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Motivation

X gene expression profile of each patient
Y survival information of each patient
n = 102 ∼ 104

p = 2× 104

Goal: learn to predict Y from X
But... where does X come from?



From raw data to X

Between-sample variability: batch effect, drift over time, ...
Typical pre-processing: Quantile normalization (per sample)
Only the relative ordering of features within each sample is used



Learning on the symmetric group

The symmetric group Sp is the set of permutations of {1, . . . ,p}
How to estimate Y = f (X ) where X ∈ Sp?



Outline

1 Supervised quantile normalization

2 The Kendall and Mallows kernels

3 Conclusion
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Standard full quantile normalization

Typically followed by a predictive model f (X ) on the normalized data



How to choose a "good" target distribution?



Notations

x1, . . . , xn ∈ Rp a set of p-dimensional samples

f ∈ Rp a non-decreasing target distribution (CDF)

For x ∈ Rp, let Φf (x) ∈ Rp be the data after QN with target
distribution f



From QN to supervised QN (SUQUAN)

Standard approaches: learn model after QN preprocessing:
1 Fix f arbitrarily
2 QN all samples to get Φf (x1), . . . ,Φf (xn)

3 Learn a generalized linear model (w ,b) on normalized data:

min
w ,b

{
1
n

n∑

i=1

`i

(
w>Φf (xi) + b

)
+ λΩ(w)

}

SUQUAN: jointly learn f and (w ,b):

min
w ,b,f

{
1
n

n∑

i=1

`i

(
w>Φf (xi) + b

)
+ λΩ(w) + γΩ2(f )

}



SUQAN as matrix regression (1/2)

For x ∈ Rp, let Πx ∈ Rp×p the permutation matrix of x ’s entries:

[Πx ]ij = 1
(
xj is the i-th smallest feature

)

Quantile normalized x with target distribution f is:

Φf (x) = Πx f

Example:

x =




4.5
1.2

10.1
8.9


 Πx =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 f =




0
1
3
4




Φf (x) = Πx f =




1
0
4
3






SUQAN as matrix regression (2/2)

SUQUAN solves

min
w ,b,f

{
1
n

n∑

i=1

`i

(
w>Φf (xi) + b

)
+ λΩ(w) + γΩ2(f )

}

= min
w ,b,f

{
1
n

n∑

i=1

`
(

w>Πxi f + b
)

+ λΩ(w) + γΩ2(f )

}

= min
w ,b,f

{
1
n

n∑

i=1

`
(
< wf>,Πxi >F +b

)
+ λΩ(w) + γΩ2(f )

}

A particular rank-1 matrix optimization, x is replaced by Πx

Non-convex
Local optimum found by alternatively optimizing f and w



Constraints on f

Ridge

F0 =

{
f ∈ Rp :

1
p

p∑

i=1

f 2
i ≤ 1

}
.

Non-decreasing

FBND = F0 ∩ I0 , where I0 = {f ∈ Rp : f1 ≤ f2 ≤ . . . ≤ fp}

Non-decreasing and smooth

FSPAV =



f ∈ I0 :

p−1∑

j=1

(fj+1 − fj)2 ≤ 1



 .



SUQUAN-BND and SUQUAN-PAVA

5.2 SUQUAN-BND and SUQUAN-SPAV
We now focus on approximate algorithms to solve (8) in the case where F = FBND or F = FSPAV . Using
the biconvexity of (8) in w and f , we propose an alternate optimisation scheme in w and f . Algorithm 2
summarises the procedure. Starting from an initial non-decreasing target quantile finit 2 I0, it outputs a
new target quantile f obtained by minimising once (8) in w for f = finit fixed, then minimising in f for w
fixed. Each alternative optimisation is particularly simple and efficient. For a given f , the optimisation in
(w, b) amounts to solving a standard linear model optimisation over the samples (⇧x1

f, . . . ,⇧xn
f). For a

given w, the optimisation in f differs according to the regularisation type. With FBND, the optimisation
in f is an isotonic optimisation problem (because of the constraints in FBND that entries in f should be
non-decreasing) involving the samples

