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Regularization...

x = Atb
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Regularization...
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Regularization...

x=A'b x=(ATA+A)*ATD x=Alb

Nonnegative constraints!

in|[b— A
min ||b — Ax|,
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Nonnegative LS problems
m Brief survey of the available methods
m Krylov methods for unconstrained problems

Flexible Krylov subspaces
m The need of introducing “flexibility”
m Deriving FCGLS
m MFCGLS for nonnegative LS problems

Numerical Experiments
m Restoration of Astronomical Images
m CT Reconstruction

Looking at Poisson noise
m Modeling Poisson Noise
m CP-MFCGLS
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m Modified Residual-Norm Steepest Descent (MRNSD)
[Nagy and Strakos. Enforcing nonnegativity in image reconstruction algorithms, Proc. SPIE, 2000]
From the KKT conditions
XAT(b—Ax) =0, where X =diag(x), x>0.
Fixed point (or gradient descent) iterations:

Xma1l = Xm + Qm XmAT(b — Axm) , where X, = diag(xm), xm > 0.

=:dm

m Active set methods

[Morigi, Plemmons, Reichel, Sgallari. Hybrid multilevel-active set method for box-constr. Calcolo, 2011]
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Krylov methods for unconstrained problems

Unconstrained LS problem:
: 2
min ||b — Ax||5.
x€RN
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Krylov methods for unconstrained problems

Unconstrained LS problem:
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min [|b— Ax .
Iterative methods such that:
B Xy € Kn(C,d), where
Km(C,d) = span{d, Cd,...,C™ d},
and C=A, ATA AAT, d=b, ATh, A'b (£ >1).
B ry = b — Ax,, satisfies some conditions, e.g.,

min ||b— A%||3.
RKEKm(C,d)
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Krylov methods for unconstrained problems

Unconstrained LS problem:
min ||b — Ax||3.
x€RN

Iterative methods such that:
m Xm € Km(C, d), where
Km(C,d) =span{d, Cd,...,C"d},
and C=A, ATA AAT, d=b, ATh, A'b (£ > 1).
B ry = b — Ax,, satisfies some conditions, e.g.,

min ||b— AX|3.
xekm(C,d)
Extremely efficient!

Reichel & CO., Hansen & CO., Nagy & CO., Strakos & CO., Novati & CO [...]

Lewis, Sgallari, Morigi, Lanza, Calvetti, Hanke, Donatelli, Chung, Elden, Simoncini, Jensen, Rodriguez, Russo, O'Leary,

Plemmons, Jorgensen, Kilmer, Hnetynkova, Hochstenbach, Noschese, Dykes, Hayami, Ye, Saunders, Palmer, Huang, Jia [...]
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Krylov methods (CGLS) in action

relative errors relative residuals
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Krylov methods (CGLS) in action

relative errors relative residuals
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Gradient Descent approach VS. Krylov Subspaces approach

relative errors
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Krylov methods (CGLS) in action

relative errors relative residuals

107

10°7

Gradient Descent approach VS. Krylov Subspaces approach

relative errors

B They work efficiently as:
- m they mimic the TSVD;

B Kn(C,d) ~ Kmni1(C,d)
for small m.
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Defining Krylov methods

[Axelsson. Iterative Solution Methods, Cambridge, 1994]
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Defining Krylov methods

[Axelsson. Iterative Solution Methods, Cambridge, 1994]

Explicitly computing the solution along descent directions:

m
Xmi1l = Xm + Z on(-m)dj
j=0

m
dm+1 = 2m—|—1 + Z/BJ(m)dJ .
j=0
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Defining Krylov methods

[Axelsson. Iterative Solution Methods, Cambridge, 1994]

Explicitly computing the solution along descent directions:

m
Xm+1 = Xm + Z OZJ('m)dj
j=o

m
dm+1 = 2m—|—1 + Z/BJ(m)dJ .
Jj=0

Requiring Ad; orthogonal and minimal residual:

A
B Xmil = Xm + @mdm, where ap, = Arm,Adn) .

(Adm,Adm) "’
(m) _ (AzZmt1,Ad)) .
m 5 __—LmAdj , J=0,...,m.

