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Data: Let (Xj, Y;) for i =1,...,n be iid samples of predictor X € RP and
response Y with joint distribution F. Data matrix X € R"P and reponse
vector Y € R".

Goal of regression: find ‘optimal prediction coefficients’

argmingegs EF[(Y — X'B)2],

where the expectation is with respect to the sampling distribution F.



Data: Let (Xj, Y;) for i =1,...,n be iid samples of predictor X € RP and
response Y with joint distribution F. Data matrix X € R"P and reponse
vector Y € R".

Goal of regression: find ‘optimal prediction coefficients’

argmingegs EF[(Y — X'B)2],

where the expectation is with respect to the sampling distribution F.

Goal of ‘causal inference': find a coefficient vector with optimal predictive
accuracy over a class of distributions F (with F € F):

argmingege max Er[(Y — X'B)?].



@ Prediction valid for F = F,ps versus valid for a whole class F of
distributions

Green tea may hold the key to long life

By Roger Highfield, Science Editor
12:01AM BST 13 Sep 2006

Green tea can make you live longer, with women getting a greater health
benefit from the drink than men.

People who consumed higher amounts of green tea had a lower risk of
death due to all causes, according to the study of more than 40,000 adults
published today.

@ Computational and statistical aspects of ‘large p’ and variable
selection



Kemmeren data: gene activities for around 5000 genes in yeast from
observational (nyps = 160) and (vaguely specified) intervention data
(Nint ~ 1400).
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Variable selection for regression: find coefficients 5 € RP with
S={k:Bxk#0} C{1,...,p} such that

Res(8) L Xse,

where Res(f8) = Y — X§.




Variable selection for regression: find coefficients 5 € RP with
S={k:Bxk#0} C{1,...,p} such that

Res(8) L Xse,

where Res(f8) = Y — X§.

Variable selection for causality: find (possibly sparse) coefficients 5 € RP
such that

Res(8) < Res'(B),

if left hand side is under observational distribution F,ps for (Y, X) and
right hand side under a distribution F’ for (Y, X) where we intervene on
X in some way.




Observational distribution — Regression



Lasso regression for ‘large p' (Tibshirani 96):

A . 1
B = argmingega Y = XB]3 + A8



Lasso regression for ‘large p' (Tibshirani 96):

~ . 1
p = argmingcpe §||Y — XB|I5 + AlIB1-

KKT conditions for solution:

X'(Y — XB) = )s,
where s € 0|51, that is

1 if B, >0
Sk = [—1, 1] if Bk =0
-1 if B <0




Lasso regression for ‘large p' (Tibshirani 96):

~ . 1
p = argmingcpe §||Y — XB|I5 + AlIB1-

KKT conditions for solution:

X/ (Y = XB) = s,

where s € 9|51, that is

1 if B, >0
Sk = [—1, 1] if Bk =0
-1 if B <0

(0]

=

IX'(Y — X5)||oo < A (and some sign constraints). \




Dantzig selector (Candes and Tao, '07):

B3 = argmingege [|B]]1 such that | X'(Y — XB)[|lo < .

Analysis in Candes and Tao ( '07), Bickel et al. ('09) and Ye and Zhang
('10)



Interventions — Causality

Donald Rubin Judea Pearl Phil Dawid Thomas James Robins
Richardson



@ How to describe a revelant class F of distributions under
interventions?

@ Is ‘large p' inference possible?



Potential outcome model:

We can only observe one of

Ytreatment 5 Ycont rol-

Goal: infer average causal effect E( Yireatment — Yecontrol)

Nayman, 1923, Wilk, 1955, Reichenbach, 1956; Suppes, 1970; Rubin,
1974; Dawid, 1979; Holland, 1986,...




Structural equation models:

Let Z = (Y, X). A linear structural equation model for (Z1, ..., Zp41) is of
the form (Bollen et al. 89, Robins et al. 00, Pearl 09)

ZkeZAk,k/Zk/—knk, fork=1,....,p+1
k'#k

/@\

@— @)

Parents of variable Zj are parents(Zy) = {k" : Axx # 0}.




Many SEM generate the same observational distribution
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Intervention on Z; modelled by replacing

Zk < fr(parents(Zx), nk)
with

Zk + fy(parents(Zx), nk) + A
where shift A is a deterministic or random.

An interesting class of distributions F consists of all distributions that
arise from a SEM under arbitrary interventions on all variables X.



Distribution for observational data
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Distribution for shift-intervention on Xj
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Distribution for observational data and under shift-intervention on Xj
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Observational distribution Fgps.
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Observational distribution Fgps.
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Observational distribution Fgps.
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argmingcge EF[(Y — X'B)?]
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Observational distribution Fgps. Class F under interventions
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Regression coefficient:

argmingcre EF (Y - X’B)z] argmingege max Er[(Y - X/ﬂ)2]
—1/2 0
=| 1/2 =10
1/2 1

Distribution of residuals Y — X’
has to be invariant under a change
in distribution of A (objective
otherwise infinite).