�
⇧>

x1
w, . . . ,⇧>

xn
w
�
, which we solve by accelerated proximal gradient

optimisation, borrowing the pool adjacent violators algorithm (PAVA, [2]) as proximal operator to project
onto the set of monotonically increasing vectors in O(p). With FSPAV, this is a smoothed isotonic optimisation
problem via `2 regularisation. Again, we solve this problem by accelerated proximal gradient optimisation
but this time borrowing the Smoothed Pool Adjacent Violators (SPAV, [28]) as proximal operator which
costs O(p2) operations; in this case we solve a penalised version (as opposed to a constrained version) of the
problem, inducing a second regularisation parameter �. Interestingly, the computation of each matrix-vector
products ⇧xi

f and ⇧>
xi

w before each alternative optimisation is just an O(p) operation, after the sample
xi has been sorted once at the first iteration in O(p ln(p)). Indeed, for a given x, if we note order(x) the
permutation which rearranges the entries of x in increasing order, and rank(x) the ranks of the entries of x,
then we simply have (⇧xf)j = frank(x)j

and (⇧>
x w)j = worder(x)j

, for j = 1, . . . , p, which we simply denote
as ⇧xf = f [rank(x)] and ⇧>

x w = w[order(x)] in Algorithm 2. Note that the procedure can be iterated to
produce a sequence of target quantiles although we found in our experiments below that the performance did
not change significantly after the first iteration. Note also that, contrary to SUQUAN-SVD, this algorithm
requires an initial non-decreasing target quantile function. By default we suggest to use the median of the
data quantile functions, which is often the default used in standard QN normalisation.

Algorithm 2: SUQUAN-BND and SUQUAN-SPAV
Input: (x1, y1), . . . , (xn, yn), finit 2 I0, � 2 R
Output: f 2 I0 target quantile
1: for i = 1 to n do
2: ranki, orderi  sort(xi)
3: end for
4: w, b argmin

w,b

1
n

Pn
i=1 `i

�
w>finit[ranki] + b

�
+ �||w||2

(standard linear model optimisation)
5: f  argmin

f2FBND

1
n

Pn
i=1 `i

�
f>w[orderi] + b

�

(isotonic optimisation problem using PAVA as prox)
OR
f  argmin

f2FSP AV

1
n

Pn
i=1 `i

�
f>w[orderi] + b

�

(smoothed isotonic optimisation problem using SPAV as prox)

6 Experiments

6.1 Simulated data
We first test the ability of SUQUAN to overcome unwanted changes in quantile distributions on simulated
datasets. For that purpose we fix f 2 Rp to be the quantile distribution of the normal distribution, and
simulate each sample x1, . . . , xn 2 Rp by randomly permuting the entries of f . We then generate binary
labels y1, . . . , yn 2 {�1, 1} using the logistic model P (Y = 1 | X = x) = 1

1+exp(�w>x)
, where w is randomly

sampled from a standard multivariate normal distribution. We then compare four methods to estimate w
from n observations:

6

Alternate optimization in w and f , monotonicity constraint on f
Accelerated proximal gradient optimization for f , using the Pool
Adjacent Violators Algorithm (PAVA, ?) or the Smoothed Pool
Adjacent Violators algorithm (SPAV, ?) as proximal operator.



A variant: SUQUAN-SVD

(i, j)-th entry equal to 1 whenever the i-th entry of x is smaller than the j-th entry, and showed how
Frobenius-norm regularised linear models can be estimated efficiently thanks to the kernel trick because
the inner product between two p⇥ p matrices corresponding to two vector embeddings can be computed
in O(p ln(p)) with an efficient implementation of the Kendall ⌧ statistics. It can be observed that the
permutation representation  used by SUQUAN is also trivially amenable to benefit from the kernel
trick: to compute the inner product between  (x) and  (x0) for two vectors x and x0, one just needs
to sort the entries of each vector independently, in O(p ln(p)), and count in O(p) how many entries are
ranked at the same position. However, the permutation representation is extremely sparse (p non-zero
values among p(p� 1) zeros) and only controlling the Frobenius norm of M (in order to benefit from
the kernel trick) may not be sufficient to fight possible overfitting.

