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Network model

Network analysis is ubiquitous in social sciences, genomics, ecology,. . .

Objectives :
m Graph Visualization
m Backbone estimation

m Node clustering

Approach

m The modeling of real networks
as random graphs.

m Model-based statistical analysis.

East-river trophic network [Yoon et al.(04)]
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Graphon Model
Towards Graphon Estimation

dp and 02 Estimation of sparse Graphons
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Graph Notation

A (simple, undirected graph) G = (£, V) consists of
m a set of vertices V ={1,...n}
m aset of edges E C {{i,5}:4,7 € V and i # j}

1 2
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Graph Notation

A (simple, undirected graph) G = (£, V) consists of
m a set of vertices V ={1,...n}
m aset of edges E C {{i,5}:4,7 € V and i # j}

1 2
010 0 1
3 1 01 1 0
A=|o0o 1 0 1 0
01 1 0 1
3 1 100 1 0

The corresponding adjacency matrix is denoted A = (A; ;) € {0,1}"*™, where
Ajj=1e(Gj5)€E
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Stochastic Block-Model (SBM)
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A mixture model for random graphs : K classes.

SBM popular for clustering applications : generate graphs with a community structure
Latent labels : each node 7 belongs to class k with probability my :
{&}i D, & ~ M(1;7)
where ™ = (71,...,7TK).
Observed edges : (A;;) are conditionally independent given the &;'s :
(Aijl&i =k, & =1) ~ B(Qg,)

The symmetric K x K matrix Q is called the connectivity matrix.

(Basic approximation unit for more complex models)
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Latent space models

Definition
m &; = unobserved position of node i in a ° °
latent space. e.g. & ~ U([0,1]2) o ®

[

m Edges A;; independent given §;, °
[
PlA;; = 1] =~(]|& — &ll2 ®
[ J

with v : RT — [0, 1].
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W-random Graph Model

SBM do not allow to analyze the fine structure of extremely large networks
~» Non-parametric models

A graphon is a triplet (Q, 7, W) where :

m (Q,7) is a Borel Probability space
m W:QxQ+— [0,1] measurable
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W-random Graph Model

SBM do not allow to analyze the fine structure of extremely large networks
~> Non-parametric models

A graphon is a triplet (Q, 7, W) where :
m (Q,7) is a Borel Probability space
m W:QxQ+— [0,1] measurable

W-Random graph

W-random graph model of size n associated to (2, 7, W) :
m &= (&1,...,&n) are sampled on Q according to .
m For each i < j, A;; = 1 with probability W (&;,&;).

Notation : P}, xorresponding distribution (Pyy := Pgy)
©®g defined by ©;; = W (&;,&;) for i # j

Remarks
m E[A|¢] = ©g ~ cond. to &, inhomogeneous random graph with Matrix ©g.
m If W is a k step-function, A SBM with k blocks
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Universality of W-random graph model.
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Let A : N x N — {0,1} symmetric = the adjacency function of an infinite graph
For 7 permutation, A" defined by A7[i, j] = A[r(3), 7(5)].

Joint Exchangeability
The distribution of A is jointly exchangeable if

A~A"T for any permutation .

Theorem ( )

If the distribution of A is jointly exchangeable, then there exists ju such that

(Q,m, W) ~pu

[A[(Q, 7, W)] ~ Py

~~ W-random graph distribution correspond to extremal points of the set of jointly
exchangeable distributions.



Sparse Graphons

For W-random graph, Ey [#E] < n? ~ Realized graphs are dense

Sparse Graphon Models
(2,7, W, pn) with pp, =n—c0 0.
Sample ¢ according to 7
For each i < j, draw an edge between i and j with probability p, W (&;,&;)

Other methods :
m L, graphon (e.g Borgs et al.('15))
m Graphex (e.g.Veitch & Roy('16))
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Towards Graphon Estimation
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Given an observation A, goal = infering the graphon (2,7, W) in some sense...

Caveats :
m l|dentifiability
m Loss functions

m Approximation class
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Objective

Given an observation A, goal = infering the graphon (2,7, W) in some sense...

Caveats :
m l|dentifiability
m Loss functions

m Approximation class

Lemma

(92,7, W) graphon

7: (Y, 7") — (Q,7) measure-preserving

WT be such that W7 (z,y) := W(7(x),7(y)). Then Py = Pyyr.

Two Consequences :
m Triplet (Q, 7, W) is not identifiable

m Sufficient to consider graphons on ([0, 1], ) [but problematic]
~» W : space of graphons on ([0, 1], \).
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|dentifiability (fd)

Even Restricting to ([0,1], \), the topology of a network invariant wrt node labeling
change :

Weak isomorphism

Two graphons U and W are weakly isomorphic if there exist measure preserving
maps &, ¥ : [0,1] —= [0, 1] such that U? = W¥ almost everywhere.
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|dentifiability (fd)
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Even Restricting to ([0,1], \), the topology of a network invariant wrt node labeling
change :

Weak isomorphism

Two graphons U and W are weakly isomorphic if there exist measure preserving
maps &, ¥ : [0,1] —= [0, 1] such that U? = W¥ almost everywhere.

