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@ Random forests
© Purely random forests
© Toy forests in one dimension

@ Hold-out random forests
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Random forests
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Regression: data (X1, Y1),..., (X, Ya)
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Random forests
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Goal: find the signal (denoising)
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Random forests
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Regression

o Data D,: (X1, Y1), .., (Xn, Ya) €ERI xR (iid. ~ P)
Y,' = S*(X,') + €
with s*(X) = E[Y | X] (regression function).

@ Goal: learn f measurable function X — R s.t. the quadratic
risk

E(x,v)~p | (F(X) = *(X))’]

is minimal.
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Random forests
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively RY.

Restriction: splits parallel to the
axes.
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Random forests
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively RY.

@ Choice of the partition U
(tree structure)
Usually, at each step, one
looks for the best split of the
data into two groups
(minimize sum of
within-group variances) Dj,.
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Random forests
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Regression tree (Breiman et al, 1984)

Tree: piecewise-constant
predictor, obtained by partitioning
recursively RY.

© Choice of the partition U
(tree structure)

@ For each )\ € U (tree leaf),

A

choice of the estimation )
of s*(x) when x € \.

A

Here, 5y = Y average of
the (Yi)x.ex-
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Random forests
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Random forest (Breiman, 2001)

Definition (Random forest (Breiman, 2001))

{?@j, 1<j< q} collection of tree predictors, (©))1<j<q i.i.d. r.v.
independent from D,,.

Random forest predictor 5 obtained by aggregating the tree
collection.

@ ensemble method (Dietterich, 1999, 2000)

@ powerful statistical learning algorithm, for both classification
and regression.
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Random forests
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Bagging (“bootstrap aggregating”)

e Bootstrap (Efron, 1979): draw n i.i.d. r.v., uniform over
{(Xi,Yi)/i=1,...,n} (sampling with replacement)
= resample D?

o Bootstrapping a tree: 32, = Sireo(D2)

@ Bagging: bootstrap (g independent resamples) then
aggregation

1<
° J
Sbagglng 72 : ree
q =1
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Random forests
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Random Forest-Random Inputs (Breiman, 2001)

Definition (RI tree)

In a Rl tree, at each node, mtry variables are randomly chosen.
Then, the best cut direction is chosen only among the chosen
variables.

Definition (Random forest RI)

A random forest Rl (RF-RI) is obtained by aggregating Rl trees
built on independent bootstrap resamples.

RF-RI & bagging on Rl trees
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Random forests
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Random Forest-Random Inputs

Dy
W \
b1 b2
n n e P

Dqu
Rl tree
So, So, ... ... ) v
Aggregaticx\ /

SRF—RI
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Random forests
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Example of application of random forests: Kinect

\

1\
Depth image g‘[ = depth comparison features at each pixel
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= body part at each pixel '!«\ = body part positions ~..* = ---

Figures from Shotton et al (2011)
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Random forests
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Theoretical results on RF-RI

@ Few theoretical results on Breiman's original RF-RI

@ Most results:
e focus on a specific part of the algorithm (resampling, split
criterion),
e modify the algorithm (eg, subsampling instead of resampling)
e make strong assumptions on s*

@ References (see survey paper by Biau and Scornet, 2016):
Mentch & Hooker (2014), Scornet, Biau & Vert (2015),
Wager & Athey (2015), ...
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Random forests
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Theoretical results on RF-RI

@ Few theoretical results on Breiman's original RF-RI

@ Most results:
e focus on a specific part of the algorithm (resampling, split
criterion),
e modify the algorithm (eg, subsampling instead of resampling)
e make strong assumptions on s*
@ References (see survey paper by Biau and Scornet, 2016):
Mentch & Hooker (2014), Scornet, Biau & Vert (2015),
Wager & Athey (2015), ...

= Here, we consider simplified RF models, for which a precise
analysis is possible: purely random forests
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Purely random forests
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© Purely random forests
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Purely random forests
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Purely random forests

Definition (Purely random tree)
fs\IU(X) = Z 7/\(Dn)]lxe)\
AU

where Y)(D,) is the average of (Yi)x.ex, (x;,v;)ep, and the
partition U is independent from D,,.

