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Statistics in the era of big data

of Science 1

Th

Wired Magazine, issue 16.07

The Unreasonable
Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

This is the religion of big data. As a
believer, you see ethics and laws in a
different light than the non-believers.
You also believe that you are part of
a new scientific movement which
does away with annoying things such
as making hypotheses and the
assumptions behind traditional
statistical techniques. No need to
ask questions, just collect lots of
data and let it speak.

Gil Press,
Forbes, September 2014



A specific view-point: gene mapping

Which genetic variants influence phenotypes of interest? )

o Genes identify a protein: they tell us what is the biological pathway
involved in disease and proteins can be useful drug targets

@ Knowing which variants are important makes it possible to provide genetic
counseling

@ Understanding which groups of phenotypes are influenced by the same
variants help us to refine our diagnostic tools and gives us a handle on
mechanism.



Looking across the entire genome

This was never hypothesis driven research. The space of hypotheses
tested has been defined by our ability to probe genetic variation. J

@ Even when the locations in the genome one was able to probe where only a
handful (different protein types, as blood groups), geneticists decided that an
association had to have a p-value < 10~ to be significant

@ When genome-scans became a possibility, we looked at monogenic disease,
and aimed to control FWER, the probability of making at least one false

discovery.

@ The landscape has changed as we start looking at a large number of
phenotypes, many of which might be complex.



An example of polygenic trait: height

Defining the role of common variation in the genomic
and biological architecture of adult human height

Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together
explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show
that the most strongly associated ~2,000, ~3,700 and ~9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance.
Furthermore, all c variants together cap 160% of heritability. The 697 variants clustered in 423 loci were enriched for
genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in
earlier efforts, such as signaling by fibroblast growth factors, WNT/B-catenin and chondroitin sulfate-related genes. We identified
several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding

of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite
number (thousands) of causal variants.

Nature Genetics, 46: 1173-1186, 2014



A study example: Genotype-Tissue Expression (GTEx)

TRAITS:
@ Expression is measured for 20,000-30,000 genes
@ In 44 tissues

GENOTYPES:
@ ~ 11 million Single Nucleotide Polymorphisms (SNPs)

GOALS:
o ldentify the loci where genetic variation influences the expression
levels of genes (eQTL) in one tissue
@ eGene: a gene whose expression appears to be genetically regulated
@ Understand when this regulation is conserved across tissues

e Understand which specific variants underly this regulation (eSNPs)



A study example: Genotype-Tissue Expression (GTEx)
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Another study example: the genetics of metabolites
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Discoveries and FDR

In studies with many expected discoveries, it is natural to want to
control FDR




Discoveries and FDR

In studies with many expected discoveries, it is natural to want to
control FDR

= There are many possible discoveries

@ Genetic loci that are relevant for one phenotype
@ Genes that influence one phenotype
o Genetic variants that influence one phenotype

@ Any of the above resolutions, for groups of phenotypes



Discoveries and FDR

In studies with many expected discoveries, it is natural to want to
control FDR

= There are many possible discoveries

Genetic loci that are relevant for one phenotype
Genes that influence one phenotype

Genetic variants that influence one phenotype

Any of the above resolutions, for groups of phenotypes

= As controlling FDR is controlling a property on average over the selected, we
need to make sure that we pay attention to what the selections are.



Ex 1. Discovering loci is not the same as discovering variants
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A possibly large number of correct rejections at some location can
inflate the denominator in the definition of false discovery rate,
hence artificially creating a small false discovery rate, and lowering
the barrier to possible false detections at distant locations
Siegmund, Yakir and Zhang (2011)

See also Perone et al. (2004) and Benjamini and Heller (2007).



Ex 2. variants with effects on some traits

Truth Pooled BH

Traits

Variants Variants

Controlling FDR of traitx SNPs discoveries, does not result in controlling the
FDR of SNP discoveries

See also Foygel Barber & Ramdas (2015)



Practice in eQTL (cis): selection

@ The analysis is based on tests for association between the expression of each
gene (in each tissue) and each of the genotyped variants

@ Reporting the results of such tests is too lengthy, so focus is on aggregate
discoveries: eGenes, eSNPs

o FDR is the criteria of choice, but it has been noted that applying FDR
controlling procedures to each of the genexSNP hypotheses leads to an
inflation of scientifically interesting discoveries.

@ Analysis is carried out in multiple steps

1. First eGenes are identified aggregating signals from all SNP, and controlling
FDR of eGenes.

2. One attempts to identify exactly which variants matter in the neighborhood of
the gene (fine mapping), using model selection techniques coupled with some
stringent criteria to guarantee consistency of results.

