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Quantum Uncertainty Relations (HUR)

Heisenberg uncertainty relation (1927)

Formulation of Kennard (1927) for the product of variances of position
and momentum (~ = 1)

∆2x ∆2p ≥ 1

4
.

A more general (but state dependent !)

formulation of Robertson (1929)

for arbitrary operators A an B. Let ∆2A = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2
be the variance of an operator A. Then for any state |ψ〉

∆2A ∆2B ≥ 1

4

∣∣〈ψ|AB − BA|ψ〉
∣∣2

As [x , p] = xp − px = i the latter form implies the former bound.
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Otton Nikodym & Stefan Banach,

talking at a bench in Planty Garden, Cracow, summer 1916
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Infinite Hilbert space H∞

Harmonic Oscillator Coherent States (CS)

Vacuum state, |0〉 and commutation relation, [a, a†] = 1,
with a = (x̂ + i p̂)/

√
2 and with z = (x + ip)/

√
2 yield ”standard”

Displacement operator coherent states: |z〉 := exp(za† − z∗a)|0〉
satisfying identity resolution: 1

2π

∫
d2z |z〉〈z | = 1.

Equivalent conditions:

Anihilation operator CS: a|z〉 = z |z〉,
Minimum uncertainty CS: ∆x∆p = 1/2 (saturation of HUR)

Husimi function & Wehrl entropy

Q–representation: Qρ(z) := Trρ|z〉〈z | = 〈z |ρ|z〉.

Wehrl entropy: SW (ρ) := − 1
2π

∫
d2z Qρ(z) log Qρ(z).

Wehrl conjecture (1978) → Lieb theorem (1978):
Minimum of SW is achieved for coherent states, SW (ρ) ≥ 1.
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Finite dimensional Hilbert space HN

SU(2) [Bloch] Coherent States

Let N = 2j + 1 where j is the total spin.
For vacuum state set the eigenstate |j , j〉 of momentum operator Jz

and commutation relation, [Ji , Jk ] = 2iJleikl [group SU(2)]
with z = tan(θ/2)e iφ yield Bloch CS

|z〉 = |θ, φ〉 := 1
(1+|z|2)j exp[z(Jx − iJy )] |j , j〉

satisfying identity resolution: N
4π

∫
Ω dΩ |z〉〈z | = 1.

Husimi function & Wehrl entropy

Q–representation: Qρ(z) := Trρ|z〉〈z | = 〈z |ρ|z〉.

Wehrl entropy: SW (ρ) := − 1
2π

∫
Ω dΩ Qρ(z) log Qρ(z).

Lieb conjecture (1978) → Lieb-Solovej theorem (2014):
Minimum of SW is achieved for coherent states, SW (ρ) ≥ 1− 1/N.
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Wawel castle in Cracow
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Stellar Representation & Anti-coherent states

Stellar representation of a pure state |ψ〉 ∈ HN

Husim function of a pure state Qψ(z) := |〈z |ψ〉|2
forms a polynomial f (z) or order n = N − 1 = 2j .

Thus it has n zeros (possibly degenerated!) on the complex plane
or on the sphere – stereographic projection z = tan(θ/2)e iφ.

Hence any state |ψ〉 ∈ HN can be uniquely defined
by a collection of n points on the sphere, called stars.

For coherent state all stars sit in the antipodal point
One defines anti-coherent states as these which:

a) maximize the Wehrl entropy (among pure states)
b) are most distant from the set of coherent states

(e.g. with respect to the geodesic, Fubini–Study distance)

Thus anti-coherent states correspond to
’uniform’ distribution of stars on the sphere

(observation: random states are close to anti-coherent!)
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Stellar representation and Husimi function
for coherent and anti-coherent states
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Vector Coherent States & Separable States

Higher vector coherent states – group SU(K ) CS

- Take generators Sk of the group SU(K ), a highest weight state |µ〉,
a vector z = (z1, . . . , zm), and obtain
a vector coherent state |z〉 = Cz

∏
k exp(zkSk)|µ〉

Lieb-Solovej theorem (2016):
Coherent states miminize the (generalized) Wehrl entropy.

Stellar representation: now ’stars’ live in CPK−1.
Texas effect: for N = K every state is SU(K ) coherent!