A\

Definition (Purely random forest)
- 1
() ==Y swi(x)

with UL, ..., U9 i.i.d., independent from D,,.

A\
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Purely random forests
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Purely random forests

Definition (Purely random forest)

_ 1
$(x) == Suwlx) ==
9= 9 j=1 rew

with U!,..., U9 i.i.d., independent from D,.

Example (“hold-out RF" model): (random) split of the sample into
Dn (used for defining the labels Yy) and D, (used for building the
trees 1V = Ug;(D,7)).
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Purely random forests
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Purely random forests

Definition (Purely random forest)

1
S0 =2 > Swlx) = -
q = q-

with U!,..., U9 i.i.d., independent from D,.

Example (“hold-out RF" model): (random) split of the sample into
Dn (used for defining the labels Yy) and D, (used for building the
trees 1V = Ug;(D,7)).

A From now on, D, is the sample used for computing the
Yx(Dy), and we assume its size is n.
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Purely random forests
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Purely random forests

Ut U2 . . U9 Independent from D,

Using Dp, with or without resampling

/S\[Ul §U2 e e EUq
Aggregatio\
SPRF
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Purely random forests
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Purely random forests: theory

o Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)

@ Rates of convergence: Breiman (2004), Biau (2012)

@ Some adaptivity to dimension reduction (sparse framework):
Biau (2012)

o Forests decrease the estimation error (Biau, 2012; Genuer,
2012)

= What about approximation error?
Almost the same for a forest and a tree?
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Purely random forests
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Risk of a single tree (regressogram)

Given the partition U, regressogram estimator

Su(x) =Y Yalxex
AEU

where Y), is the average of (Y;)x.cx.

Sy € argmin{lzn:(Y,- — f(X,-))2}

feSy n =1
where Sy is the vector space of functions which are constant over
each A € U.
Define:
Su(x) == > Baleer where By :=E[s*(X)| X € A] .
AeU

= 3y € argminfes[UE{(f(X) — 5*(X))2} and 5y(x) = E[sy(x) | U]



Purely random forests
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Risk decomposition: single tree

E[(su(X) = s*(X))?]
= E[(gU(X) - s*(X))ﬂ + E[(Eu(X) - §U(X))2]

= Approximation error + Estimation error

If s* is smooth, X ~ #([0,1]) and U regular partition into K

pieces, then
1

. . 2
E[(8u(X) — s*(X))*] < 15
If var(Y | X) = 02 does not depend on X, then

2K

E[(su(X) - 3u(X))’] ~ =
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Purely random forests
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Approximation and estimation errors

T —0— Approx. error
0.357 —»—Estim. error
——E[Risk]

0.3r
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0.1

0.05

0 60
dimension D
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Purely random forests
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Risk decomposition: purely random forest

(W)1<j<q finite partitions, i.i.d. ~U
1 q

Estimator (forest): Spra(x) === E Sui(x)
q <
j=1

q

~

1
Ideal forest: Sura(x) = =Y Byi(x) = E[Syrq(x) | U]

Quadratic risk decomposition (given X = x)
E[(Spr-0() = $%(0)?] = E[(Bor-(x) = ()]
+ B[ (Bor-a(x) = Sp1-a(x))]

Bias term (approximation error):

~ 2
Buig(x) = E[ (3p1--a(x) = 5*(x))°]



Purely random forests
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Bias decomposition (given X = x)

Vi (x)

But,q(x) = But,oo(x) +

2
where By oo(x) 1= (IE [5u(x)] — s*(x))
and  Vy(x) := var(5y(x))

Bus,00(x) is the bias of the infinite forest: Sy oo(x) := E[Sy(x)]
to be compared with the bias of a single tree

Buﬁl(X) = Bum(x) + Vz/{(X)
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Toy forests
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© Toy forests in one dimension
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Toy forests
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Toy forests in one dimension

Assume: X =[0,1) X uniform over [0, 1)