Ex. The least significant variant added to the model for one gene has to have
a p-value smaller than that of the least significant eGene across the entire
genome.



Genetics as a playground for selective inference

@ See yesterday survey by Benjamini
@ Multiple talks here and work by others



Two stories about FDR control in the presence of structure

Testing hypotheses on a tree
Bogomolov, Peterson, Benjamini and S. (2017) arXiv:1705.07529 J

Controlled variable selection at multiple resolutions
Katsevich and S. (2017) arXiv:1706.09375 J




A tree of families of hypotheses

Hyg @ Hyo

Hig @ Hig
AN /
H, HQ\@ Hy || Hs || Hg || H7 @ His||Hia

@ Each hypothesis 7 at level £ is parent to a family of hypotheses ]—'f“ at level
+1

o (O = true null hypotheses [J = false null
o Parent hypotheses are true if the intersection of descendant hypotheses is true




A tree of hypotheses — GTEx example

Level 1

Level 2 Level 3
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P-values for hypotheses on the tree

@ Assume p-values p; for H; in highest level L (finest scale).

@ P-values for hypotheses in lower levels ¢ < L can be obtained with any valid
rule. In particular, they can be obtained combining the p-values of children.
o Ex. Simes' rule.
Let py <pp) <+ < PF) be the ordered p-values for the hypotheses

in the family 7/ indexed by H;

41
i

pi = minp) X y



Hierarchical testing — Level 1

(see Yekutieli, 2008)

Hyp




Hierarchical testing — Level 1, rejections

(see Yekutieli, 2008)
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Hierarchical testing — Level 2

(see Yekutieli, 2008)
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Hierarchical testing — Level 2, rejections

(see Yekutieli, 2008)
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Hierarchical testing — Level 3

(see Yekutieli, 2008)
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Hierarchical testing — Level 3, rejections

(see Yekutieli, 2008)
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All discoveries
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Level specific discoveries

Level 1 Level 2 Level 3
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Outer node discoveries
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Notions of global error

Yekutieli (2008)
@ Tree FDR
o Level specific FDR
@ Outer node FDR
Can be controlled with BH when tests are independent across levels

Benjamini & Bogomolov (2014)
@ Define a new notion of average error rate over the selected families
o Consider only 2 levels trees
@ Strategy that offer control for any type of dependence
@ Our work, extension to general trees

Heller, Chatterjee, Krieger, and Shi (2016)
o Talk today...

Barber & Ramdas (2016)
@ Non hierarchical testing
o Level specific FDR control
@ Restricted to Simes' combination rule



Level 1 selective FDR

Expected value of the FDP at level 1
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Level 2 selective FDR

Expected value of the weighted average FDP across all families tested at level 2
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Level 3 selective FDR

Expected value of the weighted average FDP across all families tested at level 3

Hyg @ Hoy

_______________________________________________________



Target global error: selective FDR

sFDR’ = E(sFDP)
SFOP' = Y wFDP

F! is tested

o sFDR! is equal to FDR!
e sFDR? = E(},cs: FDP;/|S*[) (Benjamini & Bogomolov 2014)

@ generically,

— 1 1 1
sFDP = Z ST Z 152 | > |5.€—1|FDPF7271
i1 €S zQESfl n 1271651_2112 ig—2
with |S?| the max between 1 and the number of rejected hypotheses in family
Ft

Q-



Selective FDR

@ Statements can be made about the discoveries at each level
o It incorporates the order of testing

@ The error rate definition guarantees a coherence among discoveries

o There is no multiplicity across levels that is unaccounted for

o Fine scale discoveries can only follow coarser scale ones

e Discoveries at one level might not be followed up by discoveries at the next
level (different from p-filter)

e "Consistency” across levels: control of sSFDR’ guarantees control of sSFDR‘™!
if whenever a parent hypothesis is rejected at least one of the hypotheses in
the family it indexes is rejected.



Testing procedure: TreeBH

Input : The target levels for error rates for sFDR!, ¢ =1,...,L: qél), e, qéL)

The p-values for all the hypotheses in the tree
begin
SO +— i

[}
=]
o

for¢{=1,...,Ldo
while S 1 £ @ do

foric S do
Apply the BH procedure at level g; on the p-values of family ]-'f
Sl Sty St
forj e S/ do

| gy iy < IS{1/1F)

end

end

end
end

Output: The set of all the rejected hypotheses, UL_; S°.