Separable & Entangled States

Consider a composed Hilbert space HKM = HK ⊗HM = HA ⊗HB.
Definition: a product state |φsep〉 = |φA〉 ⊗ |φB〉 is called separable,

while any other state is called entangled.
A separable state is coherent with respect to the group SU(K )× SU(M),
a maximally entangled state is anti-coherent

with respect to a certain measure of non-coherence.
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Stratification of the manifold ΩN = CPN−1 of pure states of a simple
system into strata of states with the same degree of coherence
(the Wehrl entropy or the distance to the set of coherent states).
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Stratification of set Ω of pure states of
a) simple system with N levels, b) composed system N×K ;
set M of mixed states for
c) simple system with N levels, d) composed system N×K .
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Wawel castle in Cracow
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Ciesielski theorem
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Ciesielski theorem: With probability 1− ε the bench Banach talked to
Nikodym in 1916 was localized in η-neighbourhood of the red arrow.
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Bench commemorating discussion between
Stefan Banach and Otton Nikodym (Kraków, summer 1916)
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Entropic Uncertainty Relations (EUR)

Continuous case

Define continuous (Boltzmann–Gibbs) entropies:

S(x) = −
∫

dx |ψ(x)|2 ln |ψ(x)|2
and

S(p) = −
∫

dp|ψ(p)|2 ln |ψ(p)|2.

Then

S(x) + S(p) ≥ ln(eπ) .

Bia lynicki-Birula, Mycielski (1975) and Beckner, (1975)

generalizations for Rényi α–entropies,

Sα(x) := 1
1−α ln

(∫
dx |ψ(x)|2α

)
Bia lynicki-Birula, (2006)
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Entropic Uncertainty Relations - N dimensional case

State |ψ〉 =
∑N

i ai |i〉 =
∑

j bj |βj〉 is expanded in the eigenbases of
operators A and B, related by a unitary matrix Uij = 〈i |βj〉.

Let Shannon entropies in both expansion be
SA(ψ) = −

∑N
i=1 pi ln pi = S(p) with pi = |ai |2,

∑
i pi = 1 and

SB(ψ) = −
∑N

j=1 qj ln qj = S(q) with qj = |bj |2,
∑

j qj = 1.

Let c1(A,B) = maxij |Uij |2. Then for any state |ψ〉 ∈ HN we have

SA(ψ) + SB(ψ) ≥ −2 ln[(1 +
√

c1)/2] =: BD

Deutsch, (1983), later improved

SA(ψ) + SB(ψ) ≥ − ln c1 =: BMU

by Maassen, Uffink, (1988),
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Entropic Uncertainty Relations - N dimensional case

Example: the Fourier matrix FN

Unitary matrix which defines the second (unbiased !) basis

Ujk = (FN)jk :=
1√
N

exp(i 2πjk/N) with j , k = 0, 1, . . . , n − 1.

then c1 = maxjk |Ujk |2 = 1/N.
The bound of Maassen–Uffink gives

S(p) + S(q) ≥ − ln c1 = ln N

If |ψ〉 = (1, 0, . . . , 0) then SA = 0 and SB = ln N so bound is saturated...

The same bound holds for any unitary complex Hadamard matrix H,
for which |Hij |2 = 1/N for all i , j = 1, . . .N.

In a general case the bounds of Maassen and Uffink are not optimal.
How to improve them ??
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An alternative approach: Key ingredients used

A) An algebraic tool: Majorization

Consider two probability vectors of length N ordered decreasingly,
x = (x1 ≥ x2 ≥ . . . xN ≥ 0) and y = (y1 ≥ y2 ≥ . . . yN ≥ 0).

The vector x is called to be majorized by y , written x ≺ y , if∑m
i=1 xi ≤

∑m
i=1 yi , for m = 1, . . .N − 1

Majorization x ≺ y implies inequalities for Renyi α–entropies
1

1−α ln
(∑N

i=1 xαi

)
=: Sα(x) ≥ Sα(y) := 1

1−α ln
(∑N

i=1 yαi

)
(and other Schur–concave functions)

B) Bi-entropy and product probability vectors

Let p ⊗ q = (p1q1, p1q2, . . . , p1qN , . . . pNqN)
denotes a product probability vector of size N2.