Invariant causal prediction (ICP) of Peters, Biihimann, M., '16

— causal effects are regression effects if restricting to the right
subset of variables

— search over all subsets in naive version and keep all for which residual
distribution is invariant (null cannot be rejected).

Disadvantages
— computationally expensive for ‘large p'

— assumes absence of latent confounding






For regression and F = Fps,

|is equivalent to

B = argmingeg, EF[(Y — X'8)?]

Er (IX'(Y = XB)]lc) =0




For regression and F = Fps,

B = argmingcgy EF[(Y — X’ﬁ)2]

is equivalent to

Er (IX'(Y = XB)]c) =0

For additive interventions

E,_-/< (Y — X,8)||Oo> = constant for all F' € F
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Latent confounding

Observational distribution
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Observational distribution
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Optimal regression vector for Optimal causal coefficient vector for
observational distribution F = F,ps, arbitrary distribution F’ in class F,

B = argmingcg EfF [(Y — X1B)2] B = argmingcp lrrr)gé Er [(Y — Xlﬁ)z]

< &
EF(HX/(Y - Xﬂ)”oo) =0 EF<HX’(Y — Xﬁ)Hoo) constant
for all F € F.
with solution
5= % with solution

B=0.



Let Xg be predictor-matrix under distribution F and same for Y. Define

pr=X:Yr and L5 = XEXE.

“Low-dimensional Dantzig” (for observational distribution F):

B = argmingepe [XE(YF = XFB) oo
= argmingepe || /F — ££ B
= i;lﬁ = BAOLS (if inverse exists)



Let Xg be predictor-matrix under distribution F and same for Y. Define

pr=X:Yr and L5 = XEXE.

“Low-dimensional Dantzig" (for observational distribution F):

B = argmingepe [XE(YF = XFB) oo
= argmingepe || /F — ££ B
= i;lﬁ = BAOLS (if inverse exists)

“Low-dimensional causal Dantzig” (for distributions F, F' € F):

B = argmingego || (OF — PFr) — (EF — £7) Bl o-
=4 =6
= argmingeps||0 — G0

= G716 (if inverse exists)




Nravara
AL = | AR T alVd
AEERVdaeririnrd:
A2 ) AL\

\
SN

Data are generated in two environments {1,2} = £ according to

X3 n°+ o
Ye +— Xs+ %+
X «— Yo+ X§+ oM
X§ Xe+ 7%+ o3

where (1% 1,11, 72,73) is assumed to be drawn from A5(0,1ds) and the
noise variances are o€ = 1 for environment e = 1 and ¢ = 4 for
environment e = 2.



Procedure is implemented as method causalDantzig in R-package
InvariantCausalPrediction.

> fit <- causalDantzig(X,Y,E,regularization=FALSE)

> print(fit)

Unregularized causal Dantzig

Call:

causalDantzig(X = X, Y =Y, E = E, regularization = FALSE)

Estimate StdErr p.value
X1 -0.042 0.059 0.481
X2 0.999 0.106 <2e-16 **x*
X3 0.035 0.042 0.403

Signif. codes: O ‘**x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 ¢.” 0.1 ¢ * 1



Low-dimensional causal Dantzig

— can be defined for more than two data-environments
— can be shown to be asymptotic normal and asymptotically efficient
— asymptotic confidence intervals available

— works under errors-in-variables as

E((X+€x)(77y+§y)) = E(Xn)’)

if n, is noise of Y and (x, &) is additional observation noise in (X, Y).



Comparison to ICP (Peters, Biihimann, M., '16):

— causal Dantzig much more efficient computationally

— ICP works for arbitrary interventions (not just shift) but assumes
absence of hidden variables



Comparison to ICP (Peters, Biihimann, M., '16):

— causal Dantzig much more efficient computationally

— ICP works for arbitrary interventions (not just shift) but assumes
absence of hidden variables

Comparison to instrumental variables (1V)

— For one-dimensional instrument, IV can estimate only a single causal
coefficient (p = 1) whereas causal Dantzig can have identifiability for
large p (as IV exploits mean shift and causal Dantzig uses second
moments)

— IV not consistent of the intervention changes the error distribution (for
example X <— H + (1 + aA)ny instead of X < H + oA + 1y).



