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@ Multiscale Systems inspired by Coherent States
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The quasi-regular representation of R x GL (]Rd)

The quasi-regular representation
m:R? % GL(R?) — U (L2 (RY)), (x, h) — T«Dp,
with
(T F)(y)=F(y—x)  and  Duf =|deth| 2. foh™?
is a unitary representation.
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The quasi-regular representation
m:R? % GL(R?) — U (L2 (RY)), (x, h) — T«Dp,
with
(TF)(y)=f(y—x)  and  Duf =|deth| /? - foh?
is a unitary representation.

Duflo-Moore: Instead of GL (Rd), consider H < GL (Rd) closed, called
dilation group. We get a system of coherent states (7 (x, h) ¥) n)ec for
G :=RY x H if nt|¢ is irreducible and square-integrable.
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The quasi-regular representation of R x GL (Rd)

The quasi-regular representation
m:R? % GL(R?) — U (L2 (RY)), (x, h) — T«Dp,
with
(TF)(y)=f(y—x)  and  Duf =|deth| /? - foh?
is a unitary representation.

Duflo-Moore: Instead of GL (Rd), consider H < GL (]Rd) closed, called
dilation group. We get a system of coherent states (7 (x, h) ¥) n)ec for

G :=RY x H if nt|¢ is irreducible and square-integrable.

Theorem (Fiihr)
|G is irreducible and square-integrable if and only if

@ There is & € RY such that the dual orbit O := HT & C R? is open
and of full measure.

© The isotropy group Hg, := {heH ‘ hT& = &} < H is compact.
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Definition: Let y € L2(R) be a wavelet, i.e., fR|l//(a))| |—‘" <oo. The
associated homogeneous continuous wavelet system is

(2O ) I CICE L) I
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Definition: Let y € L2(R) be a wavelet, i.e., fR|l//(a))| |—‘° <oo. The
associated homogeneous continuous wavelet system is

(2O ) I CICE L) I

Definition: Let ¢,y € L2(R) be a scaling function and a wavelet. Then
the inhomogeneous discrete wavelet system generated by ¢,y is

(oe=m) U2 y@e-m)) R

Jj€Ng,meZ
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Wavelets

Definition: Let w € L2(R) be a wavelet, i.e., [ |V (o)
associated homogeneous continuous wavelet system is

(laI 2y (a7 (o - 1)) = (%(5,2) W)(p,a)c -

2dc0<oo The

acR* beR

Definition: Let ¢,y € L2(R) be a scaling function and a wavelet. Then
the inhomogeneous discrete wavelet system generated by ¢,y is

(oe=m) U2 y@e-m)) e

Jj€Ng,meZ

Definition: Let ¢,y as above. A 2D inhomogeneous discrete wavelet
system is defined by
U (2 y O (Fe—m))

meZ? Jj€No,meZ2 (e{1,2,3}

oW =929, yM.=9oy, v =y, yvO.=yoy.
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Approximation properties of Wavelets

For good compression of a signal f, it would be desirable that f can be well
approximated using only a few wavelets:
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Approximation properties of Wavelets

For good compression of a signal f, it would be desirable that f can be well
approximated using only a few wavelets:

Theorem: Discrete wavelets provide optimal approximation rates for those
f € L2 (R?) which are C? apart from point singularities:

I =yl 2 S N2 (N — o0).

~
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Living on the point
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Living on the peint edge

Natural images are governed by curved singularities, not point singularities!J
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Living on the peint edge

Natural images are governed by curved singularities, not point singularities!J

Definition (Donoho; 2001)
With @ := (0,1)?, the set of cartoon-like functions is defined as
€ (R*)={fo+f-1g|dB C Q closed C* curve and fp,f; € C2(Q)}.
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Approximation of cartoon-like functions

Theorem: For f € €2 (R?), the best N-term approximation fy
o using Fourier basis: ||f — fy||;2 < N71/4,
o using Wavelets: ||f — fy||,2 S N2
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Approximation of cartoon-like functions

Theorem: For f € €2 (R?), the best N-term approximation fy
o using Fourier basis: ||f — fy||;2 < N71/4,
o using Wavelets: ||f — fy||,2 S N2

Theorem (Donoho; 2001): Let (), be any countable family in
L2(R?). If

IF—full2SN®  VYNeN  Vfe&?(R?),

then 6 < 1. Here, we assume polynomial depth search for forming fy.
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Theorem (Donoho; 2001): Let (), be any countable family in
L2(R?). If

IF—full2SN®  VYNeN  Vfe&?(R?),

then 6 < 1. Here, we assume polynomial depth search for forming fy.

Hence, Wavelets cannot approximate curvilinear singularities optimally. J
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Approximation of cartoon-like functions

Theorem: For f € €2 (R?), the best N-term approximation fy
o using Fourier basis: ||f — fy||;2 < N71/4,
o using Wavelets: ||f — fy||,2 S N2

Theorem (Donoho; 2001): Let (), be any countable family in
L2(R?). If

IF—full2SN®  VYNeN  Vfe&?(R?),

then 6 < 1. Here, we assume polynomial depth search for forming fy.