Special case: CGLS.
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Back the KKT conditions, most general case:
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m make sure that x,,, > 0 for each m.
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The need of introducing “flexibility”

Back the KKT conditions, most general case:
XMAT(b— Ax,)) =0, x, >0

where, at the mth step, X(") = diag(x,, 1).

m variable “preconditioners”;

m make sure that x,,, > 0 for each m.
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The need of introducing “flexibility”

Back the KKT conditions, most general case:
XMAT(b— Ax,)) =0, x, >0
where, at the mth step, X(") = diag(x,, 1).
We need a Krylov method (CGLS) that handles:
m variable “preconditioners”;

m make sure that x,,, > 0 for each m.

[Simoncini and Szyld. Recent computational developments in Krylov meth, NLAA, 2007]
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Flexible Krylov methods for regularization

“Preconditioners” that enforce “regularity”
[Saad. FGMRES. SISC, 1993]
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Flexible Krylov methods for regularization

“Preconditioners” that enforce “regularity”
[Saad. FGMRES. SISC, 1993]

m mingepn [|b— Ax|3 + Allx[ln = mingegn b — AXI)x|3 + A||x13
[G. and Nagy. GAT for sparse reconstruction. SISC, 2014]

B mingpn |b—Axl3 —  xm = Znym
[Morikuni, Reichel, Hayami. FGMRES for linear ill-posed pb. Appl.Numer.Math., 2014]

® mingcpn ||b— Ax||§ + )\||£Lx||§ o
min, egn [|b— Ax|3 + i AD|LOx|3

[Reichel, Yu. Tikhonov regularization via flexible Arnoldi. BIT, 2015]
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Flexible Krylov methods for regularization

“Preconditioners” that enforce “regularity”
[Saad. FGMRES. SISC, 1993]

m mingepn [|b— Ax|3 + Allx[ln = mingegn b — AXI)x|3 + A||x13
[G. and Nagy. GAT for sparse reconstruction. SISC, 2014]

B mingpn |b—Axl3 —  xm = Znym
[Morikuni, Reichel, Hayami. FGMRES for linear ill-posed pb. Appl.Numer.Math., 2014]

® mingcpn ||b— Ax||§ + )\||£Lx||§ o
min, egn [|b— Ax|3 + i AD|LOx|3

[Reichel, Yu. Tikhonov regularization via flexible Arnoldi. BIT, 2015]

now... deriving FCGLS
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If no preconditioners: CGLS

Input: A, b, xo.
Initialize: rp = b — Axp, 2o = A’ rp.

Take d() = 20.
For m=0,..., till a stopping criterion is satisfied

(rmyAdm)
(Adm,Adm) "

Update Xpm+1 = Xm + @mdm.

m Set oy =

Update rp1 = rm — amAdmn.

Compute Zpi1 = AT rpi1.

m Set B, = — (fZmiin),
m Update dmi1 = Zm+1 + Bmdm.
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If the preconditioner L is fixed: PCGLS

Input: A, L, b, xo.

Initialize: rp = b — Axp, 20 = A rp.

Compute zp = Lz.

Take do = Zp.

For m=0,..., till a stopping criterion is satisfied

m,Adm
m Set o, = 7(£\rdm,Ad,3)‘

m Update xmi1 = Xm + amdm.
m Update rmy1 = rm — amAdn.

m Compute Zny1 = Al rmys.

Compute Z,, 01 = Lz 1.

_ _ (AZmi1,Adm)
Set B, = CAdm A

Update dmi1 = Zm+1 + Bmdm.
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If the “preconditioners” L(™ are variable: FCGLS

Input: A, L(O), b, xo.
Initialize: rg = b — Axg, 20 = AT ro.
Compute 7y = L9z,

Take do = 20.
For m=0,..., till a stopping criterion is satisfied
myAdm
m Set am = (iAfden%

Update Xpm+1 = Xm + @mdm.
Update rp41 = rm — amAdpn.

| |
"
m Compute zni1 = AT 1.
m Compute L(7+1),

m Compute 7,1 = L7z

m Set ") = i i =0,

Update dmi1 = Zmia + 570 " d.

