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Inverse Problem

By the knowledge of some “observed” data g (i.e., the effect),

find an approximation of some model parameters f (i.e., the cause).

Given the (noisy) data g ∈ G,
find (an approximation of) the unknown f ∈ F such that

Af = g

where A : F −→ G is a known linear operator,
and F ,G are two functional (here Hilbert or Banach) spaces.

True image Blurred (noisy) image Restored image

Inverse problems are usually ill-posed, they need regularization techniques.



Solution of inverse problems by minimization

Variational approaches are very useful to solve the functional equation

Af = g .

These methods minimize the Tikhonov-type variational functional Φα

Φα(f ) = ‖Af − g‖pG + αR(f ) ,

where 1 < p < +∞ , R : F −→ [0,+∞) is a (convex and proper) func-
tional, and α > 0 is the regularization parameter.

The “data-fitting” term ‖Af − g‖pG is called residual (usually in mathe-
matics) or cost function (usually in engineering).

The “penalty” term R(f ) is often ‖f‖qF , or ‖∇f‖qF or ‖Lf‖qF , for q ≥ 1
(such as the Hölder conjugate of p) and a differential operator L which
measures the “non-regularity” of f .



Several regularization methods for ill-posed functional equations by vari-
ational approaches have been first formulated as minimization problems in
Hilbert spaces (i.e., the classical approach). Later they have been extended
to Banach spaces setting (i.e., the more recent approach).

Examples: L1 for sparse recovery or Lp, 1 < p < 2 for edge restoration.

Hilbert spaces Banach spaces
Benefits Easier computation Better restoration

(Spectral theory, of the discontinuities;
eigencomponents) Sparse solutions

Drawbacks Over-smoothness Theoretical involving
(bad localization of edges) (Convex analysis required)



Minimization of the residual
by gradient-type iterative methods

For the simple residual functional Φα(f ) = ‖Af − g‖pG , the basic mini-
mization approach is the gradient-type iteration, which reads as

fk+1 = fk − τkψα(fk, g)

where
ψα(fk, g) ≈ ∂

(
‖Af − g‖pG

)
,

i.e., ψα(fk, g) is an approximation of the (sub-)gradient of the residual func-
tional Φα at point fk, and τk > 0 is the step length.

For the least square functional Φα(f ) = 1
2‖Af − g‖

2
2 in L2 Hilbert space,

since
∂Φα(f ) = ∇Φα(f ) = A∗(Af − g)

we have the simplest iterative method, i.e., the Landweber method,

fk+1 = fk − τA∗(Afk − g)

where τ ∈ (0, 2(‖A‖2
2)
−1) is a fixed step length.



From Hilbert to Banach spaces

fk+1 = fk − τA∗(Afk − g)

Formally, A∗ is the dual operator of A, that is, the operator

A∗ : G∗ −→ F ∗ such that

g∗(Af ) = (A∗g∗)(f ) , ∀f ∈ F and ∀g∗ ∈ G∗ ,
where F ∗ and G∗ are the dual spaces of F and G.

If F and G are Hilbert spaces, then F is isometrically isomorph to F ∗ and
G is isometrically isomorph to G∗ (by virtue of Riesz Theorem), and the
operator A∗ : G∗ −→ F ∗ can be identified with A∗ : G −→ F .

However, in general Banach spaces are not isometrically isomorph to their
duals. This way, the Landweber iteration above is well defined in Hilbert
spaces (...only!)

The key point: To generalize from Hilbert to Banach spaces we have to
consider the so-called duality maps.



Minimization in Banach spaces by duality maps

A duality map is a function which allows us to associate (in a “special” way)
an element of a Banach space B with an element (or a subset of elements)
of its dual B∗ as follows:

Theorem (Asplund [1968])

Let B be a Banach space and p > 1. A duality map JB : B −→ 2B
∗

is the
sub-differential of the convex functional f defined as f (b) = 1

p‖b‖
p
B :

JB = ∂f = ∂

(
1

p
‖ · ‖pB

)
.

By chaining rule, the (sub-)differential of the residual 1
p‖Af − g‖pG , by

means of the duality map JG : G −→ 2G
∗
, is the following

∂

(
1

p
‖Af − g‖pG

)
= A∗JG(Af − g) .