Hence, Wavelets cannot approximate curvilinear singularities optimally. J

Intuitive explanation: This is caused by the scalar dilations:
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Design Goals for a new representation system

Design a representation system W = (y), C L2 (R?) such that:
e Vs a frame:

fel?—((fya)) el =Y (fy) v =1
A
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Design Goals for a new representation system

Design a representation system W = (y), C L2 (R?) such that:
e Vs a frame:

fel?—((fya)) el =Y (fy) v =1
A

e WV is an affine system, motivated by coherent states.
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Design Goals for a new representation system

Design a representation system W = (y), C L2 (R?) such that:
e Vs a frame:

fel?—((fya)) el =Y (fy) v =1
A

e WV is an affine system, motivated by coherent states.
@ VW is a multiscale representation system, with an associated tiling of
the Fourier domain.
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e Vs a frame:

fel?—((fya)) el =Y (fy) v =1
A

e WV is an affine system, motivated by coherent states.

@ VW is a multiscale representation system, with an associated tiling of
the Fourier domain.

@ It should be possibly to choose a compactly supported generator for V.
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Design Goals for a new representation system

Design a representation system W = (y), C L2 (R?) such that:
e Vs a frame:

fel?—((fya)) el =Y (fy) v =1
A

WV is an affine system, motivated by coherent states.

WV is a multiscale representation system, with an associated tiling of
the Fourier domain.

It should be possibly to choose a compactly supported generator for W,
WV should provide optimally sparse approximations of cartoons.

Fast algorithms which treat the analog and digital world uniformly.

F. Voigtlaender = Shearlets: Theory, Applications, and Generalizations | Coherent States Workshop, CIRM 8/34



Design Goals for a new representation system

Design a representation system W = (y), C L2 (R?) such that:
e Vs a frame:

fel?—((fya)) el =Y (fy) v =1
A

e WV is an affine system, motivated by coherent states.

@ VW is a multiscale representation system, with an associated tiling of
the Fourier domain.

@ It should be possibly to choose a compactly supported generator for V.

@ VW should provide optimally sparse approximations of cartoons.

@ Fast algorithms which treat the analog and digital world uniformly.

Non-exhaustive list of approaches:
e Ridgelets (Candés and Donoho; 1999)
@ Curvelets (Candés and Donoho; 2002)
e Contourlets (Do and Vetterli; 2002)
e Bandlets (LePennec and Mallat; 2003)
@ Shearlets (Kutyniok and Labate; 2006)
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Continuous shearlet systems

Instead of the dilation group H =R*-SO (R?) leading to wavelets, we
consider the dilation group

a o0 1 s
= {e (o )6 )
——

=:A, =:S,

se{il},ae(O,oo),seR}.
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Continuous shearlet systems

Instead of the dilation group H =R*-SO (R?) leading to wavelets, we
consider the dilation group

a o0 1 s
= {e (o )6 )
——

=:A, =:S,

se{il},ae(O,oo),seR}.

For admissible y € L2 (R?), the associated continuous shearlet system is
(7 (x, h) lV)xe]R2,heH-
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Continuous shearlet systems

Instead of the dilation group H =R*-SO (R?) leading to wavelets, we
consider the dilation group

a o0 1 s
= {e (o )6 )
——

=:A, =:S,

se{il},ae(O,oo),seR}.

For admissible y € L2 (R?), the associated continuous shearlet system is
(7 (x, h) lV)xe]R2,heH-

Main properties:
@ Parabolic scaling
@ Different orientations via shearing.
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Continuous shearlet systems

Instead of the dilation group H =R*-SO (R?) leading to wavelets, we
consider the dilation group

a o0 1 s
= {e (o )6 )
——

=:A, =:S,

se{il},ae(o,oo),seR}.

For admissible y € L2 (R?), the associated continuous shearlet system is
(7 (x, h) ll’)xe]R2,heH'
Advantages of shearing:

@ The shearing matrices (} %) leave the digital grid Z? invariant.

@ Uniform theory for the analog and digital situation.

Main properties:
@ Parabolic scaling
@ Different orientations via shearing.
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Discretization of continuous shearlet systems

The set

{ s = [(E %) j,kez}

is well-spread in the shearlet group H.
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Discretization of continuous shearlet systems

The set

{ s = [(E %) j,kez}

is well-spread in the shearlet group H.