[Notay. Flexible CG, SISC, 2000]
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If the “preconditioners” L(™ are variable: FCGLS

Input: A, L(O), b, xo.
Initialize: rg = b — Axg, 20 = AT ro.
Compute 7y = L9z,

Take do = 20.
For m=0,..., till a stopping criterion is satisfied
myAdm
m Set am = (iAfden%

Update Xpm+1 = Xm + @mdm.
Update rp41 = rm — amAdpn.

Compute L(mF1),

| |

"

m Compute zni1 = AT 1.

| |

m Compute 7,1 = L7z

AZpi1,Ad) . 4
lSetB}m):—W,J:m,...7m.

Update dmi1 = Zmi1 + 527, 9" d).

[Notay. Flexible CG, SISC, 2000]
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MFCGLS for nonnegative LS problems

Solving:
XMAT(b—Ax) =0, x>0, with X =diag(xn),

by FCGLS:

Xm+1 = Xm + amdm .
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G S G ot Qe T
MFCGLS for nonnegative LS problems

Solving:
XMAT(b—Ax) =0, x>0, with X =diag(xn),
by FCGLS:

Xm+1 = Xm + Amdm .
To guarantee nonnegativity at each step:

. . Xm(dm < 0)
am = Mmin am, MiN —m .

(University of Bath)
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A e SRt ansese ™ Soagerre e
MFCGLS for nonnegative LS problems

Solving:

XMAT(b—Ax) =0, x>0, with X =diag(xn),
by FCGLS:

Xm+1 = Xm + Amdm .
To guarantee nonnegativity at each step:

. . Xm(dm < 0)
am = Mmin am, MiN —m .

Prone to stagnation: «,, = 0 !l!
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MFCGLS for nonnegative LS problems

Final Remarks

Solving:

XMAT(b—Ax) =0, x>0, with X =diag(xm),
by FCGLS:

Xm+1 = Xm + Amdm .
To guarantee nonnegativity at each step:

Qm = min | am, min _ Xm(dm < 0)
"= ™ dm(dm <0) ) )
Prone to stagnation: «,, = 0 !!!

MFCGLS (Modified FCGLS)

Input: A, b, x§ > 0.

m For k =0,..., till a stopping criterion is satisfied
m For m=0,..., till mya or @, =0
m Run a FCGLS with initial guess x{, preconditioner X and NN:
Xm+1 = Xm + amdmni -
= Z . D i
[ | g,gtlart Wrrt+h1 :I;ezl;;s:tma%priimation.
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Numerical experiments

B star_cluster test problem nagy et ol Restore Tools 2012]
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Numerical experiments

B star_cluster test problem nagy et ol Restore Tools 2012]

m satellite test problem [Nagy et al. Restore Tools, 2012]
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Numerical experiments

B star_cluster test problem nagy et ol Restore Tools 2012]

m satellite test problem [Nagy et al. Restore Tools, 2012]

B paralleltomo test problem [Hansen et al. AR Toos 2012]
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star _cluster test problem

A € R65536x65536 = _ 12
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star_cluster test problem

Ac R65536><65536' F= 1072

Relative Error History

—MFCGLS
—ReSt NNCG
—MFISTA
—MRNSD
—NNSD
—naive NNCG | |

L

10 0 50 100 150 200 250 300 350 400

ReSt NNCG by

[Calvetti et al. Non-neg. and iterative methods for ill-posed pb, Inv. Problems, 2004]

Final Remarks
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Numerical Experiments

0O®@00000000
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Ac R65536><65536, g = 1072
rel.error iterations tot.time av.time
MFCGLS 2.8132e-03 248.67 62.56 0.25
ReSt NNCG 5.3699e-03 261.00 113.51 0.43
FISTA 9.1283e-02 72.00 42.06 0.58
MFISTA 3.2803e-03 400.00 216.11 0.54
MFISTA(0.2) 3.2445e-03 400.00 194.78 0.49
MFISTA(5) 4.2834e-03 400.00 185.22 0.46
MRNSD 1.9889e-02 400.00 91.11 0.23
NNSD 8.3206e-02 400.00 91.59 0.23
naive NNCG  1.4028e-01 400.00 105.02 0.26

