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Introduction

Image restoration as inverse problem

The within-channel blurring process of a digital RGB color image can be
formulated as a 3 Fredholm integral equation of the first kind which have
the following classic form :

g (k)(x , y) =
∫ ∫

Ω
K (k)(x , y , s, t)f (k)(s, t)dsdt, k ∈ {r , g , b} (1)

where
f (k) represents the true k channel,
g (k) the blurred k channel,
K (k) is a given Point Spread Function (PSF).
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Introduction

Linear discrete ill-posed problems

Assuming that the blurring is spatially invariant, equations (1) can be
discretized to form three independent deblurring problems

Axr = br , Axg = bg and Axb = bb (2)

or, using Kronecker product notation,

(I3 ⊗ A)x = b, (3)

where,

b =

 br
bg
bb

 x =

 xr
xg
xb


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Introduction

multichannel images as a linear system of equation with multiple
right hand sides

The goal is to model the blurring as a linear system of equations with
multiple right-hand sides

AX = B (4)

where
B =

[
br bg bb

]
X =

[
xr xg xb

]

Generally, the block linear system of is contaminated by an error E ,

AX = B, B = B̂ + E

equations
Intuitively, when dealing with the problem (4), a simple solution will
be X = A−1B, provided that A−1 exists
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Tikhonov Regularization

We use Tikhonov regularization, and solve nonlinear least squares (NLLS)
problem :

Xµ = argmin
X

(
‖AX − B‖2F + µ−1‖X‖2F

)
. (5)

The normal equations associated with (5) are given by(
AT A + µ−1I

)
X = AT B, (6)

It follows that (6) has the unique solution

Xµ =
(
AT A + µ−1I

)−1
AT B. (7)

Goals : Use a block iterative scheme to choose µ and the corresponding
regularized solution Xµ
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

Parameter choice method : the discrepany principle

Let Dµ be the discrepancy principle defined as follows.

Dµ := B − AXµ. (8)

In this work, we assume that the quantity

ε = ||E ||F , (9)

is available. That is, the regularization parameter µ is commonly chosen so
that

||Dµ||F = ηε, (10)

for some user-specified η > 1 and compute an approximation of Xµ

7/32 (M. El Guide) A block Lanczos algorithm for colour images (NL2A-CIRM 2016) 7 / 32



Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

Parameter choice method : the discrepany principle

Introduce the function

φ(µ) := ||B − AXµ||2F . (11)

By substituting the expression of Xµ in (11) φ(µ) can be expressed as

φ(µ) = tr
(
BT (µAAT + I)−2B

)
, (12)

the expression φ(µ) can be now expressed as tr(S), where

S := BT fµ
(
AAT

)
B. (13)

where fµ(t) := (µt + 1)−2. We now write S as a Riemann-Stieltjes integral

8/32 (M. El Guide) A block Lanczos algorithm for colour images (NL2A-CIRM 2016) 8 / 32



Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

Introduce the following spectral factorization

AAT = W ΛW T ,W ∈ Rn×n,W T W = In,Λ = diag[λ1, ..., λn],

with λ1 ≤ ... ≤ λn. Defining Γ = [Γ1, ..., Γn] = BT W ∈ Rk×n, where
Γi ∈ Rk , it follows that

S = Γfµ(Λ)ΓT =
n∑

i=1
fµ(λi )Γi ΓT

i =
∫

fµ(λ)dΓ(λ) := Ifµ, (14)

where Γ : R→ Rk×k is discrete matrix distribution with a jump of size
Γi ΓT

i at each eigenvalue λi of AAT .
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

We define the following inner product induced by the measure Γ(λ),

< p, q >=
∫

p(λ)dΓ(λ)q(λ)T ,

and let pi , i = 1, 2, ... be a sequence of matrix polynomials orthonormal
with respect to this inner product, i.e.,

〈pi , pj〉 = δij Ik ,

The sequence of matrix orthonormal polynomials pi satisfy a block
three-term recurrence of the form

λpj−1(λ) = pj(λ)Γj+pj−1(λ)Ωj+pj−2(λ)ΓT
j−1, p0(λ) := Ik , p−1(λ) := 0.
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

it follows that
λPl (λ) = Pl (λ)Jkl + Pl (λ)ΓlET

l , (15)

where
Pl (λ) := [p0(λ), ..., pl (λ)] ∈ Rk×kl , Ei := [e(i−1)k+1, ..., eik ] and

Jkl :=


Ω1 ΓT

1
Γ1 Ω2 ΓT

2
. . . . . . . . .

