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Clustering arises in various contexts
Clustering individuals w.r.t.
features

L

Clustering graphs

Christophe Giraud (Orsay)
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Our objectives

Topic of the talk

@ investigate "optimality” in clustering (in terms of exact recovery)

@ probabilistic set-up: data generated by some (more or less) flexible
models

@ optimality in terms of rate-minimax "separation” between groups

@ focus on polynomial time algorithms

Main message

A corrected convex relaxation of Kmeans achieves some rate-optimal
performances in various settings.
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Many classical algorithms (with caveats)

" Geometric" algorithms
o Hierarchical clustering: greedy, no global criterion

o Kmeans: multiple local minima, NP-hard, greedy approximations
(Lloyd algorithm) very sensitive to initialization

"Model-based" -algorithms

e Approximate MLE in mixture models (with EM-like algorithms):
multiples local minima, sensitive to initialization, issue of
misspecification.
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Spectral algorithms and SDP

Two popular alternatives

It has been shown that spectral clustering and some SDP have some

(nearly)-optimal properties in some models (e.g. in assortative SBM,
Gaussian mixture model)

In this talk
We will

@ focus on a specific SDP derived from Kmeans, which achieves some
optimal performances in a wide range of situations,

@ connect this SDP to spectral clustering.
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1- Relaxed Kmeans

Peng & Wei (07)
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Kmeans criterion

Applying Kmeans on N data points Xi, ..., Xy amounts to minimizes
among all possible partitions G = {Gy,..., Gk} of {1,..., N}

K
Crit(G) =Y S X — X, |12

k=1 aEGk

Zﬁ S 11X~ Xl
k=1

a,be G

K N
Z Z |G | (Xa; Xb) +ZHX3H2
k=1 a,be a=1

(B XTX) 4 I
with X = [Xi,..., Xy] and
BS, = 1/|Gy| if a, b belong to the same group Gy and BS = 0 else.
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Kmeans criterion

Lemma (Peng & Wei (2007))

Solving Kmeans amounts to solve

éKmeans € argmin(—XTX, B) ,
BeD
with
e B>=0
o> . Bp=1Yb
D:={BeRV*N:. ¢ B,, >0, Va,b
o Tr(B) = K
e B°=RB
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Convexified Kmeans

Idea: drop the B? = B constraint

Relaxed Kmeans (Peng & Wei (2007))

Solve the SDP N
B € argmin(—XTX,B) ,

BeC
with
e B >0
._ NxnN . ® 2 ,Ba=1,Yb
C=<BeR ' e B >0, Va b
e Tr(B)=K
Remarks:

© An additional clustering step is needed when B ¢ D.

@ Convex optimisation but with many constraints.
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Spectral clustering

Drop the constraints By, > 0 and ), By, = 1 but keep the (implicit)
condition | = B

Relaxed SDP

Solve the SDP B
B € argmin(—XTX,B) ,
BeC
with
C .= {BGRNXN: *
[ )

Relaxed SDP = Spectral clustering

The solution B is given by B = UUT where U collects "the” K leading
eigenvectors of X T X.

v
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Numerical comparison
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2- Quantization versus clustering
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Caveheat

A simple model

Assume that the " points” X, are independent random variables with

E[Xs] =v, and Tr(cov(X;)) =T,.

Mean value

For a partition G we have

. 1 1
IE[Cr’theans(c';)] :Ezm Z HVB Vb||2+2r Z |Gk|
k

Zr

a,be Gy ac Gy
— tends to split "wide” clusters: a correction is needed!
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Example
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Quantization rather than clustering
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Estimation of I

Remark: If we knew the groups, we could estimate ' = diag(I'1,

Y
by R
Maa = (X5 — Xnel(a)v Xa— Xneg(a)>
with nej(a) and nex(a) two "neighbors” of a.
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Estimation of I

Remark: If we knew the groups, we could estimate I = diag(['1,...,n)
by

-~

Maa = (X5 — Xnel(a)v Xa— Xne2(3)>
with nej(a) and nex(a) two "neighbors” of a.

Definition

Then, the estimator T is the diagonal matrix defined by

Maa = (Xa — Xfe,(2), Xa — Xres(a))

ne
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Estimation of I

Remark: If we knew the groups, we could estimate I = diag(['1,...,n)
by

-~

Maa = <Xa - Xnel(a)7 Xa— Xne2(3)>

with nej(a) and nex(a) two "neighbors” of a.