• M is not a convex set, and SUQUAN is therefore not a convex optimisation problem. A possible
variant of SUQUAN would be to relax the rank constraint and replace it for example by a trace norm
constraint, which is known to be a natural convex surrogate for the rank [27].

5 Algorithms
The SUQUAN formulation (8) is a nonconvex optimisation problem since the set of rank-1 matrices M is not
convex. To approximatively solve it, we now propose two strategies. The first one, SUQUAN-SVD, does not
really attempt to solve (8) but instead to directly find a good target quantile f 2 F0 for binary classification
problems. The second one aims to find an approximate solution to (8) by performing alternate optimisation
in f and w, as the problem is biconvex.

5.1 SUQUAN-SVD

Algorithm 1: SUQUAN-SVD
Input:

(x1, y1), . . . , (xn, yn) 2 Rp ⇥ {�1, 1}
Output: f 2 F0 target quantile
1: MLDA  0 2 Rp⇥p

2: n+1  |{i : yi = +1}|
3: n�1  |{i : yi = �1}|
4: for i = 1 to n do
5: Compute ⇧xi

(by sorting xi)
6: MLDA  MLDA + yi

nyi
⇧xi

7: end for
8: (�, w, f) SV D(MLDA, 1)

In the case where F = F0, i.e., when we do not constrain
f to be non-decreasing, and ⌦(�) = ||�||2, then the set M
of candidate matrices in (8) is exactly the set of rank-1 ma-
trices. In that case, (8) amounts to finding a rank-1 matrix
that approximatively solves a linear regression or classifica-
tion problem. Let us consider the binary classification setting,
when the training set is composed of pairs (xi, yi)i=1,...,n with
yi 2 {�1, +1}. In that case, a simple linear classifier (without
rank constraint) is the one obtained by linear discriminant
analysis with identity covariance: MLDA = µ+ � µ�, where
µ+ and µ� are respectively the means of the matrices ⇧xi for
the positive and negative classes. Consequently, a good rank-
1 candidate classifier is the closest rank-1 matrix to MLDA,
namely u�v> where u and v are the left and right singular
vectors of MLDA associated to the largest singular value �.
Hence we recover a target quantile function by keeping only
the first right singular vector of MLDA, which can then be used as target quantile for quantile normalising
the training points before running any linear classification method. Algorithm 1 summarises the method.
Computing ⇧xi

on line 5 involves an O(p ln(p)) sorting of the entries of xi, and therefore computing MLDA,
which is a linear combination of n permutation matrices, requires O(np ln(p)) operations. Then computing
the right largest singular vector (line 8) of MLDA typically costs another O(p2) operations using a naive
power iteration method. However, if n  p, we can exploit the fact that the product of a permutation matrix
by a vector is just an O(p) operation (just order the vector according to the permutation), so that the power
iteration to compute the first singular vector only takes O(np). Computing the right largest singular vector
therefore has an O(min(p2, np)) complexity. Hence the complexity of SUQUAN-SVD is O(np ln(p)), which is
the same as the complexity of the quantile normalisation.