Hence, coorbit theory (Feichtinger & Grochenig) motivates the following
definition:

Definition (Kutyniok, Labate; 2006): For y € L?(R?), the associated
discrete shearlet system is

3 .
21] . 5 A ) _ = D - Tm :
( 1,/( kAo @ m)>_j7keZ,m€ZZ ( (SkAgj) 1 w)j,keﬂmezz
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The induced frequency tiling

s
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The induced frequency tiling

Very different treatment of x-direction and y-direction! )
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The induced frequency tiling

Very different treatment of x-direction and y-direction! ]

Solution: Use cone-adapted shearlets:

&
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The induced frequency tiling

Very different treatment of x-direction and y-direction! J

Solution: Use cone-adapted shearlets:

&2
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Cone-adapted Discrete Shearlet Systems
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Cone-adapted Discrete Shearlet Systems

Definition (Kutyniok, Labate; 2006):

The cone-adapted discrete shearlet system 8H (¢, v, §; ¢) with sampling
density ¢ > 0 generated by ¢, v, € L2 (R?) is the union of

{q)(o—c-m)‘mEZz},
{Wjkmn =W (SkAy e —c-m)|j € No, |k| < [2/?], me Z?},
{l,fj,k,m,v - 1,"/(5[2\21.—0 m) ‘j € No, [k| < [2/2], me Zz},

1 k 20 ~ 20/2 0

where

—]
—

v

—
—

F. Voigtlaender

Shearlets: Theory, Applications, and Generalizations
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Conclusion of first part

We have seen:

@ Wavelets are not optimal for approximation of functions with curvilinear
singularities.
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@ Wavelets are not optimal for approximation of functions with curvilinear
singularities.
@ Shearlets are an alternative multiscale system which uses
» parabolic dilations
> shearings

instead of scalar dilations.
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Conclusion of first part

We have seen:
@ Wavelets are not optimal for approximation of functions with curvilinear
singularities.
@ Shearlets are an alternative multiscale system which uses
» parabolic dilations
> shearings

instead of scalar dilations.

Recall: Design goals for shearlet system W:

o Vis a frame.

@ WV is an affine system, motivated by coherent states. v

e V is a multiscale representation system, with an associated tiling of the
Fourier domain. v

It should be possibly to choose a compactly supported generator for V.
@ W should provide optimally sparse approximations of cartoons.

o Fast algorithms treating the analog and digital world uniformly. (V')
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© Shearlets and their Applications
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Compactly supported shearlets

Theorem (Kittipoom, Kutyniok, Lim; 2012):
Let ¢, y, € L? (Rz) be compactly supported and assume that

e Y, satisfy certain decay conditions,
@ we have

|$(é)|2+;|%,k(é)|2+@(é)ﬁ >C>0 ae (1)
Js

Then there is some ¢ > 0 such that 83 (¢, v, ;) is a frame for L2 (R?).
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Compactly supported shearlets

Theorem (Kittipoom, Kutyniok, Lim; 2012):
Let ¢, y, € L? (Rz) be compactly supported and assume that

e Y, satisfy certain decay conditions,
@ we have

PEOP+ LW EP +F (@ >C>0 ae (1)
J.k
Then there is some ¢ > 0 such that 83 (¢, v, ;) is a frame for L2 (R?).

A

il
\

/
7

Y

\[/

[
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Compactly supported shearlets

Theorem (Kittipoom, Kutyniok, Lim; 2012):
Let ¢, y, € L? (Rz) be compactly supported and assume that

e Y, satisfy certain decay conditions,
@ we have

|$(é)|2+;|%,k(é)|2+@(é)ﬁ >C>0 ae (1)
J

Then there is some ¢ > 0’such that 81 (¢, y,; c) is a frame for L? (R?).

Remarks
e For (), it suffices to have ¥ ((&1,82)) = w((&2,&1)) as well as

6|21 foreel-117,
P21 for£ie1/3, 3] and |&l <&,

@ There are special examples with frame bounds B/A = 4.
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Optimal Sparse Approximation of Cartoon-like functions

Theorem (Kutyniok, Lim; 2011):

Let ¢, y, € L? (Rz) be compactly supported and such that

SH (¢, y,;c) is a frame for L2 (R?). Further, assume that l[/},l/f/ satisfy
certain decay conditions. Then 8H (¢, v, {7; ¢) provides an optimally sparse
approximation of all f € &2 (Rz), ie.,

If—full SN -(logN)*2  YNeN  Vfeé?(R?).

~
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Optimal Sparse Approximation of Cartoon-like functions

Theorem (Kutyniok, Lim; 2011):
Let ¢, y, € L? (Rz) be compactly supported and such that
SH (¢, y,;c) is a frame for L2 (R?). Further, assume that 117,177 satisfy
certain decay conditions. Then 8H (¢, v, {7; ¢) provides an optimally sparse
approximation of all f € &2 (Rz), ie.,

If—full SN -(logN)*2  YNeN  Vfeé?(R?).