U ~ U™ defined by:

o= {50 [R5 5]

where T has uniform distribution over [0, 1].
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Toy forests
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Interpretation of the ideal infinite forest

Proposition (A. & Genuer, 2014)

For any x € H, 1-— H , the ideal infinite forest at x satisfies:

1
Bg.00(x) = (5% * he)(x) :/0 S*()hi(x — t)dt

where
k(1—ku) ifO<u<i

hi(u) = S k(1 + ku) if — 2 <u<0
0 if |u| >

x[=
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Toy forests
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Analysis of the approximation error

(H2)  s* twice differentiable over (0,1) and s*”’ bounded

Taylor-Lagrange formula: for every t € (0,1), some ¢ x € (0,1)
exists such that

s*(t) — s*(x) = s (x)(t — x) + %s*”(ct,x)(t — x)?

Therefore,

Su(x) — 5*(x) _k/ - 1(5 ) — s*(x)) dt

where Ry(x) = 5 fX+V’X‘_1 s (cex)(t — x)?dt

Analysis of some purely random forests Sylvain Arlot



Toy forests
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Analysis of the approximation error

2 0 d
N . o . B
(Bulao() - s(]) <7 W), ~ o
Proposition (A. & Genuer, 2014)
Assuming (H2), for every x € [%, 1-— H ,
] ]
Bumal), nete Pure<ia
11 0 1-1 0
/ Bura(dx = 5 [ B 0ax< g

Rate k—* is tight assuming:
(H3)  s* three times differentiable over (0,1) and s*”” bounded
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Toy forests
00e00

Estimation error

General fact (Jensen’s inequality):

E|(50,00(X) = 80,00(X))’| < E|(0(X) = 30(X))?]
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Toy forests
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Estimation error

General fact (Jensen’s inequality):

E|(50,00(X) = 80,00(X))’| < E|(0(X) = 30(X))?]

For the toy forest, without any resampling for computing labels
and assuming that var(Y|X) = o2

E[@U(X) —gU(X))2] ~ 0127/(
E[(gw,oo(x) —ngoo(X)ﬂ ~ iaik

(A. & Genuer, 2016)
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Toy forests
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Summary: risk analysis

Single tree Infinite forest
(g=1) (g =o0)
. N 21 a(s*,x) o%k o(s*,x)  20%k
E|(Sua(x) = 5" ()’ & 5T a3,
*/ 2 */! 2
where a(s*,x) = s 1(;) and a(s*,x) = s 152)

Assumptions:
e x € (0,1) far from boundary
@ (H3) s* three times differentiable over (0,1) and s* bounded
e X uniform over [0, 1]
o var(Y|X) =02

@ no resampling for computing labels
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Toy forests
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Rates of convergence

Corollary: risk convergence rates (far from boundaries, with k = k
optimal):

Tree > O n—2/3
<On*® = minimax C?

Infinite forest n
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Toy forests
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Rates of convergence

Corollary: risk convergence rates (far from boundaries, with k = k
optimal):

~2/3

Tree n

>0
Infinite forest < O n™ 45 = minimax C2

Remarks:
> (k)2 is sufficient to get an

‘

‘infinite” forest

@ with subsampling a out of n for computing labels:
2
estimation error of a single tree X instead of Z-X;
no change for infinite forest
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Hold-out random forests
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@ Hold-out random forests

Analysis of some purely random forests Sylvain Arlot



Hold-out random forests
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Definition (Biau, 2012)

Split D, into Djp, and D,

Ut U2 u9 RI partitions, using Dy,

Using Dy,, no resampling here

/S\Ul /S\]UZ PR /S\Uq
Aggregatik /
SHO-RF

= purely random forest
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Hold-out random forests
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Numerical experiments: framework

@ Data generation:

Xi ~ U([0,1]9) Yi =s(Xi) +¢i
gi ~ N(0,0?) 0% =1/16
s*:xe|0 1]d»—>l><

’ 10
@ Data split: n1 =1280 np, =25600

[10 sin(mx1x2) + 20(x3 — 0.5)% + 10x4 + 5x5] .

o Forests definition:
nodesize =1
k € {25,20 27 281
“Large"” forests are made of g = k trees.