Proposition ( )
Py = Pyw if and only if U and W are weakly isomorphic.

~~ one can only perform inference in W (equivalence classes of W wrt weak
isomorphism)




Metrics/Loss functions on W

Distance betw. graphs ~» Distance betw.graphons ~~ Distance bet. equivalence
classes

Distance on Graphs :

[|A =Bz := %, />2:;(Aij — Bij;)? ~» Frobenius distance

14 = Bllg := 5z jmax Ay — By

~~» Cut Distance

>
iesjer
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Metrics/Loss functions on W
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Distance betw. graphs ~» Distance betw.graphons ~~ Distance bet. equivalence
classes

Distance on Graphs :

[|A =Bz := %, />2:;(Aij — Bij;)? ~» Frobenius distance

1 .
A =Bl|g:= ﬁsg}?[cn] A;j; — B;j| ~» Cut Distance

>
iesjer

Norms on Graphons :
Wll2 := [fjg,1)2 W2(x,y)dzdy]'/? ~ Frobenius norm

[Wlg:= sup ‘fSXTW(z,y)dxdy’ ~+ Cut norm (cornerstone of graph limits)
S,7C[0,1]
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Distance betw. graphs ~» Distance betw.graphons ~~ Distance bet. equivalence
classes

Distance on Graphs :

[|A =Bz := %, />2:;(Aij — Bij;)? ~» Frobenius distance

1 .
A =Bl|g:= ﬁsg‘l?[(n] A;j; — B;j| ~» Cut Distance

i€S,j€T
Norms on Graphons :

Wll2 := [fjg,1)2 W2(x,y)dzdy]'/? ~ Frobenius norm
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Distances on W.
M : Measure-preserving bijections 7 : [0, 1] — [0, 1]
I distance §2 (W, W1) := 1€n/{A||W — W72

T

Cut distance og(W, W1) := len.{AHW -WTlo
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14/24

Distance betw. graphs ~» Distance betw.graphons ~~ Distance bet. equivalence
classes

Distance on Graphs :

[|A =Bz := %, />2:;(Aij — Bij;)? ~» Frobenius distance

1 .
A =Bl|g:= ﬁsg‘l?[(n] A;j; — B;j| ~» Cut Distance

>
i€S,j€T
Norms on Graphons :
Wll2 := [fjg,1)2 W2(x,y)dzdy]'/? ~ Frobenius norm
[Wlg:= sup ‘fSXTW(z,y)dxdy’ ~+ Cut norm (cornerstone of graph limits)
S,7C[0,1]

Distances on W.
M : Measure-preserving bijections 7 : [0, 1] — [0, 1]
I distance §2 (W, W1) := 1€n/{A||W — W72

T

Cut distance og(W, W1) := len.{AHW -WTlo

These metrics are not equivalent : (W, W) < 62(W, ﬁ/\)



Regularity Lemma and approximation by SBMs

Proposition ( )

For any W € W and any k, there exists a k-step graphon Wy, such that

1
W —W, <
W = Wilo  ~rs

This rate is universal !

00 02 04 06 08 1.0
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Regularity Lemma and approximation by SBMs
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For any W € W and any k, there exists a k-step graphon Wy, such that
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Regularity Lemma and approximation by SBMs

Proposition ( )

For any W € W and any k, there exists a k-step graphon Wy, such that

1

_ < -
W —Willo S 0
This rate is universal !

SBM as basic stones for approximating graphons

Obviously false for d2 : similar to histograms in classical Nonparametric Estimation

00 02 04 06 08 10
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dp and 02 Estimation of sparse Graphons
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Estimating f() — /)17,‘/1/70

Wy — O — A

General Scheme :
Estimating the matrix ©¢ := E[A[¢] by ©.
From matrix to graphon. Given ®, define the empirical graphon f@ as the n
piecewise constant function :

f@(a:ay):@[nx'\,]'ny'\a z,y € [0,1]

00 02 04 06 08 10

00 02 04 06 08 10
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Estimating fo = p, Wy

Wy — O — A

General Scheme :
Estimating the matrix ©¢ := E[A[¢] by ©.
From matrix to graphon. Given ®, define the empirical graphon f@ as the n
piecewise constant function :

f@(xay)zefnx'\,]’ny'\a z,y € [0,1]

00 02 04 06 08 10

00 02 04 06 08 10

For any estimator © and any norm N,

E [6N(fc:)»f0)] <E [||@ = QOHN] +E [51\7 (f@oyfo)]
S

agnostic error
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m Raw data: A

m Restricted Least Squares estimator : (RLS) Wolfe & Olhlede ('13), Borgs et
al.('15), Klopp, Tsybakov, V.('17), Gao et al.('17)

