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Prelude: why | am here

* Crucial role of coset spaces G/H in
constructing systems of coherent states

* |n the second example in Perelomov’s
“Coherent States for Arbitrary Lie Group” CMP
(1971) the coset space is the upper complex
plane SL(2,R)/K (KAN)

 What is a simple geometric description of
SL(2,R)/A?



The first modification of GR
1
R,u,l/ — §Rg,ul/ — 87TGT,LW (1915)

The cosmological Einstein’s equation

1
R, — §R9W + Ag,, = 8nGT,, (1917)



Lemaitre’s prophecy

“The history of science provides
many instances of discoveries which
have been made for reasons which
are no longer considered
satisfactory.

It may be that the discovery of the
cosmological constant is such a
case.”

George E. Lemaitre, article in the book
“Albert Einstein: Philosopher—Scientist”, 1949




Seventy years after.
1997: The shape of the univer




The de Sitter universe (1917)
= diag(1,—1,—1,—1,—1)

- X3 - X5 - X;=-R’




de Sitter Quantum Field Theory

W. Thirring. Quantum field theory in de Sitter space.
Acta Physica Austriaca, suppl. IV, 1967, 269.

Initially: a mathematical arena to test ideas of QFT on
curved backgrounds

The physical interest in dS QFT increased
(exponentially!) starting from the eighties because of
the inflationary paradigm.

Today :darkage ..-> dS-> FLRW->dS (->...)

Naively believed to be a simple example of QFT on a
curved spacetime while it is plagued by a very difficult
infrared problem.



Example: particle decays

* There are no stable particle of mass
2 > i
— 4R?

* Tree level perturbation theory says that such

particle can decay into two or mor

of arbitrary mass (with J Bros, H E

Ga N l.‘
(

™




Instabilities at two loops or more

e Sunset diagram in the ¢ model in the
Poincaré patch PSRRI o Bt )
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Contains secularly growing contributions

* (needed the Schwinger-Keldysh formalism (work
in progress with E. Akhmedov)



What if such difficulties were artifacts
of perturbation theory?

* There several approaches to nonperturbative
QFT on flat space

* One is the study of exactly soluble two-
dimensional models of QFT

 Why not to try and explore soluble (?) two-
dimensional models in de Sitter?




Two historically important models

1) The Thirring Model (current-current)

"0, (z) = —gJ* ()7, ()
JH(x) = ey p(x) 9, (@) = 0
2) Schwinger Model (2-DIM QED)
0, (x) = —ext Ay () (x)
0"F,,(z)=—eJ,(x) + A,(x)
3) Are their dS counterparts still soluble?

4) What can be learnt from the solutions?

5) Do they share the same difficulties of perturbation
theory?



Two preliminary elementary questions

 What is going to replace the Dirac equation
on the de Sitter manifold?

* What is the meaning of de Sitter covariance
for spinor fields ?



Minkowskian cylinder
' =tc R, x'=60¢c]0,2nm)

* Metric ds® = dt* — db?

. Clifford algebra %" + ~4%7% = 2991,

0 1 0 1
0 __ 1 _
=) = (5)



Conformal cylindrical coordinates

dS; = {x e R’ : (X")" — (X')* = (X*)* = -1}

XY =rtant
X1 =rsinf/cost
X2 =rcosf/cost

r=R=1

1

ds® = 5
cos“ t

(dt* — db?)




Conformal transformation of the spinors

e Given a massless Dirac (classical or qguantum)
spinor field on the cylinder v“0,1 = 0

¢ = (cos t)%w
* @ is a(quantum) massless Dirac spinor field
on the de Sitter manifold solving the Fock-

lvanenko massless equation:

icost Y0, + %sint e =0



Spin bundles on the cylinder

There are two inequivalent spin bundles.
Two boundary conditions:
1) Periodic (Ramond)

b(t,0) = b(t, 6 + 27)

2) Anti-periodic (Neveu-Schwarz)

b(t,0) = —(t, 0 + 2)

In both cases observables are fully well defined
on the cylinder (i.e. they are periodic)



Quantum Spinor field (Ramond)

 Two sets of ladder anticommuting operators acting in a Fock space.