5

Ridge penalty (no monotonicity constraint), equivalent to rank-1
regression problem
SVD finds the closest rank-1 matrix to the LDA solution:

MLDA =
1

n+

∑

i : yi=+1

Πxi −
1

n−

∑

i : yi=+1

Πxi

Complexity O(np ln(p)) (same as QN only)



Experiments: Simulations

True distribution of X entries is normal
Corrupt data with a cauchy, exponential, uniform or bimodal
gaussian distributions.
p = 1000, n varies, logistic regression.
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Experiments: CIFAR-10

Image classification into 10 classes (45 binary problems)
n = 5,000 per class, p = 1,024 pixels
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Experiments: CIFAR-10

Example: horse vs. plane
Different methods learn different quantile distributions

original median SVD SUQUAN BND

Index
0 400 800

Index
0 400 800

Index
0 400 800



Experiments: gene expression data

Breast cancer prognosis from gene expression data.
X = expression levels of 22,283 genes of the tumour at diagnosis
Y = 1 if cancer relapse within 6 years of diagnosis, 0 otherwise

4 datasets:

DATASET NAME # PATIENTS # POSITIVES % POSITIVES

GSE1456 141 37 0.26
GSE2034 271 104 0.38
GSE2990 106 32 0.30
GSE4922 225 73 0.32



Results: gene expression data

LOGISTIC REGRESSION SUQUAN
RAW RMA CAUCHY EXP. UNIF. GAUS. MEDIAN SVD BND SPAV

GSE1456 65.94 68.73 59.56 68.86 68.72 69.00 69.06 57.60 71.44 69.60
GSE2034 74.52 75.42 61.91 74.53 75.22 76.45 74.92 52.61 70.50 76.11
GSE2990 57.01 60.43 54.72 61.25 56.25 58.66 59.72 52.51 59.22 59.94
GSE4922 58.52 58.86 55.24 58.81 55.66 60.01 59.18 52.39 61.82 61.41
AVERAGE 64.00 65.86 57.86 65.86 63.96 66.03 65.72 53.78 65.75 66.77
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Estimated distribution: iteration=0



Estimated distribution: iteration=1



Estimated distribution: iteration=2



Outline
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2 The Kendall and Mallows kernels

3 Conclusion
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An idea: all pairwise comparisons

Replace x ∈ Rp by Φ(x) ∈ {0,1}p(p−1)/2:

Φi,j(x) =

{
1 if xi ≤ xj ,

0 otherwise.



Related work: Top scoring pairs (TSP)

(Geman et al., 2004; Tan et al., 2005; Leek, 2009)



Practical challenge

Need to store O(p2)
bits per sample
Need to train a model
in O(p2) dimensions



Kernel trick

Theorem (Wahba, Schölkopf, ...)

Training a linear model over a representation Φ(x) ∈ RQ of the form:

min
w∈RQ

1
n

n∑

i=1

`(w>Φ(xi), yi) + λ||w ||2

can be done efficiently, independently of Q, if the kernel

K (x , x ′) = Φ(x)>Φ(x ′)

can be computed efficiently.

Ex: ridge regression, O(Q3 + nQ2) becomes O(n3 + n2T )
Other: SVM, logistic regression, Cox model, survival SVM, ...



Kernel trick for us: Kendall’s τ

Φ(x)>Φ(x ′) = τ(x , x ′) (up to a scaling)

Good news for SVM and kernel methods!



More formally

For two permutations σ, σ′ let nc(σ, σ′) (resp. nd (σ, σ′)) the number
of concordant (resp. discordant) pairs.
The Kendall kernel (a.k.a. Kendall tau coefficient) is defined as

Kτ (σ, σ′) =
nc(σ, σ′)− nd (σ, σ′)(p

2

) .

The Mallows kernel is defined for any λ ≥ 0 by

K λ
M(σ, σ′) = e−λnd (σ,σ

′) .

Theorem (Jiao and V., 2015)
The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)
These two kernels for permutations can be evaluated in O(p log p)
time.