Landweber iterative method in Hilbert spaces

A : F −→ G A∗ : G −→ F Φα(f ) = 1
2‖Af − g‖2

G

fk+1 = fk − τA∗(Afk − g)

Landweber iterative method in Banach spaces

A : F −→ G A∗ : G∗ −→ F ∗ Φα(f ) = 1
p‖Af − g‖pG

fk+1 = JF ∗
(
JFfk − τkA

∗JG(Afk − g)
)

Some remarks.
In the Banach space Lp, with 1 < p < +∞, we have

JLp(f ) = |f |p−1 sgn(f ) .

JLp is a non-linear, single-valued, diagonal operator, which cost O(n) ope-
rations, and does not increase the global numerical complexity O(n log n) of
shift-invariant image restoration problems solved by FFT.



Landweber iterative method in Hilbert spaces

A : F −→ G A∗ : G −→ F Φα(f ) = 1
2‖Af − g‖2

G

fk+1 = fk − τA∗(Afk − g)

Landweber iterative method in Banach spaces

A : F −→ G A∗ : G∗ −→ F ∗ Φα(f ) = 1
p‖Af − g‖pG

fk+1 = JF ∗
(
JFfk − τkA

∗JG(Afk − g)
)

Some remarks.

Numerical linear algebra –developed usually in Hilbert spaces– is still useful
in Banach spaces (preconditioning, trigonometric matrix algebras for bound-
ary conditions, . . . ). It is “inside” all our discretized setting.



Duality maps are the basic tool for generalizing classical iterative methods
for linear systems to Banach spaces: Landweber method, CG, Mann itera-
tions, Gauss-Newton Gradient type iterations (for nonlinear problems).

Basic hypotheses for the convergence (and regularization behavior): uni-
formly smooth and (uniformly) convex Banach spaces. [Schöpfer, Louis,
Hein, Scherzer, Schuster, Kazimierski, Kaltenbacher, Q. Jin, Tautenhahn,
Neubauer, Hofmann, Daubechies, De Mol, Fornasier, Tomba, E., Lenti, . . . .]

To reduce over-smoothness, these methods have been implemented in the
context of Lp Lebesgue spaces with 1 < p ≤ 2.

p >≈ 1 Low regularization Good recovery of edges and discontinuities
in imaging. Improve the sparsity.

p ≈ 2 High regularization Higher stability
Over-smoothness



A numerical evidence in Lp Lebesgue space, 1 < p ≤ 2

Landweber method (200 iterations)

True image x PSF Blurred and noisy image

Hilbert Restoration (p = 2) Banach Restoration (p = 1.5) Banach Restoration (p = 1.2)



A “new” framework: variable exponent Lebesgue spaces Lp(·)

In image restoration, often different regions of the image require different
“amount of regularization”.

Setting different levels of regularization is useful because background, low
intensity, and high intensity values require different filtering levels (see Nagy,
Pauca, Plemmons, Torgersen, J Opt Soc Am A, 1997).

The idea: the ill-posed functional equationAf = g is solved in Lp(·) Banach
spaces, namely, the variable exponent Lebesgue spaces, a special case of the
so-called Musielak-Orlicz functional spaces (first proposed in two seminal
papers in 1931 and 1959, but intensively studied just in the last 10 years).

In a variable exponent Lebesgue space, to measure a function f , instead
of a constant exponent p all over the domain, we have a pointwise variable
(i.e., a distribution) exponent 1 ≤ p(·) ≤ +∞.

This way, different regularization levels on different regions of the image to
restore can be automatically and adaptively assigned.



A sketch on variable exponent Lebesgue spaces Lp(·)

Lp(Ω) Lp(x)(Ω)

1 ≤ p ≤ ∞ p(x) : Ω → [1,∞]
p is constant p(x) is a measurable function

‖f‖p =
( ∫

Ω |f (x)|p dx
)1/p

‖f‖p(·) =
( ∫

Ω |f (x)|p(x) dx
)1/???