Here, fy is a linear combination of (at most) N elements of the dual frame
of 83 (¢, v, i c).
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Optimal Sparse Approximation of Cartoon-like functions

Theorem (Kutyniok, Lim; 2011):
Let ¢, y, € L? (Rz) be compactly supported and such that
8H (¢, y,;c) is a frame for L2 (R?). Further, assume that ¥,/ satisfy
certain decay conditions. Then 8H (¢, v, {7; ¢) provides an optimally sparse
approximation of all f € &2 (R2), ie.,

If—full SN -(logN)*2  YNeN  Vfeé?(R?).
Here, fy is a linear combination of (at most) N elements of the dual frame
of SH (¢, v, ¥ c).
Remark
The proof shows

Y [0(AIZ<SN2-(logh)>  VYNeN  Vfe&?(R?),

n>N

where |0 (f)|, denotes the n-th largest shearlet coefficient. Hence, the
shearlet coefficients are in ¢P for all p > %
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Let's look at

Applications
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Feature separation in Images

Problem from Neurobiology: Alzheimer Research

@ Detection of characteristics of Alzheimer

@ Separation of spines (point-like) and dendrites (curvilinear)

(Confocal-Laser Scanning-Microscopy)
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Numerical results of feature separatio

(Source: Brandt, Kutyniok, Lim, Siindermann; 2010)
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Separation using Sparsity

General approach:
o Let x% = xP+x? be a signal.
o Let ®1,d5 be frames such that x? = d),-clp with c,p sparse, i = 1,2.

@ This yields 0
X0:[¢1|¢2 ] |:z%):|
2
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Separation using Sparsity

General approach:

o Let x% = xP+x? be a signal.

o Let ®1,d5 be frames such that x? = <1>,-cfJ with c,p sparse, i = 1,2.

@ This yields
0 cf
X :[¢1|¢2]|:0:|.
©
x9,x9,c9, Y exist, but are unknown! J
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Separation using Sparsity

General approach:
o Let x% = xP+x? be a signal.
o Let ®1,d5 be frames such that x,o = <I>,'cfJ with ci0 sparse, i =1,2.

@ This yields
0 cf
X :[¢1|¢2]|:0:|.
e
X959, ¢, exist, but are unknown! J

Idea for determining c?, ) and hence x?,x9: ¢* minimization (Elad,

Starck, Querre, Donoho; 2005):

(é1,&) = argmin ||cy||,2 + || 2|, subject to x° = dycp + daco.
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Separation using Sparsity

General approach:
o Let x% = xP+x? be a signal.
o Let ®1,d5 be frames such that x,o = <D,'c,9 with c,.0 sparse, i =1,2.

@ This yields
0 cf
X :[¢1|¢2]|:0:|.
e
X959, ¢, exist, but are unknown! J

Idea for determining c?, ) and hence x?,x9: ¢* minimization (Elad,

Starck, Querre, Donoho; 2005):

(é,&) = argmin ||c1|| 2 +||call,» subject to x° = d1c1 + Paco.

Theorems (Donoho, Kutyniok; 2013), (Kutyniok; 2014):
@ Wavelets: Optimally sparse approximations of points.
@ Shearlets: Optimally sparse approximations of curves.

~ Provable asymptotic separation of points and curves!
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Inpainting using Shearlets
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Inpainting using Shearlets

(Source: Lim; 2014)
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© Shearlets, Coherent States & Decomposition spaces
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What are Decomposition spaces?
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What are Decomposition spaces?

Given

e a suitable (frequency space!) covering Q = (Q;);; of O C R¢,
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What are Decomposition spaces?

Given
e a suitable (frequency space!) covering Q = (Q;);, of O CRY,
@ a suitable partition of unity ® = (¢;),., subordinate to Q,
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What are Decomposition spaces?

Given
e a suitable (frequency space!) covering Q = (Q;);, of O CRY,
@ a suitable partition of unity ® = (¢;),., subordinate to Q,

e a suitable weight w = (w;);,,
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e a suitable (frequency space!) covering Q = (Q;);, of O CRY,

@ a suitable partition of unity ® = (¢;),., subordinate to Q,

e a suitable weight w = (w;);,,

we define the associated decomposition space as

D(Q,LP,19) := {g e 77 ‘ (1572 (9i-8)|,p) ., € zgv(/)}.

Note: (9, (/) = {(c,-),[, ec!

(Wi c)ies €7D}
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What are Decomposition spaces?

Given
e a suitable (frequency space!) covering Q = (Q;);, of O CRY,
@ a suitable partition of unity ® = (¢;),., subordinate to Q,
@ a suitable weight w = (w;);¢,,
we define the associated decomposition space as

D(Q,L7,6):={ge 77 ‘(||9—1(¢,-§)||Lp),.€,eegv(/)}.

Note: (9, (/) = {(c,-),,:, ec!

(Wi c)ies €7D}

In most (but not all cases) where O =R?, we can use 8’ (RY) as the
reservoir, i.e.,

D(9,L7,45) = {& €8 (&) | (|77 (08Il o) ey € (D}
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Why are decomposition spaces useful?

Many important smoothness spaces are decomposition spaces:
@ Besov spaces (homogeneous and inhomogeneous),

(or)-modulation spaces,

Shearlet smoothness spaces,

All wavelet-type coorbit spaces.
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Why are decomposition spaces useful?

Many important smoothness spaces are decomposition spaces:
@ Besov spaces (homogeneous and inhomogeneous),

@ (a)-modulation spaces,
@ Shearlet smoothness spaces,

o All wavelet-type coorbit spaces.
Theorem (Fiihr, Voigtlaender; 2015): Let H < GL (R?) such that
[7(x, h) F](y) = |deth| /2 £ (h™1 (y — x)) for f € L?(RY)

defines an irreducible and square-integrable representation of R x H.
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Why are decomposition spaces useful?