e Compute integrated approximation/estimation errors
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Hold-out random forests
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Numerical experiments: results (d = 5)

Single tree Large forest
No bootstrap 0.13 N 1.040%k  0.13 N 1.040°k
mtry = d k0-17 no k0-17 no
Bootstrap ~ 0.14  1.060°k 0.15  0.080%k
mtry = d k017 no k0-29 no
No bootstrap 0.23  1.016°k 0.06  0.060%k
mtry = [d/3] k019 + no PIET ny

Bootstrap ~ 0.25 N 1.020%k  0.06 N 0.050%k
mtry = Ld/3J k0-20 no k0.34 no
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Hold-out random forests
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Numerical experiments: results (d = 10)

Single tree Large forest
No bootstrap 0.11 n 1.030%k  0.11 n 1.030°k
mtry = d k012 o k0.12 P
Bootstrap ~ 0.11 ~ 1.050°k 0.10  0.040%k
mtry = d k011 no k0-19 no
No bootstrap 0.21  1.086°k 0.08  0.040%k
mtry = |d/3] k018 + no K0t ny

Bootstrap ~ 0.20 N 1.050%k  0.07 N 0.030%k
mtry = Ld/3J k016 no k0-26 no
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Conclusion

Conclusion

@ Forests improve the order of magnitude of the approximation
error, compared to a single tree

@ Estimation error seems to change only by a constant factor
(at least for toy forests);
not contradictory with literature: here, we fix k; different
picture if nodesize is fixed (4subsampling)
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Conclusion

Conclusion

@ Forests improve the order of magnitude of the approximation
error, compared to a single tree

@ Estimation error seems to change only by a constant factor
(at least for toy forests);
not contradictory with literature: here, we fix k; different
picture if nodesize is fixed (4subsampling)

@ Randomization:
randomization of labels seems to have no impact;
strong impact of randomization of partitions (hold-out RF:
both bootstrap and mtry)
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Conclusion

Approximation error: generalization

@ General result on the approximation error under (H2)/(H3):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error oc Mo infinite forest approx. error oc M3

where M & average square distance from x to the boundary
of its cell (oc k=2 for toy forests)
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Conclusion

Approximation error: generalization

@ General result on the approximation error under (H2)/(H3):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error oc Mo infinite forest approx. error oc M3

where M & average square distance from x to the boundary
of its cell (oc k=2 for toy forests)

e toy forests in dimension d: approximation error o< k=2/9 vs.
k—*/4 (infinite forest reaches minimax C? rates)
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Conclusion

Approximation error: generalization

@ General result on the approximation error under (H2)/(H3):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error oc Mo infinite forest approx. error oc M3

where M & average square distance from x to the boundary
of its cell (oc k=2 for toy forests)

e toy forests in dimension d: approximation error o< k=2/9 vs.
k—*/4 (infinite forest reaches minimax C? rates)

@ purely uniformly random forests in dimension 1 (split a
random cell, chosen with probability equal to its volume):
rates similar to toy forests
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Conclusion

Approximation error: generalization

@ General result on the approximation error under (H2)/(H3):
e.g., roughly, if x is centered in its cell (on average over U),

tree approx. error oc Mo infinite forest approx. error oc M3

where M & average square distance from x to the boundary
of its cell (oc k=2 for toy forests)

e toy forests in dimension d: approximation error o< k=2/9 vs.
k—*/4 (infinite forest reaches minimax C? rates)

@ purely uniformly random forests in dimension 1 (split a
random cell, chosen with probability equal to its volume):
rates similar to toy forests

@ balanced purely random forests (full binary tree, uniform
splits) in dimension d: k< (tree) vs. k—2% (forest) where
o = —log, (1 - %) = not minimax rates!
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Conclusion

Open problems / future work

o Extensive numerical experiments? (other functions s*, ...)

@ Theory on approximation error of hold-out RF?
= understand the typical shape of a cell of a RI tree
(x centered on average? square distance to boundary?)

@ Theory on estimation error of other models (beyond toy)?
of hold-out RF?
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