‖f‖∞ = ess sup |f (x)| . . .

f ∈ Lp(Ω) ⇐⇒
∫
Ω |f (x)|p dx <∞ f ∈ Lp(·)(Ω) ⇐⇒ ???

In the following, Ω∞ = {x ∈ Ω : p(x) = ∞} has zero measure.



Ω = [−5, 5] p(x) =

{
2 se − 5 ≤ x ≤ 0

3 se 0 < x ≤ 5



Ω = [−5, 5] p(x) =

{
2 se − 5 ≤ x ≤ 0

3 se 0 < x ≤ 5

f (x) = 1

|x−1|1/3
/∈Lp(·)([−5, 5])



Ω = [−5, 5] p(x) =

{
2 se − 5 ≤ x ≤ 0

3 se 0 < x ≤ 5

f (x) = 1

|x+1|1/3
∈Lp(·)([−5, 5]) f (x) = 1

|x−1|1/3
/∈Lp(·)([−5, 5])



The norm of variable exponent Lebesgue spaces

In the conventional case Lp, the norm is ‖f‖Lp =
( ∫

Ω |f (x)|pdx
)1/p

.

In Lp(·) Lebesgue spaces, the definition and computation of the norm is
not straightforward, since we have not a constant value for computing the
(“mandatory”) radical.

‖f‖
Lp(·) =

( ∫
Ω
|f (x)|p(x)dx

)1/???
.

The solution: compute first the modular (for 1 ≤ p(·) < +∞)

ρ(f ) =

∫
Ω
|f (x)|p(x)dx ,

and then obtain the (so called Luxemburg [1955]) norm by solving a 1D
minimization problem

‖f‖
Lp(·) = inf

{
λ > 0 : ρ

(f
λ

)
≤ 1

}
.



The elements of a variable exponent Lebesgue space

ρ(f ) =

∫
Ω
|f (x)|p(x)dx ,

‖f‖
Lp(·) = inf

{
λ > 0 : ρ

(f
λ

)
≤ 1

}
.

The Lebesgue space

Lp(·)(Ω) =
{
f : Ω → R | ‖f‖

Lp(·) <∞
}

is a Banach space.

In the case of a constant function exponent p(x) = p, this norm is exactly
the classical one ‖f‖p, indeed

ρ
(f
λ

)
=

∫
Ω

(|f (x)|
λ

)p
dx =

1

λp

∫
Ω
|f (x)|pdx =

1

λp
‖f‖pp

and

inf
{
λ > 0 :

1

λp
‖f‖pp ≤ 1

}
= ‖f‖p



Modulus VS Norm

In (classical) Lp, norm and modulus are “the same” apart from a p-root:

‖f‖p <∞ ⇐⇒
∫

Ω
|f (x)|p dx <∞

In Lp(·), norm and modulus are really different:

‖f‖p(·) <∞ ⇐ 6⇒ ρ(f ) <∞

Indeed, the following holds

‖f‖p(·) <∞ ⇐⇒ there exist a λ > 0 s.t. ρ
(f
λ

)
<∞

(and notice that λ can be chosen large enough . . . ).



A simple example of a strange behavior

Ω = [1,∞) f (x) ≡ 1 p(x) = x

———–

ρ(f ) =

∫ ∞

1
1x dx = ∞ BUT ‖f‖p(·) ' 1.763

Indeed ρ(f/λ) =

∫ ∞

1

(1

λ

)x
dx =

1

λ log λ
<∞, for any λ > 1



The vector case: the Lebesgue spaces of sequences lp(·) = (l
pn
n )

The unit circle of x = (x1;x2) in R2 with variable exponents p = (p1; p2).

‖x‖p ‖x‖p(·)

Inclusion if (p1, p2) ≥ (q1, q2) (as classical) No inclusion in general



Properties of variable exponent Lebesgue spaces Lp(·)

Let p− = ess inf
Ω
|p(x)| , and p+ = ess sup

Ω
|p(x)| .

If p+ = ∞ , then Lp(·)(Ω) is a “bad” (although very interesting) Banach
space, with poor geometric properties (i.e., not useful for our regularization
schemes).

If 1 < p− ≤ p+ <∞ , then Lp(·)(Ω) is a “good” Banach space, since many
properties of classical Lebesgue spaces Lp still hold.