195 (p), ax(Q); = 0jk0p.q »  10j (D), p(Q)} = 0jkdpg - jik =12
V(@) = D) = 5o=(ai (0) + b(0) + %ﬁgaﬂp)em thpe) gy =140

V() = U50) = 5= (@50) + ba(0) + <= @)™ + e ™) v =1t — 0
p>0

wi(z, y) = (2, Y1 (2)Y:(y)Q) = —ﬁ cot (u — u2’ — i())

wa(z, y) = (2, Y2(x)3(y)2) = _ﬁ cot (U - UQ/ - iO)



Quantum Spinor field (Neveu-Schwarz)

* Same two sets of ladder anticommuting operators acting in a Fock space:

{a;j(p), ap(@)} =0 k0pq » {0j(P)s bi(q)} = 0j,k0p,q - Jik =12

Yi(z) = \/% > (@i (p)e H 2t by (p)e” U2, =1+ 0
p=>0
Yo (x) = \/%7 Z(aé(p)eim@l— bg(p)e_ipvgi’“/@, V = { — (9

wi(z, y) = (2, Pi(x)P1(y)Q) =

wa(z, y) = (Q, Ya(x)h3(y)Q) =

67ju/2
2T c
p=>0
ez'u/2
2T c

p=>0

pu

1pv

1
u—u2’—i0)

 drsin(

1
v—v2’—i0)

 dmsin(



Conformal transformation of the spinors

* Massless de Sitter Dirac (quantum) spinor field
(either Ramond or Neveu-Schwarz)

O = (Cost)%w

 What about the de Sitter symmetry?

* There is a priori no reason to expect it. The
spinors on the cylinder have less symmetries
(space rotations + time translations)!



Another equation by Dirac

* Clifford algebra in the 3-D ambient spacetime
ds? = (dX9)° — (aXH? — (dXx?)°

o (0 1 L (0 1 , (i 0
7‘(10’7_—10’7_0—2'

e =Xy Xo— Xy
X_”X“_(wal iXo

* Generators of the de Sitter (Lorentz) group

. 1
Lag — Mag -+ Sag = —Z(Xaag — X58a> — Z[’ya,’}/ﬁ]



The de Sitter (Casimir)-Dirac equation

Q= —L%Lop =  2yaysM® +i 2+ :
* Eigenvalues of the Casimir operator
1
QY = (VZ T Z) (08

* First order equation (Dirac 1935 4-dim)

1 .
(ﬁ%ﬂﬁMO‘B 1+ V) Y =0



Solving the Dirac-Dirac equation

N 1
(tD+i+v)y =0 ingMwa

The crucial identity is

(D+1)D =




de Sitter plane waves
X &= Xoo — X181 — ... — Xg4&y
AeC, &£=0 £

Plane waves are homogeneous functions

Qp(x,p) — oW'T — ezm(ﬁx)

[y, —



de Sitter plane waves

Involution:

A= A= -A—(d—1)

A+ X=—(d—1)

(X-OMN=2 2\ +d—-1)(X &)

Scalar waves with (complex) squared mass:

m2 = A\

(O+ ) (X -9*=0,

+AX) (X -9 =0



The plane waves are however irregular

V(X €) = (X - &)
XedS: (X -6 =0

(X-)* = | X €)M (a(N)O(X - €) + b(AN)I(—X - €))



Geometry: de Sitter tubes
Z=X4+iY, X2-Y?2=-R?2 X.Y =0
7+ =Y in the forward cone.

T— =Y in the backward cone.




(Z -6 = (X £4iY)
Y2=") - (Y)Y = (¥Y?)?>0, Y’>0
IZ - £ is positive for Z € T

37 - € is negative for Z € T




Boundary values on the reals:
(XY = [X - (0(X - &) + eF™o(—X - ©))



Solving Dirac’s Dirac equation

B ;
(iD+i+v) =0 iD = ~va7pM”

2
B(X:E) = (X - &) HHivu(e)
fu(€) =0 - (o2 “)(ue) L
A B o Ve
) \/2@0—51)( o )" (z\/§0+§1)

Compare Cartan’s definition of a spinor




CHAPTER 111

TH E TH EO RY 0 F | SPINORS IN THREE-DIMENSIONAL

PINORS

ELIE.CARTAN

I. THE CONCEPT OF A SPINOR

52. Definition

Suppose the three-dimensional space E; is referred to a system of orthogonal
co-ordinates; let (xj, x,, x3) be an isotropic vector, ie., have zero length.
We can associate with this vector, the components of which satisfy

x2+x3+x3=0,
two numbers &, &, given by
x; =& — &,

i3 + &3,

*
N
I

x3 = =2£o¢;.