Γl−2 Ωl−1 ΓT
l−1

Γl−1 Ωl

 ∈ Rkl×kl .
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

The matrix Jkl is computed via a partial block Lanczos tridiagonalization
of the matrix AAT without explicit knowledge of the measure dΓ.
Let B = QR be the QR factorization of B. We set P1 = Q and then use
the following algorithm

1 Let P1 ∈ Rn×k be an initial matrix satisfying PT
1 P1 = Ik

2 Set P0 := 0 ∈ Rn×k , Γ0 = 0 ∈ Rk×k

3 for j = 1, 2, . . . , l
1 Ωj = PT

j AAT Pj
2 Rj = AAT Pj − PjΩj − Pj−1ΓT

j−1
3 Pj+1Γj = Rj (QR factorization), Pj+1 is orthogonal and Γj is upper

triangular
4 endfor
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

If the algorithm does not break down before step l , then it is easy to verify
the following relation

AAT P(k)
l = P(k)

l Jkl + Pl+1ΓlET
l , (16)

where P(k)
l = [P1, ...,Pl ], and Jkl is the matrix from (15). Moreover, the

vector -columns P(k)
l form an orthonormal basis of the block Krylov

subspace

Kl (AAT ,P1) = Range[P1,AAT P1, (AAT )2P1, ..., (AAT )l−1P1].
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

We now want to approximate Ifµ =
∫

fµ(λ)dΓ(λ) by using block Gauss
quadrature and block anti-Gauss quadrature. The most general quadrature
formula is of the form

Gl fµ =
l∑

i=1
Wi fµ(Ti )W T

i , (17)

By diagonalizing each Ti , we can obtain the following simpler formula

Gl fµ = ET
1 fµ(Jkl )E1, (18)

whose remainder formula is given by the following k × k matrix

Ifµ − Gl fµ = f (2l)
µ (η)
(2l)!

∫
s(λ)dΓ(λ), (19)
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

The idea of block anti-Gauss quadrature rule is to construct a
quadrature rule whose error is equal but of opposite sign to the error
of block Gauss rule
The (l + 1)-block anti-Gauss quadrature rule Hl+1fµ is then
characterized by

(I −Hl+1)f = −(I − Gl )f , f ∈ P2l+1. (20)

which also implies that

Hl+1f = (2I − Gl )f , f ∈ P2l+1.

We can demonstrate as above that the (l + 1)-block anti-Gauss
quadrature rules can be expressed as

Hl+1fµ = ET
1 fµ(J̃k(l+1))E1 (21)
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

where,

J̃k(l+1) :=


Ω̃1 Γ̃T

1
Γ̃1 Ω̃2 Γ̃T

2
. . . . . . . . .

Γ̃l−1 Ω̃l Γ̃T
l

Γ̃l Ω̃l+1

 ∈ Rk(l+1)×k(l+1),

with,

Ω̃i = Ωi , 1 ≤ i ≤ l
Γ̃i = Γi , 1 ≤ i ≤ l − 1
Γ̃l =

√
2Γl ,

Ω̃l+1 = Ωl+1;

C. Fenu, D. Martin, L. Reichel, and G. Rodriguez, Block
Gauss and anti-Gauss quadrature with application to networks,, SIAM
J. Matrix Anal. Appl., 34 (2013), pp. 1655-1684
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

We recall that determining the regularization parameter µε can be
achieved by solving the following nonlinear equation,

φ(µ) = η2ε2, (22)

By using block Gauss and anti-Gauss quadrature, φ(µ) can be
approximated by φl (µ) = tr(L2l+1fµ),

L2l+1fµ := 1
2(Gl fµ +Hl+1fµ), (23)

for l small
Thus, instead of solving (22), we solve following small problem

φl (µ) = η2ε2 (24)
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization

For each l , approximations of [Ifµ]ij are given by [Gl fµ]ij and
[Hl+1fµ]ij , 1 ≤ i , j ≤ k.
The purpose of our proposed numerical method is to keep the number
of block Lanczos algorithm steps l small.
In order for L2l+1fµ to be a good approximation of Ifµ, the following
stopping criteria is used,

El ,µ := 1
2‖Gl fµ − Hl+1fµ‖max < τ (25)

where τ is an absolute tolerance and ‖B‖max = max1≤i ,j≤k |Bij |
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization Computation of the regularized solution

We assume that for some l , the above stopping criteria is satisfied for
µ = µ

(p)
l

We now want to solve the normal equation

(AT A + µ
(p)
l I)X = AT B,

Let B = QR be the QR factorization of B. We want to compute a
sequence of approximations solutions

Xl = Q(k)
l Yl , l = 1, 2, ... (26)

where Q(k)
l is the orthonormal matrix defined in the following

decompositions

AT P(k)
l = Q(k)

l RT
kl (27)

AQ(k)
l = P(k)

l Rkl + FkET
k , (28)

where P(k)
l ∈ Rn×lk , Q(k)

l = [Q1, ...,Ql ] ∈ Rn×lk ,
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization Computation of the regularized solution

P(k)T

l P(k)
l = Q(k)T

l Q(k)
l = Ilk . We refer to Fk ∈ Rn×k as the residual

matrix. It satisfies
P(k)T

l Fk = 0.

