

Take $d_0 = \bar{z}_0$.

For $m = 0, \ldots$, till a stopping criterion is satisfied

- Set $\alpha_m = \frac{(r_m, Ad_m)}{(Ad_m, Ad_m)}$.
- Update $x_{m+1} = x_m + \alpha_m d_m$.
- Update $r_{m+1} = r_m \alpha_m A d_m$.
- \blacksquare Compute $z_{m+1} = A^T r_{m+1}$.
- ightharpoonup Compute $\overline{z}_{m+1} = Lz_{m+1}$.
- $\blacksquare \text{ Set } \beta_m = -\frac{(A\bar{z}_{m+1}, Ad_m)}{(Ad_m, Ad_m)}.$
- Update $d_{m+1} = \bar{z}_{m+1} + \beta_m d_m$.

If the "preconditioners" $L^{(m)}$ are variable: FCGLS

Input: $A, L^{(0)}$. $b. x_0$.

Initialize:
$$r_0 = b - Ax_0$$
, $z_0 = A^T r_0$.

Compute $\bar{z}_0 = L^{(0)} z_0$.

Take $d_0 = \bar{z}_0$.

For m = 0, ..., till a stopping criterion is satisfied

- Set $\alpha_m = \frac{(r_m, Ad_m)}{(Ad_m, Ad_m)}$.
- Update $x_{m+1} = x_m + \alpha_m d_m$.
- Update $r_{m+1} = r_m \alpha_m A d_m$.
- \blacksquare Compute $z_{m+1} = A^T r_{m+1}$.
- \blacksquare Compute $L^{(m+1)}$.
- Compute $\bar{z}_{m+1} = L^{(m+1)} z_{m+1}$.
- Set $\beta_i^{(m)} = -\frac{(A\bar{z}_{m+1}, Ad_j)}{(Ad_i, Ad_i)}$, $j = 0, \dots, m$.
- Update $d_{m+1} = \bar{z}_{m+1} + \sum_{i=0}^{m} \beta_i^{(m)} d_i$.

[Notay. Flexible CG, SISC, 2000]

If the "preconditioners" $L^{(m)}$ are variable: FCGLS

Input: $A, L^{(0)}$. $b. x_0$.

Initialize: $r_0 = b - Ax_0$, $z_0 = A^T r_0$.

Compute $\bar{z}_0 = L^{(0)} z_0$.

Take $d_0 = \bar{z}_0$.

For m = 0, ..., till a stopping criterion is satisfied

- Set $\alpha_m = \frac{(r_m, Ad_m)}{(Ad_m, Ad_m)}$.
- Update $x_{m+1} = x_m + \alpha_m d_m$.
- Update $r_{m+1} = r_m \alpha_m A d_m$.
- \blacksquare Compute $z_{m+1} = A^T r_{m+1}$.
- \blacksquare Compute $L^{(m+1)}$.
- Compute $\bar{z}_{m+1} = L^{(m+1)} z_{m+1}$.
- Set $\beta_i^{(m)} = -\frac{(A\bar{z}_{m+1},Ad_j)}{(Ad_i,Ad_i)}$, $j = \hat{m},\ldots,m$.
- Update $d_{m+1} = \overline{z}_{m+1} + \sum_{i=\hat{m}}^{m} \beta_i^{(m)} d_i$.

[Notay. Flexible CG, SISC, 2000]

Solving:

$$X^{(m)}A^{T}(b-Ax) = 0, \quad x \geq 0, \quad \text{with} \quad X^{(m)} = \text{diag}(x_m),$$

by FCGLS:

$$x_{m+1}=x_m+\alpha_m d_m.$$

Solving:

$$X^{(m)}A^{T}(b-Ax)=0$$
, $x\geq 0$, with $X^{(m)}=\operatorname{diag}(x_m)$,

by FCGLS:

$$x_{m+1} = x_m + \alpha_m d_m$$
.

To guarantee nonnegativity at each step:

$$\alpha_m = \min \left(\alpha_m, \min \left(-\frac{x_m(d_m < 0)}{d_m(d_m < 0)} \right) \right).$$

Solving:

$$X^{(m)}A^{T}(b-Ax) = 0, \quad x \geq 0, \quad \text{with} \quad X^{(m)} = \text{diag}(x_m),$$

by FCGLS:

$$x_{m+1} = x_m + \alpha_m d_m$$
.