Selective FDR control

Al The BH procedure is valid for the dependence among the p-values within
each family, e.g. the p-values are independent or satisfy the positive regression
dependence on the subset of true null hypotheses property (PRDS).

A2 For each level £ € {2,..., L} and each family 7, the p-values of the
hypotheses in F¢ are independent of the p-values of the hypotheses at levels
1,...,£ —1 which are not ancestors of the family F7.

Theorem

If assumptions A1 and A2 hold, the TreeBH procedure with input

parameters (¢V), ..., q'1)), guarantees for each ¢ € {1,..., L} that
sFDR' < ¢(®.




Selective FDR control

Measures of error other than FDP can be used for each family

Combining error controlling procedures with the appropriate level adjustment
leads to control

@ In each level, the target ¢ is adjusted by S/M, where M represents the total
number of hypotheses and S the number of selected ones.

Driving force is Marina Bogomolov



A didactic example

o Level 1 discoveries: rows

@ Level 2 discoveries: groups of columns within rows

@ Level 3 discoveries: individual hypotheses

@ red: non null hypotheses
Hl.l.l Hl,l.2 Hl.l.l Hl.2,2 Hl.f{.l Hl,:3,2 Hl.-l.l Hl,4.2 Hl.fﬁ.l H1.5,2 Hl.(i.l Hl.(v.'_), Hl.b.')()
Hy11 Hanp | Hopy Hapo | Hazy Hozo | Hoyn  Houp | Hesy Hoso | Has1 Hago ... Hagoo
HIS.J.\ H:‘.\ 2 H.§ 2,1 H.'S.ZAZ H:i.:‘.\ H?i.i.'z H:‘.'Ll H.§.1.2 H.‘S.’).J Hfi.ﬁ.'z H3.6,| H3,6,2 (KR H3,6,90
H<l.l.l H<l.l.'_l HJ._Z.I H4.2.2 th.f{.l H4.3.2 H-].«l.l H4.4.2 H4.3.l H4.5.2 H4,5,1 H4,ﬁ.2 e H4,ﬁ,9f)
Hsi1 Hspo | Hso1 Hsoo | Hszn  Hsso | Hsan Hsao | Hssn  Hsso | Hse1 Hsea ... Hsgoo
Hgai1 Hepo | He2q He22 | Hesn Heso | Hean Heaz | Hesn Heso | Hee1 Hes2 .. Heeo0

@ The families {H;;,j =1,...90} contain a lot more hypotheses.

o Family {H; 6,7 = 1,...90} contains many non nulls = one false
discovery at level 3 can generate a much higher family FDP then overall FDP

@ The families are very homogeneous = testing within families should be
more powerful.



Power

FDR

Level 1 Level 2 Level 3

1.004
0.75 1
050
0.25 1
0.00J
0.15+4 Method
-~ BH
0.10 1 = BB
- p-filter — row/col
0.05 - p-filter — hier
A- R-BB
-A: TreeBH




GTEx data

@ The Phase 1 data release includes 450 subjects and 44 tissues with at least
60 sample

o Gene expression was measured for around 21,000-34,000 genes per tissue

@ genotypes were estimated for around 11 million SNPs. We focus on the set of
reasonably independent SNPs filtered to have local R? < 0.5. After
tissue-specific QC, this set includes between 250,000 and 300,000 SNPs per
tissue for each of the 44 tissues, with a total of 305,820 SNPs passing QC in
at least one tissue.

@ Consider cis analysis, and the following hierarchy
Level 1 SNP

Level 2 SNPx Gene
Level 3 SNPx Genex Tissue.



Comparing the results of different procedures

BH sep BH pooled | 3-level

# eSNPs 9.1 x 10* | 8.6 x 10* 4.5 x 10*
% eSNPs 30% 28% 15%

# SNP-gene pairs 1.9 x 10° | 1.8 x 10° 9.3 x 10*
# genes per eSNP 2.1 2.0 2.1

# SNP-gene-tissue triplets 6.4 x 10° | 6.2 x 10° 5.1 x 10°
# tissues per SNP-gene pair 33 35 5.4

% SNP-gene pairs 1 tissue only | 61% 61% 48%



Number if tissues in which one eSNP is active

All tissues Non-brain tissues Brain tissues
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Number of tissue-specific eSNPs
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Model selection with multi-layer FDR control

Set-up (convenience)

y € R X ¢ R™¥P
y=XpB+e

e € ~N(0,0%I)
@ (3 is sparse

on=>p

GOAL: select S C {1,...,p} to approximate the underlying set
{7 : Bj # 0} of “important” variables.

e S is interpreted at L different “resolutions” or layers of inference.
@ Each layer ¢ partitions the hypotheses in disjoint groups Ag:

Gy
JAS={1.....p}
g

@ Selection set S induces a selection set at each layer

— — . )4
8@—{9—17...,G5.80Ag#®}



Ex. Service et al. (2014)

A resequencing study with the goal of identifying which variants, in which genes,
in which loci are important for some phenotypes

Multiple regression is important to select specific variants.