Related work

Cayley graph of S4

Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.
Computationally intensive (O(pp))

Mallows kernel is written as

K λ
M(σ, σ′) = e−λnd (σ,σ

′) ,

where nd (σ, σ′) is the shortest path
distance on the Cayley graph.
It can be computed in O(p log p)



Application: supervised classification

Datasets

Dataset No. of features No. of samples (training/test)
C1 C2

Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse)
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse)
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis)

Colon Tumor 2000 40 (Tumor) 22 (Normal)
Lung Cancer 1 7129 24 (Poor Prognosis) 62 (Good Prognosis)
Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM)

Medulloblastoma 7129 39 (Failure) 21 (Survivor)
Ovarian Cancer 15154 162 (Cancer) 91 (Normal)

Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor)
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse)

Methods
Kernel machines Support Vector Machines (SVM) and Kernel
Fisher Discriminant (KFD) with Kendall kernel, linear kernel,
Gaussian RBF kernel, polynomial kernel.
Top Scoring Pairs (TSP) classifiers ?.
Hybrid scheme of SVM + TSP feature selection algorithm.



Results
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Results
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Results
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Application: clustering

APA data (full
rankings)
n = 5738, p = 5
(new) Kernel
k-means vs
(standard)
k-means in S5

Show silhouette
as a function of
number of
clusters (higher
better)



Extension to partial rankings

Two interesting types of partial rankings are interleaving partial
ranking

xi1 � xi2 � · · · � xik , k ≤ n.

and top-k partial ranking

xi1 � xi2 � · · · � xik � Xrest, k ≤ n.

Partial rankings can be uniquely represented by a set of
permutations compatible with all the observed partial orders.

Theorem
For these two particular types of partial rankings, the convolution
kernel (Haussler, 1999) induced by Kendall kernel

K ?
τ (R,R′) =

1
|R||R′|

∑

σ∈R

∑

σ′∈R′

Kτ (σ, σ′)

can be evaluated in O(k log k) time.
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Extension to smoother, continuous representations

Instead of Φ : Rp → {0,1}p(p−1)/2, consider the continuous
mapping Ψa : Rp → Rp(p−1)/2:

Ψa(x) = EΦ(x + ε) with ε ∼ (U [−a
2
,
a
2

])n

Corresponding kernel Ga(x , x ′) = Ψa(x)>Ψa(x ′)



Computation of G(x , x ′)

−3 −2 −1 0 1 2 3

−1
.0

−0
.5

0.
0

0.
5

1.
0

xi − xj

Φij
Ψij

Ga(x , x ′) can be computed exactly in O(p2) by
explicit computation of Ψa(x) in Rp(p−1)/2

Ga(x , x ′) can be computed approximately in O(D2p log p) by
Monte-Carlo approximation:

G̃a(x , x ′) =
1

D2

D∑

i,j=1

K (x + εi , x ′ + ε′j)

Theorem: for supervised learning, Monte-Carlo approximation is
better1 than exact computation when n = o(p1/3)

1faster for the same accuracy



Performance of Ga(x , x)
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Outline

1 Supervised quantile normalization

2 The Kendall and Mallows kernels

3 Conclusion



Conclusion

Representing omics data as permutations has some potential
Kendall and Mallows kernel in O(p ln(p))
SUQUAN supervised quantile normalization as matrix regression

Understanding the benefits and cost of different representations
remains very heuristic and sometimes counterintuitive
Learning representation may help
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• ESPCI!:!mailing!aux!3A!+!présentation!d’ITI/rencontre!avec!les!

étudiants!en!présence!des!directrice!de!la!scolarité!et!directrice!des!

relations!entreprises!;!8!élèves!présents!

• Contacts!en!cours!avec!les!Ponts!et!l’ENS!Lyon!(en!attente!de!

réponse)!

• Rencontre!à!l’ANRT!avec!le!délégué!général!et!la!chef!du!service!

CIFRE:!accord&de&communication&sur&le&programme&ITI&via&le&site&

internet&de&l’ANRT!(rubrique!"zoom!sur")!

• Promotion!aux!Rencontres!Universités!Entreprises!(RUE)!

• Echange!avec!Stéphane!Mallat!et!réflexion!sur!la!pertinence!du!

programme!tronc!commun!

• Rencontre!avec!le!responsable!des!relations!internationales!de!la!

National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&

!

!

2/!MISE!EN!ŒUVRE!OPERATIONNELLE!DU!PROGRAMME!
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