Many important smoothness spaces are decomposition spaces:
@ Besov spaces (homogeneous and inhomogeneous),

@ (a)-modulation spaces,
@ Shearlet smoothness spaces,

o All wavelet-type coorbit spaces.
Theorem (Fiihr, Voigtlaender; 2015): Let H < GL (R?) such that
[7(x, h) F](y) = |deth| /2 £ (h™1 (y — x)) for f € L?(RY)

defines an irreducible and square-integrable representation of R x H.

Then, for a suitable weight w = wp, 4,
Co(LP9(RY % H)) = D (Qy, LP,£9)
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Why are decomposition spaces useful?

Many important smoothness spaces are decomposition spaces:
@ Besov spaces (homogeneous and inhomogeneous),

@ (a)-modulation spaces,
@ Shearlet smoothness spaces,

o All wavelet-type coorbit spaces.
Theorem (Fiihr, Voigtlaender; 2015): Let H < GL (R?) such that
[7(x, h) F](y) = |deth| /2 £ (h™1 (y — x)) for f € L?(RY)
defines an irreducible and square-integrable representation of R x H.

Then, for a suitable weight w = wp, 4,
Co(LP9(RY % H)) = D (Qy, LP,£9)

with the induced covering -
Q== (h; " Q)iey
of the open dual orbit O := HT&.
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Why are decomposition spaces useful?

Many important smoothness spaces are decomposition spaces:
@ Besov spaces (homogeneous and inhomogeneous),

@ (a)-modulation spaces,
@ Shearlet smoothness spaces,

o All wavelet-type coorbit spaces.

Theorem (Fiihr, Voigtlaender; 2015): Let H < GL (R?) such that
[7(x, h) F](y) = |deth| /2 £ (h™1 (y — x)) for f € L?(RY)
defines an irreducible and square-integrable representation of R x H.
Then, for a suitable weight w = wp, 4,
Co(LP9(RY x H)) = D (Qy, LP, 09

with the induced covering -
Q== (h; " Q)iey
of the open dual orbit O := HT&.

~ We can study coorbit spaces using decomposition space theory. J
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Examples of coverings |I: Besov spaces
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Examples of coverings |I: Besov spaces
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Examples of coverings Il: Shearlet coorbit spaces
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Examples of coverings Ill: Shearlet smoothness spaces
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Examples of coverings Ill: Shearlet smoothness spaces
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Structured Banach frames for decomposition spaces |

Assume that Q = (Q;);, is a structured admissible covering, i.e.,

o Qi =T;Q+b; for @ CR fixed, T; € GL(RY) and b; € R,
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Structured Banach frames for decomposition spaces |

Assume that Q = (Q;);, is a structured admissible covering, i.e.,
o Qi =T;Q+b; for @ CR fixed, T; € GL(RY) and b; € R,

@ some additional technical assumptions.
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Structured Banach frames for decomposition spaces |

Assume that Q = (Q;);, is a structured admissible covering, i.e.,
o Qi =T;Q+b; for @ CR fixed, T; € GL(RY) and b; € R,

@ some additional technical assumptions.

Idea: For fixed prototype y € L! (R?), consider the structured family

VO = (Typr, ) with 1= |det 7|/ My, [yo T/7].

i€l kezd
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Structured Banach frames for decomposition spaces |

Assume that Q = (Q;);, is a structured admissible covering, i.e.,
o Qi =T;Q+b; for @ CR fixed, T; € GL(RY) and b; € R,

@ some additional technical assumptions.

Idea: For fixed prototype y € L! (R?), consider the structured family

VO = (Typ r, 1)

Note:
o Y =det T;| /2. Ty, [7o T;71].

with 717 := |det T;{*/2- My, [yo T/7].

i€l kezd

e In particular, if 7 is essentially supported in Q, then ¥l is
essentially supported in Q;.

. Voigtlaender | Shearlets: Theory, Applications, and Generalizations | Coherent States Workshop, CIRM



Structured Banach frames for decomposition spaces |l

Theorem (Voigtlaender; 2016): Let Q= (T;Q+ b;);c; and let
w = (w;);c; be a suitable weight. For p,q € (0,20], there is an (explicitly
given) coefficient space % qw < C*Z’ such that the following holds:
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Structured Banach frames for decomposition spaces |l

Theorem (Voigtlaender; 2016): Let Q= (T;Q+ b;);c; and let

w = (w;);c; be a suitable weight. For p,q € (0,20], there is an (explicitly
given) coefficient space % qw < C*Z’ such that the following holds:

If v satisfies certain technical conditions, then there is 8 > 0 such that

WO = (Ty 7, Y[i])iel,keZd

is a Banach frame for D (Q, LP,£7,) for all 0 < 8 < &.
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Structured Banach frames for decomposition spaces |l

Theorem (Voigtlaender; 2016): Let Q= (T;Q+ b;);c; and let

w = (w;);c; be a suitable weight. For p,q € (0,20], there is an (explicitly
given) coefficient space % qw < C*Z’ such that the following holds:

If v satisfies certain technical conditions, then there is 8 > 0 such that

WO = (Ty 7, y[i])iel,keZd

is a Banach frame for D (Q, LP,£7,) for all 0 < 8 < &.
Precisely:

@ The analysis operator
A®) D (9,1P,08) = Gpqu, > | (F277) (8T, Tk)|

i€l kezd

is well-defined and bounded.
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Structured Banach frames for decomposition spaces |l

Theorem (Voigtlaender; 2016): Let Q= (T;Q+ b;);c; and let
w = (w;);c; be a suitable weight. For p,q € (0,20], there is an (explicitly

given) coefficient space % qw < C*Z’ such that the following holds:
If v satisfies certain technical conditions, then there is 8 > 0 such that

WO = (Ty 7, y[i])iel,keZd

is a Banach frame for D (Q, LP,£7,) for all 0 < 8 < &.
Precisely:

@ The analysis operator
AB) D (Q,LP 49) = G g, f [(f*y["l)(é. 7'i‘Tk>]_ e
icl ke

is well-defined and bounded.
@ There is a bounded reconstruction operator
(6) . % p.qw —* D(Qal-paegv)
satisfying R(9) 0 A®) = |dD(Q 1P 05"
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Structured Banach frames for decomposition spaces |l|

Theorem (Voigtlaender; 2016): Let Q= (T;Q+ b;);c; and w = (w;)
as above and p, q € (0,0].

i€l
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Structured Banach frames for decomposition spaces |l|

Theorem (Voigtlaender; 2016): Let Q= (T;Q+ b;);c; and w = (w;)
as above and p, q € (0,0].

i€l

If y satisfies certain technical conditions, then there is 8y > 0 such that
W(®) forms an atomic decomposition for D (Q, LP, ¢},) for all 0 < & < &.
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Structured Banach frames for decomposition spaces |l|

Theorem (Voigtlaender; 2016): Let Q= (T;Q+ b;);c; and w = (w;),,
as above and p, q € (0,0].

If y satisfies certain technical conditions, then there is 8y > 0 such that
W(®) forms an atomic decomposition for D (Q, LP, ¢},) for all 0 < & < &.
Precisely,

@ The synthesis operator
S@) Gy qw — D(Q,LP,49)
(C;EI))ie/,keZd = Z Z C/EI) 'Ta.T;Tk Y[i]

iel kezd
is well-defined and bounded.
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Structured Banach frames for decomposition spaces |l|

Theorem (Voigtlaender; 2016): Let Q= (T;Q+ b;);; and w = (w;);,
as above and p, q € (0,0].
If y satisfies certain technical conditions, then there is 8y > 0 such that
W(®) forms an atomic decomposition for D (Q, LP, ¢},) for all 0 < & < &.
Precisely,
@ The synthesis operator
SO Gy qw — D(Q,LP,19)
(C;EI))ie/,keZd = Z Z C/EI) 'Ta.T;Tk Y[i]
i€l kezd
is well-defined and bounded.

@ There is a bounded coefficient operator
CO) D(Q,LP.19) = Cpgw
satisfying $(8) o C(8) = idD(Q 17 3,)"
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Structured Banach frames for decomposition spaces |l|

Theorem (Voigtlaender; 2016): Let Q= (T;Q+ b;);c; and w = (w;),,
as above and p, q € (0,<0].

If y satisfies certain technical conditions, then there is 8y > 0 such that
W(®) forms an atomic decomposition for D (Q, LP,¢},) for all 0 < § < &.
Precisely,

@ The synthesis operator

S@) Gy qw — D(Q,LP,49)

(CIEI))ieI,keZd =Y Y C/EI) Vo1 7k e
iel kezd
is well-defined and bounded.

@ There is a bounded coefficient operator
CO) D(Q,LP.19) = Cpgw
satisfying $(8) o C(8) = idD(Q 17 3,)"

Each f € D (Q,LP,¢},) has a (more or less) sparse expansion w.r.t W(®). J
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Structured Banach frames & Shearlets

Lemma: If Q is the covering associated to Shearlet smoothness spaces
P9 (R?) (introduced by Labate et al.), then (y[’])iel is a cone-adapted
shearlet system.
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Structured Banach frames & Shearlets

Lemma: If Q is the covering associated to Shearlet smoothness spaces
P9 (R?) (introduced by Labate et al.), then (y[i])l.e, is a cone-adapted
shearlet system.

Corollary (Voigtlaender; 2016): The shearlet smoothness spaces
describe sparsity with respect to shearlet frames: If 0 < g <2 and if y
satisfies certain technical conditions, then
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Structured Banach frames & Shearlets

Lemma: If Q is the covering associated to Shearlet smoothness spaces
P9 (R?) (introduced by Labate et al.), then (y[’])l.e, is a cone-adapted
shearlet system.