Binary instrument e € {1,2}. IV in population case can be written as

! 5~ E[Y|e=1]-E[Y|e=2] E[Y']-E[Y?]
AV = BXle S 1 —EXle=2]  E[XY - E[X]’

Causal Dantzig leads to

o5 EIXL YN -E[X2- 2
2 = TR E[(X7)7]

Consistency X =ae+ H+nx X =H+(1+ ae)n«
(mean-shift) (change in error distribution)

Instrumental variable regression
Unregularized causal Dantzig

yes no
yes yes



“High-dimensional Dantzig" (Candes and Tao, '07)

p = argmingcge [|5][1 such that |[pF — S FBlloe < A
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p = argmingcgp [|][1 such that 16 — GBlloc < A



“High-dimensional Dantzig" (Candes and Tao, '07)

p = argmingcge [|5][1 such that |[pF — S FBlloe < A

“High-dimensional (large p) causal Dantzig”

p = argmingcgp [|][1 such that 16 — GBlloc < A

— penalty can be chosen by cross-validation with /.,-objective

— for more than two distributions

= argmingeg, ||B][1 such that

b — D) — (2F — S5)Blee <
F"T;?ng(PF prE) — (XF —ZF)Blloc < A



Regularization paths
(true 5 =(1,0,0,0,...), first component green)

coefficients
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Left: p = 100, n = 200.
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Right: p = 200, n = 60.



Ye and Zhang ('10) analysis of Dantzig selector.
Cone invertibility factor is a lower bound on the £,,-norm of X u, given
that u lies in the cone {u : ||use||1 < ||us|/1} and has unit norm [jul|q = 1.

CIF,(5) = inf { IS 1Zle
‘ [ullg

u

Hlusell < ||us||1}-



Ye and Zhang ('10) analysis of Dantzig selector.
Cone invertibility factor is a lower bound on the £,,-norm of X u, given
that u lies in the cone {u : ||use||1 < ||us|/1} and has unit norm [jul|q = 1.

. S|V Eu| o
CIF4(S) = inf {HHH s usel||r < ||us||1} .

u lullq

Define causal cone invertibility factor CCTF4(S, G) as

15149 Gl oo
”UHq

CCIF,(S,G) := inf{

u

luselly < HUSlll}-



Assumptions (for two distributions indexed by e € {1,2})
(i) inner-product invariance holds for (X¢, Y¢), e € {1,2} under a *
(i) Xl,X2,n;+1,nl23+1 are centered and multivariate Gaussian.

(iii) all involved error variances are bounded by o2.

Let A < 5C\/Iog(p)/ Mineeq1,2) Ne for a constant C > 0 that satisfies
o < C < oo. With probability converging to 1 as ny, np, p — o0,

10C |S|1/q IOg(p)

A)\ - * < -~ .
157 =57l < CCIF4(S,G) MiNec (1,2} Ne




Let S denote the active set of 3. Assume a betamin-type condition

10C log(p)
CCIFo(S,G) | mineeqioy ne’

min |3}| >
ke”s‘ | Bk

Then under the previous assumptions for g = co, we have

]P’[§ oS]—1 for ny, np, p — oo.




Kemmeren data: gene activities for around 5000 genes in yeast.
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What happens to YFR053C if we knock out/delete gene YML128C?
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We can check by looking at interventions.
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But could we have predicted these outcomes just from the previous data?



divide into observational (nops = 160) and interventional data
(nint ~ 1600)
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# STRONG INTERVENTION EFFECTS

PERFECT
=— INVARIANT
m—— HIDDEN-INVARIANT

m—— REGRESSION (CV-Lasso)
—— GES and GIES
RANDOM (99% prediction—
interval)
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# INTERVENTION PREDICTIONS
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D. Rothenhausler, P. Biihimann, M. (2017)
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R-package InvariantCausalPrediction on CRAN.



Thank you!



Let S* C{1,...,p} be causal parents of Y:

§* = {k: i #0O}.

In absence of hidden confounding, causal vector 5* is optimal regression
vector when regressing Y on Xsx.

The residual distribution of
Y — X* is invariant across all

?@ F.F eF.

...exploit this fact to

v\
? @"@‘*@Q estimate S* and §*.

In example: Y — X333 is invariant
under a change in A.



Sketch of ICP, invariant causal prediction (Peters, Biihlmann, M. '16):

Forall S C{1,...,p},
(i) Estimate optimal regression B(5) vector for Y ~ Xs.

(ii) Test whether residual distribution Y — Xs3(%) is identical for
different distributions/data sets F, F' € F.

Define
§= N S.
S: null accepted

FWER-control follows: P(§ C §*) > 1 —a.



S ‘ Ho s true 7
S=90 no
={X1} yes

N sS={x}
S:Hp s true



T S ‘ Ho s true 7
4 2 0 2 4 S — (Z) yes
) S={Xi} no
) N s=0o.
) S:Hp s true