To guarantee nonnegativity at each step:

$$\alpha_m = \min \left(\alpha_m, \min \left(-\frac{x_m(d_m < 0)}{d_m(d_m < 0)} \right) \right).$$

Prone to stagnation: $\alpha_m = 0$!!!

Solving:

$$X^{(m)}A^{T}(b-Ax)=0$$
, $x\geq 0$, with $X^{(m)}=\operatorname{diag}(x_{m})$,

by FCGLS:

$$x_{m+1} = x_m + \alpha_m d_m.$$

To guarantee nonnegativity at each step:

$$\alpha_m = \min \left(\alpha_m, \min \left(-\frac{x_m(d_m < 0)}{d_m(d_m < 0)} \right) \right).$$

Prone to stagnation: $\alpha_m = 0$!!!

MFCGLS (Modified FCGLS)

Input: A, b, $x_0^0 > 0$.

- For k = 0, ..., till a stopping criterion is satisfied
 - For $m=0,\ldots$, till m_{max} or $\alpha_m=0$
 - Run a FCGLS with initial guess x_0^k , preconditioner $X^{(m)}$, and NN:

Nonnegativity by flexible Krylov

$$x_{m+1} = x_m + \alpha_m d_m;$$

 $d_{m+1} = \bar{z}_{m+1} + \sum_{i=\hat{m}}^m \beta_i^{(m)} d_i.$

Restart with the last approximation.

12 / 29

Numerical experiments

Numerical experiments

■ star_cluster test problem [Nagy et al. Restore Tools, 2012]

uniencai experiments

■ star_cluster test problem [Nagy et al. Restore Tools, 2012]

■ satellite test problem [Nagy et al. Restore Tools, 2012]

uniencai experiments

■ star_cluster test problem [Nagy et al. Restore Tools, 2012]

■ satellite test problem [Nagy et al. Restore Tools, 2012]

■ paralleltomo test problem [Hansen et al. AIR Tools, 2012]

$$\mathcal{A} \in \mathbb{R}^{65536 imes 65536}$$
, $\widetilde{arepsilon} = 10^{-2}$

$$A \in \mathbb{R}^{65536 imes 65536}$$
, $\widetilde{arepsilon} = 10^{-2}$

Relative Error History

ReSt NNCG by

[Calvetti et al. Non-neg. and iterative methods for ill-posed pb, Inv. Problems, 2004]

$$A \in \mathbb{R}^{65536 imes 65536}$$
, $\widetilde{arepsilon} = 10^{-2}$

	rel.error	iterations	tot.time	av.time
MFCGLS	2.8132e-03	248.67	62.56	0.25
ReSt NNCG	5.3699e-03	261.00	113.51	0.43
FISTA	9.1283e-02	72.00	42.06	0.58
MFISTA	3.2803e-03	400.00	216.11	0.54
MFISTA(0.2)	3.2445e-03	400.00	194.78	0.49
MFISTA(5)	4.2834e-03	400.00	185.22	0.46
MRNSD	1.9889e-02	400.00	91.11	0.23
NNSD	8.3206e-02	400.00	91.59	0.23
naive NNCG	1.4028e-01	400.00	105.02	0.26

 $A \in \mathbb{R}^{65536 \times 65536}$, $\widetilde{arepsilon} = 10^{-2}$, 200th iteration

 $A \in \mathbb{R}^{65536 \times 65536}$, $\widetilde{arepsilon} = 10^{-2}$, 200th iteration

MRNSD

ReSt NNCG

MFCGLS

$A \in \mathbb{R}^{65536 \times 65536}$, $\widetilde{arepsilon} = 10^{-2}$, 200th iteration

MRNSD

ReSt NNCG

MFCGLS

satellite test problem

satellite test problem

$$A \in \mathbb{R}^{65536 imes 65536}$$
, $\widetilde{arepsilon} = 10^{-1}$

Relative Error Histories, varying some "side" parameters

$$A \in \mathbb{R}^{65536 \times 65536}$$
, $\widetilde{\varepsilon} = 10^{-1}$

Relative Error History

ReSt NNCG by

[Hanke, Nagy, and Plemmons. Preconditioned iterative regularization, Num.Lin.Alg., 1993]