The matrix

Rkl :=



S1 L2
S2 L2

S3
. . .
. . . Ll

Sl


∈ Rkl×kl , (29)

is upper triangular
We refer to this decompositions as a partial block Lanczos
bidiagonalization of A with initial matrix P1 = Q
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization Computation of the regularized solution

The approximate solution Xl is then determined by the following Galerkin
equations

Q(k)T

l (AT A + µ
(p)
l I)Q(k)

l Yl = Q(k)T

l AT B,

= Q(k)T

l AT P1R,

= Q(k)T

l Q1S1R,
= E1S1R.

We have

Q(k)T

l (AT A + µ
(p)
l I)Q(k)

l Yl = (RT
kl Rkl + ElLl+1LT

l+1ET
l + µ

(p)
l Ikl )Yl

We then compute the solution Yl by solving

min
Yl

∥∥∥∥∥
[

R̄kl

µ
(p)1/2

l Ikl

]
Yl − µ

(p)−1/2

l

[
0

S1R

]∥∥∥∥∥
2

F
, (30)

where R̄kl =
[
Rkl , LT

l+1ET
l

]
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Block Lanczos algorithm (BLA) and block Gauss quadrature rules
(BGR) for Tikhonov regularization Computation of the regularized solution

We summarize our approach by the following the algorithm,
1 Input : A, B, ε, τ , η, µ : initial guess for the zero-finding method
2 Compute B = QR and set P1 := Q ∈ Rn×k ,
3 Fro l = 1, 2, ... until El ,µ < τ

1 Determine the matrix with orthonormal columns Q(k)
l and the

block-bidiagonal matrix Rkl by the block Lanczos bidiagonalization
2 Update the value µ by solving φl (µ) = η2ε2 with the zero-finding

method
4 Determine Yl by solving

min
Yl

∥∥∥∥∥
[

R̄kl

µ
(p)1/2

l Ikl

]
Yl − µ

(p)−1/2

l

[
0

S1R

]∥∥∥∥∥
2

F
,

and then Xl by
Xl = Q(k)

l Yl
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Numerical results

Example 1 : The blurring matrix A is given by

A = (2πσ2)−1A1 ⊗ A2

where A1 = A2 = [aij ] and [aij ] is a Toeplitz matrix given by

aij =


1

σ
√

(2π)
exp

(
− (i−j)2

2σ2

)
, |i − j | ≤ r ,

0 otherwise

We set r = 8 and σ = 2. We then consider a 1% noise level. We
construct the corrupted image, in block form, as

B = AX + E

.
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Numerical results

Original 256× 256× 3 fruits image and image contaminated by 1% noise
and Gaussian blur.
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Numerical results

Restoration by BLA with η = 2 and τ = 10−2 determined by 18 block
Lanczos steps

The computed optimal value µ−1 = 1.05× 10−2

The signal to noise ratio (SNR) is given by SNR(Xµ) = 27.50
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Numerical results
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Numerical results
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Numerical results

Example 2 : Original 512× 512× 3 peppers image and image
contaminated by 30% noise and Gaussian blur(σ = 4, r = 4).
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Numerical results

Restoration by BLA with η = 2 and τ = 10−3 determined by 3 block
Lanczos steps

The computed optimal value µ−1 = 2.43× 10−2

The signal to noise ratio (SNR) is given by SNR(Xµ) = 17.8345
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Numerical results

We now compare our method with solving the linear least squares
problem using the SVD of A, where the latter matrix is given as a
Kronecker product.
For large problems, the SVD of A can be obtained from the SVD of
the Kronecker factors A1 and A2

If A1 = U1Σ1V T
1 and A2 = U2Σ2V T

2 , then

A = A1⊗A2 = (U1Σ1V T
1 )⊗(U2Σ2V T

2 ) = (U1⊗U2)(Σ1⊗Σ2)(V1⊗V2)T

In order to find a good regularization parameter, Newton’s method is
utilized to find the solution µ of ‖Axµ − b‖2 = ηε.
We refer to the method utilizing the SVD decomposition of the
Kronecker factors for computing the regularization parameter and the
corresponding regularized solution as KSVD
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Numerical results

Table: Results for Example 2.

Method µ−1 PSNR CPU time(sec)
BLA 2.43 × 10−2 17.83 0.82

KSVD 2.04 × 10−2 16.71 2.12
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Numerical results

Concluding remarks

We presented in this work a method for inexpensively compute a
suitable ragularization parameter for large ill-posed linear system of
multiple right hand sides
The proposed method is based on block Lanczos algorithm and block
Gauss quadrature
We applied the method for the restoration of a real digital noisy and
blurred image by using the Tikhonov regularization
The numerical tests show that the method is effective
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