Corollary (Voigtlaender; 2016): The shearlet smoothness spaces
describe sparsity with respect to shearlet frames: If 0 < g <2 and if y
satisfies certain technical conditions, then

759 L (R2) =D (Q,Lq,e" )

()2 0
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Structured Banach frames & Shearlets

Lemma: If Q is the covering associated to Shearlet smoothness spaces
P9 (R?) (introduced by Labate et al.), then (y[’])l.e, is a cone-adapted
shearlet system.

Corollary (Voigtlaender; 2016): The shearlet smoothness spaces
describe sparsity with respect to shearlet frames: If 0 < g <2 and if y
satisfies certain technical conditions, then

S5 (R =D (9,19,6%,)

()2 0

<<f’ T5'TFT’<YM>) icl kez? €t (I % Z2)}

= {fe 1% (R?)
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Structured Banach frames & Shearlets

Lemma: If Q is the covering associated to Shearlet smoothness spaces
P9 (R?) (introduced by Labate et al.), then (y[’])l.e, is a cone-adapted
shearlet system.

Corollary (Voigtlaender; 2016): The shearlet smoothness spaces
describe sparsity with respect to shearlet frames: If 0 < g <2 and if y
satisfies certain technical conditions, then

a0 @) (010,49,

(q22

<<f’ T5'TFT’<YU]>) icl kez? €t (I % Z2)}
= {Z Z (C/Ei)‘Ta-T;TkV[i])

= {fe 1% (R?)

(CIEI))ieI,keZZ € 09(1 x ZZ) } :
il kez?
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Structured Banach frames & Shearlets

Lemma: If Q is the covering associated to Shearlet smoothness spaces
P9 (R?) (introduced by Labate et al.), then (}/[’])ie, is a cone-adapted
shearlet system.

Corollary (Voigtlaender; 2016): The shearlet smoothness spaces
describe sparsity with respect to shearlet frames: If 0 < g <2 and if y
satisfies certain technical conditions, then

? 2 j—
Sy () =D (2.L9.¢,)

(3
<<f’ T5'T7Tky[i]>) icl kez? e (I 8 Z2)}
= {Z Z (C/Ei)‘Ta-T;TkV[i])

iel kez?

= {fe 1% (R?)

(C/Ei))ie/,keZZ € 09 (1 x Z2) } :

Corollary (Voigtlaender; 2016): The N-term approximation of
cartoon-like functions w.r.t. the primal shearlet frame satisfies

IF—full2 Se NO78) YNeN  Vee(0,1).
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Let's conclude!



What to take Home?
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What to take Home?

@ Shearlets are a multiscale system based on the quasi-regular
representation of the shearlet group.

@ They employ parabolic scaling and shearing and provide optimally sparse
approximations for curvilinear features.

@ Shearlets have a variety of applications, in particular for the
regularization of inverse problems.
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What to take Home?

@ Shearlets are a multiscale system based on the quasi-regular
representation of the shearlet group.

@ They employ parabolic scaling and shearing and provide optimally sparse
approximations for curvilinear features.

@ Shearlets have a variety of applications, in particular for the
regularization of inverse problems.

@ Decomposition spaces are defined using certain tilings of the Fourier
domain.

@ Wavelet-type coorbit spaces are decomposition spaces.

@ Membership in decomposition spaces can be characterized by the sparsity
of certain frame coefficients/expansions.
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What to take Home?

@ Shearlets are a multiscale system based on the quasi-regular
representation of the shearlet group.

@ They employ parabolic scaling and shearing and provide optimally sparse
approximations for curvilinear features.

@ Shearlets have a variety of applications, in particular for the
regularization of inverse problems.

@ Decomposition spaces are defined using certain tilings of the Fourier
domain.

@ Wavelet-type coorbit spaces are decomposition spaces.

@ Membership in decomposition spaces can be characterized by the sparsity
of certain frame coefficients/expansions.

Final remark: Existence of embeddings between decomposition spaces can
be decided by comparing the geometry of the coverings.
Consequence: Sparsity in one system ~- sparsity in another system.
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Thank youl



Thank youl

Questions, comments, counterexamples?
®



Embeddings of decomposition spaces — General question
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Embeddings of decomposition spaces — General question

General assumptions
© 9= (Qi);c; =(TiQ+bj);c; and P = (Pj)jeJ =(SP+ Cj)jeJ are
coverings of 9,0’ C RY.
o We are given weights w = (w;);., and v = (vj);c
e We have p1,p2,q1,92 € (0,].
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Embeddings of decomposition spaces — General question

General assumptions
© 9= (Qi);c; =(TiQ+bj);c; and P = (Pj)jeJ =(SP+ Cj)jeJ are
coverings of 9,0’ C RY.
o We are given weights w = (w;);., and v = (vj);c
e We have p1,p2,q1,92 € (0,].

When do we have
D(Q,LPr 0r) — D (P, LP?,£32)7?
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Embeddings of decomposition spaces — General question

General assumptions
© 9= (Qi);c; =(TiQ+bj);c; and P = (Pj)jeJ =(SP+ Cj)jeJ are
coverings of 9,0’ C RY.
o We are given weights w = (w;);., and v = (vj);c
e We have p1,p2,q1,92 € (0,].