satellite test problem

$$A \in \mathbb{R}^{65536 \times 65536}$$
, $\widetilde{arepsilon} = 10^{-1}$

	rel.error	iterations	tot.time	av.time
MFCGLS	3.5098e-01	70.33	5.49	0.08
ReSt NNCG	4.0957e-01	106.67	9.38	0.08
FISTA	3.2969e-01	164.33	21.22	0.12
MFISTA	3.2583e-01	177.00	23.10	0.13
MFISTA(0.2)	3.3318e-01	137.00	20.58	0.15
MFISTA(5)	3.3397e-01	200.00	26.86	0.13
MRNSD	3.7720e-01	200.00	12.55	0.06
PMRNSD	4.0032e-01	37.33	2.62	0.07
NNSD	4.3095e-01	200.00	13.82	0.07

satellite test problem

$$A \in \mathbb{R}^{65536 \times 65536}$$
, $\widetilde{\varepsilon} = 10^{-1}$

exact

blurred & noisy

MFCGLS (# 84)

MFISTA (# 200)

MRNSD (# 200)

PMRNSD (# 30)

paralleltomo test problem

paralleltomo test problem

overdetermined (81088 × 65536 coefficient matrix, $\tilde{\varepsilon} = 5 \cdot 10^{-2}$)

	rel.error	iterations	tot.time	av.time
MFCGLS	1.8268e-01	17.33	0.92	0.09
ReSt NNCG	2.0133e-01	56.00	16.31	0.11
MFISTA	2.0029e-01	37.00	53.13	1.44
MRNSD	1.8506e-01	45.00	4.10	0.09
Cimmino	1.9982e-01	100.00	33.47	0.33

paralleltomo test problem

overdetermined (81088 imes 65536 coefficient matrix, $\widetilde{\varepsilon} = 5 \cdot 10^{-2}$)

	rel.error	iterations	tot.time	av.time
MFCGLS	1.8268e-01	17.33	0.92	0.09
ReSt NNCG	2.0133e-01	56.00	16.31	0.11
MFISTA	2.0029e-01	37.00	53.13	1.44
MRNSD	1.8506e-01	45.00	4.10	0.09
Cimmino	1.9982e-01	100.00	33.47	0.33

underdetermined (32580 imes 65536 coefficient matrix, $\widetilde{\varepsilon}=5\cdot 10^{-2}$)

	rel.error	iterations	tot.time	av.time
MFCGLS	2.3145e-01	13.00	0.15	0.07
ReSt NNCG	2.4572e-01	51.00	0.59	0.05
MFISTA	2.4634e-01	32.00	12.41	0.39
MRNSD	2.3485e-01	35.00	3.43	0.09
Cimmino	2.4715e-01	94.33	8.84	0.09

$$A \in \mathbb{R}^{65160 \times 65536}$$
, $\widetilde{\varepsilon} = 5 \cdot 10^{-2}$.

Relative Error History

underdetermined paralleltomo test problem

$$A \in \mathbb{R}^{65160 \times 65536}$$
, $\widetilde{arepsilon} = 5 \cdot 10^{-2}$, 17th iteration

Poisson noise •0000

Incorporating Poisson noise

$$b = \mathsf{Poisson}(Ax^{\mathsf{ex}}) + \mathsf{Poisson}(\beta \mathbf{1}) + \mathsf{Normal}(0, \sigma^2 I)$$

$$b = \mathsf{Poisson}(Ax^{ex}) + \mathsf{Poisson}(\beta 1) + \mathsf{Normal}(0, \sigma^2 I)$$

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993]

$$b = \mathsf{Poisson}(Ax^{ex}) + \mathsf{Poisson}(\beta 1) + \mathsf{Normal}(0, \sigma^2 I)$$

[Snyder et al., Image recovery from CCD, J. Opt. Soc. Amer. A, 1993]

$$\underbrace{b-\beta\mathbf{1}}_{=:b_{\beta}} = Ax^{\mathrm{ex}} + \mathrm{Normal}\big(0, \underbrace{\mathrm{diag}(Ax^{\mathrm{ex}} + \beta\mathbf{1} + \sigma^2\mathbf{1}\big)}_{=:C_{\eta}}\big).$$

$$b = \mathsf{Poisson}(Ax^{\mathsf{ex}}) + \mathsf{Poisson}(\beta \mathbf{1}) + \mathsf{Normal}(0, \sigma^2 I)$$

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993] [Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

$$\underbrace{b - \beta \mathbf{1}}_{=: b_{\beta}} = Ax^{ex} + \text{Normal}(0, \underbrace{\text{diag}(Ax^{ex} + \beta \mathbf{1} + \sigma^{2} \mathbf{1})}_{=: C_{\eta}}).$$

$$b = \mathsf{Poisson}(Ax^{\mathsf{ex}}) + \mathsf{Poisson}(\beta \mathbf{1}) + \mathsf{Normal}(0, \sigma^2 I)$$