S. Gazzola (University of Bath) Nonnegativity by flexible Krylov
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star _cluster test problem

A € R65936x65536 = — 10—2 2(00th iteration
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star_cluster test problem

A € R65536x65536 = — 10—2 200th iteration

MRNSD ReSt NNCG MFCGLS
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star_cluster test problem

A € R65536x65536 = — 10—2 200th iteration

MRNSD ReSt NNCG MFCGLS
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satellite test problem
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satellite test problem

Ac R65536><65536' g = 10—1

Relative Error Histories, varying some “side” parameters

—_—_m=m
max

—m=5
—m=1

0 20 40 60 80 100
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satellite test problem

A € R65536x65536 = _ 101

Relative Error History

—MFCGLS
10 —ReSt NNCG

—MFISTA

—MRNSD
107" —PMRNSD

0 50 100 150 200

ReSt NNCG by

[Hanke, Nagy, and Plemmons. Preconditioned iterative regularization, Num.Lin.Alg., 1993]
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satellite test problem

Ac R65536><65536, g = 1071

rel.error iterations tot.time av.time

MFCGLS 3.5098e-01 70.33 5.49 0.08
ReSt NNCG  4.0957e-01 106.67 9.38 0.08
FISTA 3.2969e-01 164.33 21.22 0.12
MFISTA 3.2583e-01 177.00 23.10 0.13

MFISTA(0.2) 3.3318e-01 137.00 20.58 0.15
MFISTA(5) 3.3397e-01 200.00 26.86 0.13

MRNSD 3.7720e-01 200.00 12.55 0.06
PMRNSD 4.0032e-01 37.33 2.62 0.07
NNSD 4.3095e-01 200.00 13.82 0.07
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(Nonnegative) LS problems Flexible Krylov subspaces Numerical Experiments Poisson noise Final Remarks
0000 0000 000000e000 00000

satellite test problem

Ac R65536><65536 £=10" 1
exact MFCGLS (# 84) MRNSD (# 200)

/(
blurred & noisy MFISTA (# 200) PMRNSD (# 30)

\¢

N\
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paralleltomo test problem
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(Nonnegative) LS problems Flexible Krylov subspaces Numerical Experiments Poisson noise Final Remarks
0000 0000 0000000800 00000

paralleltomo test problem

overdetermined (81088 x 65536 coefficient matrix, & = 5 - 1072)

rel.error iterations tot.time av.time
MFCGLS 1.8268e-01 17.33 0.92 0.09
ReSt NNCG 2.0133e-01 56.00 16.31 0.11
MFISTA 2.0029e-01 37.00 53.13 1.44
MRNSD 1.8506e-01 45.00 4.10 0.09
Cimmino 1.9982e-01 100.00 33.47 0.33
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(Nonnegative) LS problems Flexible Krylov subspaces

0000 0000

paralleltomo test problem

Numerical Experiments

0000000800

Poisson noise Final Remarks

00000

overdetermined (81088 x 65536 coefficient matrix, & = 5 - 1072)

rel.error iterations tot.time av.time
MFCGLS 1.8268e-01 17.33 0.92 0.09
ReSt NNCG 2.0133e-01 56.00 16.31 0.11
MFISTA 2.0029e-01 37.00 53.13 1.44
MRNSD 1.8506e-01 45.00 4.10 0.09
Cimmino 1.9982e-01 100.00 33.47 0.33

underdetermined (32580 x 65536 coefficient matrix, £ =5-1072)

rel.error iterations tot.time av.time
MFCGLS 2.3145e-01 13.00 0.15 0.07
ReSt NNCG  2.4572e-01 51.00 0.59 0.05
MFISTA 2.4634e-01 32.00 12.41 0.39
MRNSD 2.3485e-01 35.00 3.43 0.09
Cimmino 2.4715e-01 94.33 8.84 0.09
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(Nonnegative) LS problems Flexible Krylov subspaces Numerical Experiments