Definition
Xe — Xq
Set U(a, b) := max X; — Xp, ————)| and
(45) c,c/e[nl\{a,b}‘< T ||Xc—Xd||>‘
néi(a) := argmin U(a, b) and néx(a) :=  argmin  U(a, b)
be[n]\{a} be[n]\{a,ne1(a)}

Then, the estimator T is the diagonal matrix defined by

/r\aa = <Xa — Xae Xa— XﬁEg(a)>

e1(a)»
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Corrected convexified Kmeans

In the above simple model

E[XT X] = a ”block structured” matrix + I

Corrected convexified Kmeans (F. Bunea, C. G., M. Royer, N. Verzelen

(2016))

Solve the SDP R
B € argmin( — XTX,B) ,

BeC
with
e B >0
._ NxN . ® >.5Ba=1,Yb
C=<BeR ' e B >0, Vab
e Tr(B)=K
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Corrected convexified Kmeans

In the above simple model

E[XT X] = a ”block structured” matrix + I

Corrected convexified Kmeans (F. Bunea, C. G., M. Royer, N. Verzelen

(2016))

Solve the SDP R R
B € argmin(lT — XTX,B) ,

BeC
with
e B >0
._ NxN . ® >.5Bap=1,Yb
C=<BeR ' e B >0, Va b
e Tr(B)=K

v
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The correction can

120

split-join(G, G)
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be useful

SNR A?(u)/o?
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—}— uncorrected-SDP
-4- pecok




3- Some theory
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Model 1: clustering "individuals”

Clustered independent subGaussian variables
X1,..., X, € RP are independent with

o E[X,] =y ifac G}

e X, ~ SubGauss(X,)

For simplicity, we will focus here on the case where each group has the
same size |G| = n/K

Exact recovery (M. Royer (2017))

Exact recovery with probability at least 1 — 1/n as soon as

P — 2 *(K VI Tr(X
min W4 =BT o ey jog(ny 4/ UKV I0BIM) iy e X Tr(E),
J#k max, |X5op n maX, | X op

V.
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Optimality

Some optimality
e Optimal rate when ¥, = 02/, and K = O(log(n)).
e Computational gap for K > log(n)? (as in SBM)

Remarks:
@ The general case requires further investigations.

@ The assumption of identical mean within groups can be relaxed.
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[[lustrations
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Model 2: clustering " features”
We have n i.i.d. observations of a p-dimensional vector of features with
N(0,X) distribution.

So the rows of the matrix X = [Xj]i=1,...n: 2a=1,..p are independent, with
N(0, %) distribution.

We want to cluster the features.

Block-structured covariance matrix

We assume the (unknown) block structure
o Y. =Cyifae G, bEGJfk and a # b
0 3.=Ck+Tl,

o C is positive semi-definite (<= a latent model)

For simplicity, we focus here on the case where each group of features has
the same size |G}| = p/K
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Minimax-optimal recovery

Exact recovery (Bunea, G., Royer, Verzelen (2016))

Exact recovery with probability at least 1 — 1/p as soon as

log(p) vV K
np/K

ij-i- Cuk —2Cjk >

log(p) v K
Moo '

n

min
J#k

rate-minimax optimal for K = O(log(p)),
computational gap otherwise?

can be extended to Subgaussian vectors,

the same result can be achieved when K is unknown, with a slight
variation of the SDP (drop the constraint tr(B) = K and add A/ to
).
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Model 3: graph clustering

(conditional) SBM

Assume that the graph is generated by a SBM with Qjx =probability of
connection between groups j and k.
Let X =adjacency matrix of the graph € {0, 1}V*N.

Remark: the SDP is applied to X7 X = X2 instead of X.

As before, we focus here on the case where each group of feature has the
same size |G| = N/K

Exact recovery (Emin and Lemhadri (20177))

Exact recovery with probability at least 1 — 1/N as soon as

K V log(N) n log(N)

. L 2
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4- Practice

Christophe Giraud (Orsay)
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Computational issues

Practical benefit?

@ solving the SDP is very intensive when we cluster many " points”
(many constraints)

@ Intensive research for fast approximate solvers

@ But does it make sense?

@ May be: we can expect that approximate solvers are less greedy than
Lloyd-like algorithms (under investigation...)
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Many thanks to all the organizers

for this great meeting!
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