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993] [Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

$$\underbrace{b - \beta \mathbf{1}}_{=: b_{\beta}} = Ax^{ex} + \text{Normal}(0, \underbrace{\text{diag}(Ax^{ex} + \beta \mathbf{1} + \sigma^2 \mathbf{1})}_{=: C_{\eta}}).$$

Problem to solve:

$$\min_{x>0} \|C_{\eta}^{-1/2}(b_{\beta}-Ax)\|_{2}^{2},$$

by the class of MRNSD methods:

$$b = \mathsf{Poisson}(Ax^{\mathsf{ex}}) + \mathsf{Poisson}(\beta \mathbf{1}) + \mathsf{Normal}(0, \sigma^2 I)$$

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993] [Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

$$\underbrace{b - \beta \mathbf{1}}_{=: b_{\beta}} = Ax^{ex} + \text{Normal}(0, \underbrace{\text{diag}(Ax^{ex} + \beta \mathbf{1} + \sigma^2 \mathbf{1})}_{=: C_{\eta}}).$$

Problem to solve:

$$\min_{x>0} \|C_{\eta}^{-1/2}(b_{\beta}-Ax)\|_{2}^{2},$$

by the class of MRNSD methods:

$$C_n = \operatorname{diag}(b + \sigma^2 \mathbf{1});$$

Poisson noise

$b = \text{Poisson}(Ax^{ex}) + \text{Poisson}(\beta \mathbf{1}) + \text{Normal}(0, \sigma^2 I)$

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993] [Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

$$\underbrace{b - \beta \mathbf{1}}_{=: b_{\beta}} = Ax^{\text{ex}} + \text{Normal}(0, \underbrace{\text{diag}(Ax^{\text{ex}} + \beta \mathbf{1} + \sigma^2 \mathbf{1})}_{=: C_{\eta}}).$$

Problem to solve:

$$\min_{x>0} \|C_{\eta}^{-1/2}(b_{\beta}-Ax)\|_{2}^{2},$$

by the class of MRNSD methods:

$$ightharpoonup$$
 WMRNSD: $C_{\eta} = \operatorname{diag}(b + \sigma^2 \mathbf{1});$

$$b = \mathsf{Poisson}(Ax^{\mathsf{ex}}) + \mathsf{Poisson}(\beta \mathbf{1}) + \mathsf{Normal}(0, \sigma^2 I)$$

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993] [Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

$$\underbrace{b - \beta \mathbf{1}}_{=: b_{\beta}} = Ax^{ex} + \text{Normal}(0, \underbrace{\text{diag}(Ax^{ex} + \beta \mathbf{1} + \sigma^2 \mathbf{1})}_{=: C_{\eta}}).$$

Problem to solve:

$$\min_{x\geq 0} \|C_{\eta}^{-1/2}(b_{\beta}-Ax)\|_{2}^{2},$$

by the class of MRNSD methods:

WMRNSD: $C_{\eta} = \operatorname{diag}(b + \sigma^2 \mathbf{1});$ $C_{\eta}^{(k)} = \operatorname{diag}(Ax_k + \beta \mathbf{1} + \sigma^2 \mathbf{1}).$

$$b = \mathsf{Poisson}(Ax^{\mathsf{ex}}) + \mathsf{Poisson}(\beta \mathbf{1}) + \mathsf{Normal}(0, \sigma^2 I)$$

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993] [Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

$$\underbrace{b - \beta \mathbf{1}}_{=: b_{\beta}} = Ax^{\text{ex}} + \text{Normal}(0, \underbrace{\text{diag}(Ax^{\text{ex}} + \beta \mathbf{1} + \sigma^2 \mathbf{1})}_{=: C_{\eta}}).$$

Problem to solve:

$$\min_{x\geq 0} \|C_{\eta}^{-1/2}(b_{\beta}-Ax)\|_{2}^{2},$$

by the class of MRNSD methods:

► WMRNSD : $C_{\eta} = \text{diag}(b + \sigma^2 \mathbf{1});$ ► KWMRNSD : $C_{\eta}^{(k)} = \text{diag}(Ax_k + \beta \mathbf{1} + \sigma^2 \mathbf{1}).$

Introducing CP-MFCGLS

Input: A, b, $x_0^0 \ge 0$, $X_n^{(0)}$. $C_n^{(0)}$. Initialize: $r_0^k = b - Ax_0^0$, $z_0^0 = A^T (C_n^{(0)})^{-1} r_0^0$, $\overline{z}_0^0 = X^{(0)} z_0^0$, $d_0^0 = \overline{z}_0^0$.

