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Gene expression and RNA-Seq data
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» Gene expression level =
number of its RNA copies in
the biological sample

» RNA-Seq = technology
allowing to quantify RNA
copies from each gene

» Gene expression matrix :
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Single cell RNA-Seq : from tissue level to cell level

> Gene expressions varies across tissues (healthy vs illness)

» Gene expression also varies from cell to cell inside the same tissue !
o H/eal!hyr Pathological Standard RNA_Seq

sensitive enough to measure gene expressions
averaged across single cells of the same tissue
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« Scaling laws of transcription

3/13



Dimension reduction for single-cell data analysis

Each single cell is described by J = 10* features — need the dimension
reduction for visualization and clustering :
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Why do we need a new statistical model for the dimension reduction ?

Typical histogram for gene expression

Count data with inflation of zeros : many genes
have positive RNA counts in some cells but zero
counts in other cells (“dropout”)

Over-dispersion : variance > mean

Systematic noise : technical factors affecting

":" measurements, normalization factors, etc.

observed exprossion values
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Dimension reduction with zero-inflated count noise model and covariates

» Low-dimensional projection of data should summarize biological
sources of expressional heterogeneity

> Low-dimensional projection by standard methods is determined by
variation in number of # 0 genes and technical variation

Dimension reduction with zero-inflated count noise and covariates :

gene 1  gene 2 gene J gene 1  gene 2 L. gene J
cell 1 Y11 Y12 . Y1 cell 1 11 Hn12 R 1y

cell 2 Yo1 Y22 . Yoy . . cell 2 21 22 L. K2y
noisy version of

cell n Yn1 Yn2 Yo cell n Hnl Hn2 L. Hng

Yij ~ miido(y) + (1 —m)fue(y: pij, 0y)
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A = {mj} unknown latent matrix of zero inflation probabilities
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ZINB-WaVE : matrix factorisation model

log 1v and logit m may be explained by a small number of known and
latent factors :
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> X : nx M known matrix of cell level covariates (biol. or tech.)

V : J x L known matrix of gene level covariates (e.g. gene length)

v

» W : nx K unknown matrix of K latent factors

Buus V> Qs Brey Ve Qe are unknown matrices of coefficients

v
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Summary of the model and comments
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r

Summary of the model : Y ~ m;jdo(y) + (1 — mjj) fne (v wij, 0if)
Iog(u,-j) = (Xﬂu + (V’Y/L)T + WO‘;L + O'u)'.l
IOgit(ﬂ-ij) = (Xﬂﬂ' + (VVW)T + War + O‘n’)U
In(05) = ¢

Comments :

> Higher expression of gene = smaller probability of non
detection = factors X, V, W are shared

» W is n x K matrix giving a low dimensional representation
of n cells in K-dimensional space (= PCA with the
appropriate model for noise)

» X and V allows to account explicitly for known covariates
and capture in W only unknown sources of heterogeneity




Estimation of the model
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The observed data is a n x J matrix of counts {Yj;}, the log-likelihood
function is given by :

n J

(5 Y, W «a, C Zzln fZ/NB( ijr ,U/uaeuyﬂ-u)

i=1 j=1

Parameters are estimated via the max of the penalized log-likelihood :

max ¢ {6(63 v, Wv «, <) - Pen(ﬂv v, Wa «, C)} 9

7 Wa,
with

€ € Ew €a €
Pen(B,7, W, a,¢) = (18I P+ [0 IP+ S IWIP+ lal P+ var(C)

where (eg, €, €w, €q, €¢) is the set of regularization parameters and 3°
means (3 without the intercept



Initialization. Approximate positive counts by log-normal distribution and
alternate between the following steps :

Adjust for known covariates (3, and ~,,) by ridge regression
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Optimization. Alternate between the following steps :

1. Optimize in dispersion parameter :

A A €

C+ arg max{ (8,4 a,¢) — Evar(()}

2. Optimize in cell level unknown coefficients :

ISRY) A A A S0 Ew 2
(5. W) - arg max {1(3,7.W.4.0) = SI°I1P = F W}

s

3. Optimize in gene level unknown coefficients :

A A ISRY) A €B1p012  Ca 2
(8.) + argmax {0(2,5, W. . O) = FI1IP ~ 5o}

)

4. Orthogonalization (orthogonalize factors; maximize locally)

~ . 1
(W,&)(—arg min = (ewlW|P + eallo]]?) -
(W,a): Wa=Wa 2
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Simulations

PCA, ZIFA, ZINB-WaVE were compared on :
simulated data : o8 A

» Data were simulated from ZINB-WaVE
model, using W with K =2

Correlation
o
R

> Rows of W were simulated in a way to Methods
induce known clusters of single cells D,
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and estimated projection

Quality of cluster recovery : silhouette width of
clustering based on estimated W

Methods
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Glioblastoma dataset : real data with 430 cells from 5 patients suffering

from glioblastoma :
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» ZINB-WaVE leads to tighter clusters grouping cells by patients

» ZINB-WaVE axes less correlated to quality control measures of cells
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Conclusion and references

Conclusions :

» Dimension reduction based on zero-inflated negative binomial model
of noise allows for a better quality of low-dimensional representation
of the data

» Clustering based on ZINB-based low-dimensional representation is
higher quality compared to PCA or ZIFA.

» Covariates allow to include all known information and W captures
only the unknown sources of heterogeneity

References :
> Preprint : http://biorxiv.org/content/early/2017/04/06/125112

> Package : http://github.com/drisso/zinbwave
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