Poisson noise
0000 0000

O0000000e0 00000

underdetermined paralleltomo test problem

A € R65160x65536 = _ 5. 102

Relative Error History

1 —MFCGLS
—ReSt NNCG
0.8 —MFISTA |
—MRNSD
0.6\ —Cimmino

0.4r

0.2

Final Remarks
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(Nonnegative) LS problems Flexible Krylov subspaces Numerical Experiments

Poisson noise Final Remarks
0000 0000

O00000000e 00000

underdetermined paralleltomo test problem

A ¢ R65160x65536 = _ 5. 10~2, 17th iteration

exact MFCGLS MFISTA
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Incorporating Poisson noise

b = Poisson(Ax®) 4 Poisson(51) + Normal(0, o2 /)
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Incorporating Poisson noise

b = Poisson(Ax®) 4 Poisson(51) + Normal(0, o2 /)

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993]
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Incorporating Poisson noise

b = Poisson(Ax®) 4 Poisson(51) + Normal(0, o2 /)
[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993]
b — 1 = Ax® + Normal(0, diag(Ax® + 1 + 0°1)).

——
= bﬁ =: CTI
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Incorporating Poisson noise

b = Poisson(Ax®) 4 Poisson(51) + Normal(0, o2 /)

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993]
[Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

b — 1 = Ax® + Normal(0, diag(Ax® + 1 + 0°1)).
b c
= B = n
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Incorporating Poisson noise

b = Poisson(Ax®) 4 Poisson(51) + Normal(0, o2 /)

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993]
[Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

b — 1 = Ax® + Normal(0, diag(Ax® + 1 + 0°1)).
b

=G
Problem to solve:

- —1/2 2
szlg ||C77 / (bﬁ o AX)||27

by the class of MRNSD methods:
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Incorporating Poisson noise

b = Poisson(Ax®) 4 Poisson(51) + Normal(0, o2 /)

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993]
[Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

b — 1 = Ax® + Normal(0, diag(Ax® + 1 + 0°1)).
——

=: bﬂ =: CTI
Problem to solve:

; —-1/2 2
szlg ||C77 / (bﬁ o AX)||27
by the class of MRNSD methods:

> C, = diag(b + 0°1);
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Incorporating Poisson noise

b = Poisson(Ax®) 4 Poisson(51) + Normal(0, o2 /)

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993]
[Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

b — 1 = Ax® + Normal(0, diag(Ax® + 1 + 0°1)).
——

=: bﬂ =: CTI
Problem to solve:

; —-1/2 2
szlg ||C77 / (bﬁ o AX)||27
by the class of MRNSD methods:

» WMRNSD: C, =diag(b+ o?1);
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Incorporating Poisson noise

b = Poisson(Ax®) 4 Poisson(51) + Normal(0, o2 /)

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993]
[Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

b — 1 = Ax® + Normal(0, diag(Ax® + 1 + 0°1)).
b c
= B = n

Problem to solve:
- —1/2 2
szlg ||C77 / (bﬁ o AX)||27

by the class of MRNSD methods:

» WMRNSD: C, =diag(b+ 0?1);
> C7(,k) = diag(Axx + 81 + 021).

a (University of Bath) Nonnegativity by flexible Krylov October 28, 2016 24 /29



Incorporating Poisson noise

b = Poisson(Ax®) 4 Poisson(51) + Normal(0, o2 /)

[Snyder et al.. Image recovery from CCD, J. Opt. Soc. Amer. A, 1993]
[Bardsley and Nagy. Covariance-prec. meth. for NN, SIMAX, 2006]

b — 1 = Ax® + Normal(0, diag(Ax® + 1 + 0°1)).
b c
= B = n

Problem to solve:
- —1/2 2
szlg ||C77 / (bﬁ o AX)||27

by the class of MRNSD methods:

» WMRNSD: C, =diag(b+ o?1);
» KWMRNSD: C{¥ = diag(Axq + 1 + 021).
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(Nonnegative) LS problems Flexible Krylov subspaces Numerical Experiments Poisson noise Final Remarks
0000 0000 0000000000 ©®@000

Introducing CP-MFCGLS

Input: A, b, x0 >0, X, c|?,
Initialize: ré‘ =b-— Axg, 28 = AT(C,(,O))’lr(?, 28 = X(O)zg, dg = 28.

m For k=0,..., till a stopping criterion is satisfied
m For m=0,..., till myax or a,, = 0 or a stopping criterion is satisfied

m Run a FCGLS with xé‘, preconditioners X(’"), Cék), and NN:
(7o (CyN) /2 Adk)

((cyh=2/2Adk () ~1/2Adk)

Update X,f,+1 = xX + amndX.