Table 1. Overview of quantitative trait loci investigated in this study.
5’ boundary # Validated
Locus’ Chr (Build 37) (Mb) Size (kb) ROI? (kb) Genes Targeted/Total® Variant Sites®
CELSR2 1 109.656946 782.534 36.464 9/21 254
GALNT2 1 230.273866 164.123 4530 n 67
GCKR 2 26.893100 1594.61 2.189 1/42 12
ABCG8 2 43.458071 819.384 38.183 7/7 231
G6PC2 2 169.312969 557.867 17.240 5/5 97
LPL 8 19.518908 458.35 3.747 1/3 43
ABCA1 9 107.543376 201.285 11.176 n 73
PANK1 10 91.343009 62.133 3.684 13 12
CRY2 1 45.706162 210619 10.997 3/4 60
ANADD 11 NE VTN 29N cN AT 2317 1c/cn 29



Service et al. example

Level 1 Level 2 Level 3

Hao @ Has

Loci influencing the phenotype

His Hh @ Hr

Genes influencing the phenotypes

@ EREE G @@

Genetic variant influencing the phenotype




Selections from the finest resolution — no need for hierarchy

(see Barber & Ramdas, 2016)

Hyg




Selections at finest scale

(see Barber & Ramdas, 2016)

Hag

Hy ([ H2 H,




Implied rejections at coarser scales

(see Barber & Ramdas, 2016)
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Multilayer FDR control

@ We focus on level specific FDR

@ The rejections at each layer are consistent by definition

Definition

A selection procedure obeys multilayer FDR control at levels ¢, . . .

of the layers if
|S¢ N H€|

FDR,=E | ——%
‘ [ Sl

} < gy for all £.

,qr, for each




How to achieve this?

Capitalize on a series of strategies recently proposed
o p-filter by Barber & Ramdas (2016)
o Knockoffs: Barber & Candes (2015), Candes et al. (2016)
e group knockoffs: Barber & Dai (2016)

Proving that the strategy actually works required some careful work by Eugene
Katsevich



An idea of the algorithm

Framework 1: Multilayer Knockoff Filter

Data: X, y, partitions {A}},, with g=1,...,Gyand £ =1,..., L, FDR target

levels q1,...,qr
1 for{=1to L do
2 Construct group knockoff features X¢;

3 Construct group knockoff statistics W = (W/,..., Wéz) =wi([X ng],y)
satisfying the sign-flip property;
4 end

5 For t = (t1,...,tr), define S(t):{j:W§ >ty VU

(3:0)

6 For each ¢, let Vy(t)) =1+ |{g: W, < —t;}] and define F/D\Pg(t) =

~

Vi(te) .
Se(®)]

7 Find t* = min{¢ : F/D\Pg(t) < qp Y}
Result: Selection set S = S(t*).




[[lustration
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Properties

Theorem

For any valid construction of group knockoff statistics, the MKF method
satisfies

FDR, <c-q; forall ¢,
where ¢ = 1.93.

@ The knockoff statistics can have arbitrary dependence across layers.
@ The constant factor ¢ appears not relevant in practice.
@ A similar result holds for a generalization of p-filter.



Simulation — set up

n = 4500, p = 2000.
X generated row-wise from AR(1) process with correlation p

y generated from low-dimensional linear model:
y=XpB+e

3 has 75 non-null elements
L = 2 with an individual layer and a group layer
200 groups of size 10 each

the non null ;s are in 20 groups



Simulation — results
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Analysis of the Service et al. (2014) dataset

Data
e n=5335 individuals
@ p= 768 genetic variants
o G= 85 genes
Methods compared
e MKF with gsnp = ¢gene = 0.1
o KF with gsyp = 0.1



Results
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Thank you!



An example from the p-filter paper

Truth
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Power

FDR

Level 1 Level 2 Level 3

Method

-~ BH

= BB

- p-filter — row/col
-8 p-filter - hier
A-R-BB

-A- TreeBH