Then the sum of bientropies reads Sα(p) + Sα(q) = Sα(p ⊗ q).
To arrive at an entropic uncertainty relation

we need to find a vector Q majorizing the product p ⊗ q.
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1) Product Majorization EUR (PRŻ. 2013)

Let k = 1, . . .N − 1: spectral norms of all submatrices of unitary U

Let Am,n denote the maximal m × n submatrix of U.
Define sk := max

{
||A1,k ||, ||A2,k−1||, . . . , ||Ak−1,2||, ||Ak,1||

}
.

We have sk ≥ sk−1 and Rk :=
(

1+sk
2

)2
≥ Rk−1.

Theorem: For any unitary U of order N

the following tensor–product majorization relation holds:

(p ⊗ q) ≺ (R1 ,R2 − R1 , . . . ,RN−1 − RN−2, 1− RN−1) =: Q.

This implies an explicit ’product’ majorization entropic uncertainty
relation, valid for any pure state |ψ〉 and any Renyi entropy Sα

Sα(p) + Sα(q) ≥ Sα(Q) =
1

1− α
ln

N2∑
i=1

Qα
i .

Similar results: Friedland, Gheorghiu, Gour (2013)
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Example: matrix of size N = 4, the second bound (k = 2)

k = 2: norms of 2-subvectors of unitary U

We look for a majorization relation of the type

(p ⊗ q) ≺ Q = (R1 ,R2 − R1 , 1− R2, 0, . . . 0) . (1)

Consider the longest 2–sub–vector of unitary U and denote its norm by

s2 = max
{

maxi ,j1,j2

√
|Uij1 |2 + |Uij2 |2, maxi1,i2,j

√
|Ui1j |2 + |Ui2j |2

}
Theorem 1 implies that the above majorization relation

with R2 =
(

1+s2
2

)2
holds !

Example: On orthogonal matrix U ∈ U(4) with entries truncated to two
decimal digits
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2) Strong Majorization EUR (2014)

Direct-sum majorization relation = improved lower bound

p ⊕ q ≺ {1} ⊕W ,

where the majorizing vector W = (s1, s2 − s1, . . . sN − sN−1, 0, . . . , 0) is
constructed out of the same largest norms sk of submatrices of U.
This implies an explicit strong majorization entropic uncertainty
relation

Sα(p) + Sα(q) ≥ Sα(W ) =
1

1− α
ln

N2∑
i=1

W α
i .

Rudnicki, Pucha la, K. Ż, PRA (2014).

Related bounds: Coles, Piani (2014)

← Bounds for an orthogonal rotation

matrix O(θ) =

(
cos θ sin θ
− sin θ cos θ

)
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Upper bound for the sum of entropy

Two orthogonal measurements in L = 2 bases

Proposition: for any U ∈ U(N) there exist a state |ψ〉 ∈ HN

mutually unbiased with respect to a basis B and B ′ = UB,
so that |〈i |ψ〉|2 = |〈i |U|ψ〉|2 = 1/N,

Korzekwa, Lostaglio, Jennings and Rudolph (2014).
It implies a ’trivial’ Entropic Certainty Relation: (saturation)

S̄ =
1

2

(
S(p) + S(q)

)
≤ log N

A state |ψ〉 ∈ HN such that
|〈i |ψ〉|2 = 1/N is called coherent with
respect to basis {|i〉}, as the sum of
coherences (absolute values of
off-diagonal elements) is maximal.

← Upper and lower bounds for S̄ for
orthogonal matrices O(θ) of size 2.
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What known theorem this figure illustrates?

Two great circles at the sphere do cross !
⇔ Equator is non-displacable in S2.
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Non-displacable tori in CPN−1

Observation. The set C of all N–dimensional states mutually
unbiased with respect to a basis {|i〉} forms an (N-1)– great torus TN−1,
as |ψ〉 = 1√

N

(
1, exp(iφ1), exp(iφ2), . . . , exp(iφN−1)

)
.

Do two great two–tori T2 embedded in CP2 intersect?

Yes, a great K -torus TK is non–displacable in CPK , Cho (2004).

Crossing points marked
X represent
mutually unbiased
states
(mutually coherent
states).

Projections of two 2–tori embedded in CP3: 6 crossing points marked X
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Entropic uncertainty relations for L measurements

in basis given by L unitary matrices, U(1), . . . ,U(L):
Define coefficients Sk : {U(j)}Lj=1,

Sk = max{σ2
1(|u(j1)

i1
〉, |u(j2)

i2
〉, . . . , |u(jk+1)

ik+1
〉)},

being maximal squares of norms of rectangular matrices of size
N × (k + 1) formed by k + 1 columns taken from the concatenation of all
L unitary matrices.