Update r,’fqﬂ =rk — anAdX.

Compute X (™1,

o Compute ap =

O O O O o

1
() ~1/2adr)

m : S

L Jj=m....om.

o

Compute 2, = AT(CY)1rk, ..
Compute 7}, , = Xm 2k
- ((C(‘K:’) 1/2p,k
B = — U m+1
Set f (cy)~1/2Adk (1)~ 1/2Adk)
K Sk K
o Update dp 1 = Zmi1 + Zflm Bid.
B Restart with the last approximation, and update C,(,k ),
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satellite test problem, Gaussian and Poisson noise
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satellite test problem, Gaussian and Poisson noise

A ¢ R65536x65536
Gauss: o = 20, Poisson: 3 =60, €~ 1.5- 1072
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satellite test problem, Gaussian and Poisson noise

A ¢ R65536x65536
Gauss: o = 20, Poisson: 3 =60, €~ 1.5- 1072

Relative Error History

3 —CP-MFCGLS
03] —CP-MFCGLS(k)
10 7R —WMRNSD
. — KWMRNSD
107°°
1077
107°°
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(Nonnegative) LS problems Flexible Krylov subspaces

0000 0000

Numerical Experiments

0000000000

Poisson noise

[slele] o]

satellite test problem, Gaussian and Poisson noise

A € R65536x65536 = L 1 5. 102

Final Remarks

rel.error iterations tot.time av.time
CP-MFCGLS 1.2785e-01 300.00 31.65 0.08
CP-MFCGLS(k) 1.2778e-01 300.00 32.17 0.08
WMRNSD 1.8201e-01 300.00 28.34 0.09
KWMRNSD 1.3590e-01 300.00 37.19 0.12
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(Nonnegative) LS problems Flexible Krylov subspaces Numerical Experiments Poisson noise Final Remarks
0000 0000 0000000000 [Slelele] }

satellite test problem, Gaussian and Poisson noise

A € R95536x65536 =~ 1 5.1072, 100th iteration

exact blurred & noisy

VP-MFCGLS

S. Gazzola (University of Bath) Nonnegativity by flexible Krylov October 28, 2016 28 /29



Final Remarks
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Final Remarks

m Systematic and efficient way
to enforce nonnegativity within Krylov subspace methods.
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(Nonnegative) LS problems Flexible Krylov subspaces Numerical Experiments Poisson noise
0000 0000 0000000000 00000

Final Remarks

m Systematic and efficient way
to enforce nonnegativity within Krylov subspace methods.

m Embraces and improves many methods already available.
m Possible generalizations:

m box constraints;

m sparsity (?);

m other Krylov methods (FGCR...);

...
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Final Remarks

m Systematic and efficient way
to enforce nonnegativity within Krylov subspace methods.

m Embraces and improves many methods already available.
m Possible generalizations:

m box constraints;

m sparsity (?);

m other Krylov methods (FGCR...);

...

Paper available on arXiv:
S. Gazzola and Y. Wiaux.
Fast nonnegative least squares through flexible Krylov subspaces.
arXiv:1511.06269
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Final Remarks

m Systematic and efficient way
to enforce nonnegativity within Krylov subspace methods.

m Embraces and improves many methods already available.
m Possible generalizations:
m box constraints;

m sparsity (?);
m other Krylov methods (FGCR...);
LT

Paper available on arXiv:
S. Gazzola and Y. Wiaux.
Fast nonnegative least squares through flexible Krylov subspaces.
arXiv:1511.06269

Thanks for your attention!
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