©, € arg A - ®3,

min
©eSBM(k): ||®]cc<r

where r € (0,1) and SBM(k) space of k block-constant matrix.
(@; is not polynomial-time computable)

m Singular Value Thresholding : ©, e.g. Chatterjee('12), Klopp & V.('17)

_ o
Ori= | % s A (A (AT
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Probability Matrix Estimation in ||.||2

Theorem ( )

For any ®q such that ||@q|lcc <,

logk k2
E[18} - @0l < o0 - ol +r (<E5+ 1)

@ESBM(M

(Minimax optimal over SBM (k) N Boo (7)) (Gao et al. ('15))

Two terms :

2
[ % ~ parametric rate (k(k 4+ 1)/2 parameter to estimate)

- nlogg(k)
n

~> clustering rate (of order k™ possible partitions)
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Probability Matrix Estimation in ||.||2

Theorem ( )

For any ®q such that ||@q|lcc <,

_’_7

n2

logk k2 )
n

E (16} - ©0l3] 5 €0 - 6l + - (

@ESBM(M

(Minimax optimal over SBM (k) N Boo (7)) (Gao et al. ('15))

Two terms :

2 : :
m 55 ~» parametric rate (k(k + 1)/2 parameter to estimate)

- nlogg(k)
n

~> clustering rate (of order k™ possible partitions)

SVT estimator

Fix A = ¢y/n||®0¢||c. For all &,

5 : 1€0]lock
E[|©x — ©olf] 5  min 160 — O3 + ===,

Loss of order /\ — wrt RLS estimators

k
log(k)
Best known polynomial time bound
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99 Graphon Estimation for k-step functions
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WIk] : Collection of k-Step function graphons
Here fo = pnWo with W € WIk]

Proposition

B [62 (Fou. o)] 5 /2

If pn < r then for RLS

2[5 (g )] £ m (524

log(k)

n

)+

2
n



99 Graphon Estimation for k-step functions
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WIk] : Collection of k-Step function graphons
Here fo = pnWo with W € WIk]

E [ (Fo. fo)] < A2y =

If pn < r then for RLS

81 rag )] e (4 28) 1 2 B
E [52 (fc:)kyf())] < pn% +pi\/§

For SVT

(RLS is Minimax optimal (up to possible log(k) term)) Klopp et al. ('17)



99 Graphon Estimation for k-step functions
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WIk] : Collection of k-Step function graphons
Here fo = pnWo with W € WIk]

E[5? (oo f0)] < p2/

If pn < r then for RLS

= op )] 5 (35 252
E [52 (fc:)kyfo)] < pn% +pi\/§

(RLS is Minimax optimal (up to possible log(k) term)) Klopp et al. ('17)
(i) Weakly sparse graphs : = the agnostic error dominates.

(if) Moderately sparse graphs : = the Probability matrix estimation error
dominates

For SVT

(iii) Highly sparse graphs : The null estimator f = 0 is of smaller order




Probability Matrix Estimation in cut norm

For any probability matrix ®¢ such that ||Gg|lcc > 1/n,

B[|A - ©ol] < 12/ 190l

m Valid for all matrices ®¢. Optimal convergence rate (even for simple classes
such as two-block matrices)

m More refined estimators (SVT) do not decrease the performances but RLS may
be biased.
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Graphon Estimation in Cut distance

Theorem ((Consequence of Szemeredi's Lemma) )

For all Wy with p,, = 1, one has whp

1

(Ja] (JZA,WO) S m .

Valid for all graphons!

Theorem ( )

For all Wy € W[k] and py,, > 0, we have

EWD [JD (fAJo)] < prn min ( nloz lolg ) \/PT

= Similar bound for the SVT estimator féx

m This convergence rate is optimal
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Graphon Estimation in Cut distance

Theorem ((Consequence of Szemeredi's Lemma) )

For all Wy with p,, = 1, one has whp

1

(Ja] (JZA,WO) S m .

Valid for all graphons!

Theorem ( )

For all Wy € W[k] and py,, > 0, we have

EWD [JD (fAJO)] < prn min ( TLIOI; lolg ) \/PT

= Similar bound for the SVT estimator féx

m This convergence rate is optimal

(i) Weakly sparse graphs Agnostic error dominates.

(if) Moderately sparse graphs Probability Matrix Estimation error dominates.
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Discussion
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Non-parametric viewpoint on network analysis

Identifiability Caveats

Importance of the metric choice

Good behavior of universal Singular Value Thresholding estimator.
Computational barriers for estimation in d2 ?

Less results for L, graphons (Borgs et al.’16) and graphex

Incorporating some geometry into estimation
~ Functional Estimation (e.g. Issartel'17+)



Thank You!
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