The following majorization relation holds,

{p(j)
i }

N,L
i ,j=1 ≺ {1,S1 − 1,S2 − S1, . . . }.

and it implies the poli-measurement entropic uncertainty relation

L∑
i=1

S
(
p(i)
)
≥ −

NL∑
i=1

(Si − Si−1) ln(Si − Si−1)
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Mutually Unbiased Bases

Two orthogonal bases consisting of N vectors each in HN are called
mutually unbiased (MUB) if

|〈φi |ψj〉|2 = 1
N , for i , j = 1, . . . ,N .

Full sets of (N + 1) MUB’s are known if dimension is a power of
prime, N = pk . For N = 6 = 2× 3 only 3 < 7 MUB’s are known!

A transition matrix Hij = 〈φi |ψj〉 from one unbiased basis to another
forms a complex Hadamard matrix, which is
a) unitary, H† = H−1,
b) has ”unimodular” entries, |Hij |2 = 1/N, i , j = 1, . . . ,N.

Classification of all complex Hadamard matrices is complete for
N = 2, 3, 4, 5 only. (Haagerup 1996)

see Catalog of complex Hadamard matrices, at
http://chaos.if.uj.edu.pl/∼karol/hadamard
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3 measurements in H2 and Mutually Unbiased Bases.

Nontrivial upper bound (∗) = Certainty Relations (Sanchez 1993)

L = 3 measurements in 3 bases:
for one qubit: N = 2
U(1) = I2

U(2) =

(
cos θ sin θ
sin θ − cos θ

)
U(3) =

(
cos θ sin θ
i sin θ −i cos θ

)
.

For θ = 0 all three measurements coincide so S̄min = 0,
For θ = π/4 these three bases become maximally unbiased (MUB)
so the lower bound (∗) for the sum of the entropies is the largest,
while the upper bound (∗) is the smallest!

The root mean square deviation of the mean entropy averaged over
all pure states, ∆(S̄) = (〈S̄2〉ψ − 〈S̄〉2ψ)1/2, is the smallest for MUB.
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3 measurements in H2 and Mutually Unbiased Bases.

New nontrivial upper bounds Bmax = Certainty Relations
and lower bounds Bmin = Uncertainty Relations, 2015

L = 3 measurements in 3 bases:
for one qubit: N = 2
U(1) = I2

U(2) =

(
cos θ sin θ
sin θ − cos θ

)
U(3) =

(
cos θ sin θ
i sin θ −i cos θ

)
.

For θ = 0 all three measurements coincide so S̄min = 0,
For θ = π/4 these three bases become maximally unbiased (MUB)
and the lower bound Bmin - - - for the average entropy S̄ is the largest

- it coincides with the bound of Sanchez and becomes tight,
while the upper bound Bmax - - - is the smallest!
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Stefan Banach sitting at a bench close to the Wawel Castle

Sculpture: Stefan Dousa Fot. Andrzej Kobos
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Concluding remarks

Spin coherent states in HN mimimize the Wehrl Entropy
Pure states for which Wehrl Entropy is maximal are anti-coherent
Composed K × K systems: separable states are coherent with
respect to group SU(K )× SU(K ); anti-coherent states are
maximally entangled
Three Majorization Entropic Uncertainty Relations (lower
bounds B ≤ Smin ≤ S̄) derived for any unitary U ∈ U(N):
The 2014 bound BMaj2 based on simple sum dominates
the 2013 bound BMaj1 based on tensor product majorization.

The 2015 bound Bmin based on purity of the POVM works better
in vicinity of the Fourier matrix (and MUBs).

Upper bounds for mean entropy, S̄ ≤ Smax ≤ Bmax

form universal Entropic Certainty Relations.
Great torus TN−1 is non-displacable in CPN−1. Thus for any two
bases in HN there exists a mutually basis coherent state, for which
certainty relation is saturated S̄ = log N.
Generalization for L orthogonal measurements.
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Bench commemorating discussion between
Stefan Banach and Otton Nikodym (Kraków, summer 1916)

Sculpture: Stefan Dousa Fot. Andrzej Kobos

Opened in Planty Garden, Cracow, Oct. 14, 2016
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