- For $k = 0, \ldots$, till a stopping criterion is satisfied
 - For m = 0, ..., till m_{max} or $\alpha_m = 0$ or a stopping criterion is satisfied
 - Run a FCGLS with x_0^k , preconditioners $X^{(m)}$, $C_n^{(k)}$, and NN:

o Compute
$$\alpha_m = \frac{(\bar{r}_m^k, (C_\eta^{(k)})^{-1/2} A d_m^k)}{((C_\eta^{(k)})^{-1/2} A d_m^k, (C_\eta^{(k)})^{-1/2} A d_m^k)}.$$

- O Update $x_{m+1}^k = x_m^k + \alpha_m d_m^k$.
- O Update $r_{m+1}^k = r_m^k \alpha_m A d_m^k$.
- Compute $X^{(m+1)}$.
- Compute $z_{m+1}^k = A^T (C_n^{(k)})^{-1} r_{m+1}^k$.
- o Compute $\bar{z}_{m+1}^k = X^{(m+1)} z_{m+1}^k$.
- o Set $\beta_j = -\frac{((C_{\eta}^{(k)})^{-1/2}Az_{m+1}^k,(C_{\eta}^{(k)})^{-1/2}Ad_m^k)}{((C_{\eta}^{(k)})^{-1/2}\Delta d_m^k,(C_{\eta}^{(k)})^{-1/2}\Delta d_n^k)}, j = \hat{m},\ldots,m.$
- Update $d_{m+1}^k = \bar{z}_{m+1}^k + \sum_{i=\hat{m}}^m \beta_i d_i^k$.
- Restart with the last approximation, and update $C_n^{(k+1)}$.

 $\textit{A} \in \mathbb{R}^{65536 \times 65536}$

Gauss: $\sigma = 20$, Poisson: $\beta = 60$, $\widetilde{\varepsilon} \simeq 1.5 \cdot 10^{-2}$

 $\textit{A} \in \mathbb{R}^{65536 \times 65536}$

Gauss: $\sigma = 20$, Poisson: $\beta = 60$, $\widetilde{\varepsilon} \simeq 1.5 \cdot 10^{-2}$

Relative Error History

$$A \in \mathbb{R}^{65536 \times 65536}$$
, $\widetilde{arepsilon} \simeq 1.5 \cdot 10^{-2}$

	rel.error	iterations	tot.time	av.time
CP-MFCGLS	1.2785e-01	300.00	31.65	0.08
CP-MFCGLS(k)	1.2778e-01	300.00	32.17	0.08
WMRNSD	1.8201e-01	300.00	28.34	0.09
KWMRNSD	1.3590e-01	300.00	37.19	0.12

 $A \in \mathbb{R}^{65536 \times 65536}$, $\widetilde{arepsilon} \simeq 1.5 \cdot 10^{-2}$, 100th iteration

KWMRNSD

blurred & noisy

VP-MFCGLS

 Systematic and efficient way to enforce nonnegativity within Krylov subspace methods.

- Systematic and efficient way to enforce nonnegativity within Krylov subspace methods.
- Embraces and improves many methods already available.

- Systematic and efficient way to enforce nonnegativity within Krylov subspace methods.
- Embraces and improves many methods already available.
- Possible generalizations:
 - box constraints;
 - sparsity (?);
 - other Krylov methods (FGCR...);

- Systematic and efficient way to enforce nonnegativity within Krylov subspace methods.
- Embraces and improves many methods already available.
- Possible generalizations:
 - box constraints;
 - sparsity (?);
 - other Krylov methods (FGCR...);
 - ..

Paper available on arXiv:

S. Gazzola and Y. Wiaux.

Fast nonnegative least squares through flexible Krylov subspaces. arXiv:1511.06269

- Systematic and efficient way to enforce nonnegativity within Krylov subspace methods.
- Embraces and improves many methods already available.
- Possible generalizations:
 - box constraints;
 - sparsity (?);
 - other Krylov methods (FGCR...);
 - ..

Paper available on arXiv:

S. Gazzola and Y. Wiaux.

Fast nonnegative least squares through flexible Krylov subspaces. arXiv:1511.06269

Thanks for your attention!