When do we have
D(Q,LPr 0r) — D (P, LP?,£32)7?

Strong additional assumption: Q is almost subordinate to P, i.e.,
INeNVielTjed: Qi c P,
Roughly: Q is finer than P.
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A sufficient criterion
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A sufficient criterion

For r € (0,0 and j € J, let
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A sufficient criterion

For r € (0,e0] and j € J, let

and
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A sufficient criterion

For r € (0,0 and j € J, let

and
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A sufficient criterion

For r € (0,00] and j € J, let

/j:={f€/|Q,’ﬂPj75Q}.

and

|det TP P2 /W,-)

icl;

o]

e"(‘u/’)') jeJ

)
92-(a1/a2)’

Theorem (Voigtlaender; 2015)
If @ Q is almost subordinate to P,
° p1 < p,

o (#p5) <o, for py :=min{pz,py}
then

D(Q, LPr, (%) < D (P, LP2, %),

F. Voigtlaender = Shearlets: Theory, Applications, and Generalizations | Coherent States Workshop, CIRM



Necessary criteria
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Necessary criteria

Recall: With

(#,) =

|detT|p1 Pz’l/w,-)

, , 5
icl|lgr(a/r) )jeJ a2 (a1/az)'

it is sufficient for the embedding if
@ Q almost subordinate to P,
@ p1 < po,
o (#,y) <o, where py =min{p2,p5}.
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Necessary criteria

Recall: With

\detT\pl Pz’l/w,-)

bl

icl; pa2-(a1/a2)’

o]

Z"(ql/’),)jeJ

it is sufficient for the embedding if
@ Q almost subordinate to P,
° p1 < pa,
o (#,7) <o, where py’ = min{pa, p5}.

Theorem (Voigtlaender; 2015)

Conversely, if Q is almost subordinate to P and if

FHCT(0)ND(Q, LA, £3) — D (P, L2, (2), g — g

is bounded, then py < p> and (#p,) < .
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Necessary criteria

Recall: With

\detT\pl Pz’l/w,-)

bl

icl; pa2-(a1/a2)’

o]

Z"(ql/’),)jeJ

it is sufficient for the embedding if
@ Q almost subordinate to P,
° p1 < pa,
o (#,7) <o, where p;’ = min{pa, p5}.

Theorem (Voigtlaender; 2015)

Conversely, if Q is almost subordinate to P and if

FHCT(0)ND(Q, LA, £3) — D (P, L2, (2), g — g

is bounded, then py < p and (#p,) < .
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Improvements under additional assumptions

Further assumption: Q and w are relatively P-moderate, i.e.,
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Improvements under additional assumptions

Further assumption: Q and w are relatively P-moderate, i.e., there are
sequences (m;);c; and (w});, satisfying

’detT,"ij if Q,'ﬂpj;ég,

W,'wa ifQ,'ﬂPj;éQ.
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Improvements under additional assumptions

Further assumption: Q and w are relatively P-moderate, i.e., there are
sequences (m;);c; and (w}),c satisfying

]detT,-]xmj if Q,'PIPJ'#Q,

W,'wa i'FQ,'ﬂPj;éQ.

Roughly: Any two “small sets” Q;, Q; intersecting the same “large” set P;
have similar measure and similar weight w;.
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Improvements under additional assumptions

Further assumption: Q and w are relatively P-moderate, i.e., there are
sequences (m;);c; and (w}),c satisfying

]detT,-]xmj if Q,'PIPJ'#@,

W,'XWJ?k i'FQ,'ﬂPj;é@.

Roughly: Any two “small sets” Q;, Q, intersecting the same “large” set P;
have similar measure and similar weight w;.
Theorem (Voigtlaender; 2015)
IfO=0" and if
@ Q js almost subordinate to P,
@ Q and w are relatively P-moderate,
then

D(Q,LPL, (%) s D (P, LP2 (%) = plﬁpzand<0p2v)<°°.
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A sample application

Theorem (Voigtlaender; 2015)

We have /% (R?) — BP*% (R?) if and only if p1 < p> and
3[1_1]_1 -

f<5—§[5—5]—§<;2v q1>+’ if g2 < qu,
3/1_1]_1(2 -

r<5—§[ﬁ—5]—§<;2v—q—l>+a if g2 > qu.
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A sample application

Theorem (Voigtlaender; 2015

We have /P (R?) — BF>
3|1 _ 1

r<s 2[p1 1
3|1 _ 1

r<s 2[Pl P2

)

(R?) if and only if py < p, and
]_%<512V'_ql1>+7 ifCIZ<CI1;
] —%(ﬁg—q%>+, if @ > qu.
(

i1 1) _3(1_ 1 i

s<r 2(q2 pliA)_i_ 2[P1 pz]’ ’fQ1§<72;
i1 1) _3(1_ 1 i

s<r 2((]2 pliA)+ 2|:P1 Pz]’ ’fCI1>Q2;

. Voigtlaender  Shearlets: Theory, Applications,
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