This is the natural framework for our iterative methods in Banach spaces,
because:

• Lp(·) is uniformly smooth, uniformly convex, and reflexive,

• its dual space is well defined,
(
Lp(·)

)∗
' Lq(·), where 1

p(x)
+ 1
q(x)

= 1 ,

• we can define its duality map.



The duality map of the variable exponent Lebesgue space

By extending the duality maps, we can define into Lp(·) all the iterative
methods developed in Lp (Landweber, Steepest descent, CG, Mann iter.).

For any constant 1 < r < +∞, we recall that the duality map, that is, the
(sub-)differential of the functional 1

r‖f‖
r
Lp , in the classical Banach space Lp,

with constant 1 < p < +∞, is defined as follows(
JLp(f )

)
(x) =

|f (x)|p−1 sgn(f (x))

‖f‖p−rp

.

By generalizing a result of P. Matei [2012], we have that the corresponding
duality map in variable exponent Lebesgue space is defined as follows(

J
Lp(·)(f )

)
(x) =

1∫
Ω
p(x) |f (x)|p(x)

‖f‖p(x)
p(·)

dx

p(x) |f (x)|p(x)−1 sgn(f (x))

‖f‖p(x)−r
p(·)

,

where any product and any ratio have to be considered as pointwise.



The adaptive algorithm in variable exponent Lebesgue spaces

It is a numerical evidence that, in Lp image deblurring,

• dealing with small 1 ≈ p << 2 improves sparsity and allows a better
restoration of the edges of the images and of the zero-background,

• dealing with p ≈ 2 (even p > 2), allows a better restoration of the regions
of pixels with the highest intensities.

The idea: to use a scaled into [1, 2] version of the (re-)blurred data g as
distribution of the exponent p(·) for the variable exponent Lebesgue spaces

Lp(·) where computing the solution. Example (linear interpolation):

p(·) = 1 + [Ag(·)−min(Ag)]/[max(Ag)−min(Ag)]

The Landweber (i.e., fixed point) iterative scheme in this Lp(·) Banach
space can be modified as adaptive iteration algorithm, by recomputing, after
each fixed number of iterations, the exponent distribution pk(·) by means of
the k-th restored image fk (instead of the first re-blurred data Ag), that is

pk(·) = 1 + [fk(·)−min(fk)]/[max(fk)−min(fk)]



The conjugate gradient method in Lp(·) for image restoration

Let p(·) = 1 + [Ag(·)−min(Ag)]/[max(Ag)−min(Ag)]

ρ∗0 = −A∗JLp(·)r (Af0 − g)

For k = 1, 2, 3, . . .

αk = arg minα
1
r‖A(fk + αρk)− g‖r

Lp(·)

f∗k+1 = f∗k + αkρ
∗
k fk+1 = J

(Lp(·))∗

s′ (f∗k+1)

βk+1 = −γ
‖Afk+1−g‖r

Lp(·)
‖Afk−g‖r

Lp(·)
withγ < 1/2

ρ∗k+1 = −A∗JLp(·)r (Afk+1 − g) + βk+1ρ
∗
k

(and recompute p(·) = 1 + [fk(·)−min(fk)]/[max(fk)−min(fk)]

each m iterations by using the last iteration fk ).



Numerical results



True image Point Spread Function Blurred image (noise = 4.7%)



True image Blurred (noise = 4.7%) p = 2 (0.2692)

p = 1.3 (0.2681) p = 1.3− 1.6 (0.2473) 1.3− 1.6 and irreg. (0.2307)



True image Point Spread Function Blurred image (noise = 4.7%)



True image CG p(·) (it. 150; rre: 0.3569)

CG p = 2 (it. 45; rre: 0.3557) Landw. p(·) (it. 150; rre: 0.3766)



Conclusions

• Iterative methods in variable Lebesgue spaces seems to be promising for
implementing adaptive “regularization”.

• The framework is new (previously only used in the penalty term as ”weighted

total variation”
∫
|∇(f )|p(·dx, as proposed in [1997 by T. Chan et al]).

• Theoretical convergence is under analysis.

Thank you for your attention.
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