These equations have two solutions given, for example, by the formulae

Xy — ix —Xy — iX
&=+ 142_2 and &, = + /_17_2

It is not possible to give a consistent choice of sign which will hold for all
isotropic vectors in such a manner that the solution varies continuously with
the vector. Thus, suppose there is such a choice; start with a definite isotropic
vector and suppose it to be continuously rotated round Ox; through an
angle a: x, — ix, will be multiplied by e~ ™, thus by continuity &, will be
multiplied by e 2. When the angle of rotation is 27, the isotropic vector




The two-point function

Defining the adjoint spinor as usual

u() =u* (€’  u§)®u(f) = %&

(X1, X2) = o / (X1-€6) 7 (Xy - )7 " gdo(€)

8

* In the massless limit x=vx,—( 7% ™)

1 Z,— 7o

WO(Zl? ZQ) B 271 (Zl — 22)2




Spin group and de Sitter covariance

Sp(1,2) ={g € SL(2,C): A°¢"’ =g '}

a 1b
g_<z’c d) ad + bc =1

Sp(1,2) is conjugated to SL(2,R) in SL(2,C) :

B et 0 1 ([ a b
(e ) (L)



Covering

The covering projection g — A(g) of Sp(1,2) onto SOy(1,2)

1

9= M9)™s = 5tr(v"9789 ™) A(g) = A(—g)

(a ib) ( %(aQ—I—bQ—I—cQ—I—dQ) %(—aQ—I—bQ—cz—l—dQ) cdab)
H

N | =

. (—aQ—b2+cz+d2) l(az—bQ—CQ—l—dQ) ab + cd
ic d 2
ac — bd —ac — bd ad — bc

Sp(1,2) acts on the de Sitter manifold by similarity

e —iXy X — X, - »
X=x Xu—(XOJer iX, ) X =gXyg

X' =gXg ' = MepyX



dS covariance of Dirac’s Dirac field

V(Z)=gyp(A ' (9)2)

0 b2 2T (Zl — 22)2 271 (Zl — 22)2 .

Wy, (A (g) X1, A" (9) X2)g™ " =

~ % /F(A—l(gm 67T AT X ) Vo dul©)
S / (X1 A9)E) ™ (X2 A@)E) T T (A(9)Eadp(€)

— V(X17X2)



What is the relation between the two
Dirac’s equation?

o(t,0) = A(t,0)1(t,0)

Fock Ivanenko A matrix Dirac’s Dirac

There are unexpected subtelties in the answer



The symmetric space Sp(1,2)/A

a 1b

* lwasawa decomposition gz(ic p ) ad + be =1

¢ ¢ - X

_ _ COoS 3 7 sin 3 1 ) €2 0 .

g = k(C)n(A) alx) ( isin% Cosg > ( 0 1 ) ( 0 e 2 )’
C

a X
CoS = = , sin-= = ., A=ab—cd, €2 =+/a?+ 2
2 \/CL2—|—C2 2 1/CL2—|—C2

where 0 < ¢ < 47 and A and x are real.

* Parametrization of the coset space Sp(1,2)/A

< COS%C i)\cosg%—ising )
9

1 sin cos% — )\sin%

XA Q) =k()n(\) =



Group action

* Sp(1,2) acts on the coset space by left
multiplication:

g X\ Q) — XN, ()

2
181n 2 cos & — Asin &

cos & i)\cos% —I—isinﬁ )
2

2



Rotation (K)
~ cos & ihcos S +isin &
KO0 = k(O n() = fm3 Pheorat ieing )

. e q ¢ . Q
i sin 3 COS 3 \ sin >

a a

k(a):< COS% ZSIHC? )

17 S111 5 COS 5

k(a)X (A, Q) = X (N, ()




Boost (A)

cos & i)\cos% +isin% )

COS 2 — )\Sin%

¢'(k) _
2

{ A (k) = Acosh k + sinh k(A cos ¢ 4 sin (),

cot e cot %



~

XA 0) = k(O n(\) = (

Lightlike Boost (N)

2

isinS  cos& — \sin &

COS% i)\cosg Jrising )
2 2 2



Maureer-Cartan metric

 The Maureer-Cartan form dg g ' gives to the symmetric
space Sp(1,2)/A a natural Lorentzian metric

 There exists a inner automorphism of Sp(1,2) that leaves A

invariant 5 o ) i 0
g —ug) =197 v=(0 )

—1
* |t may be used to construct a map from the coset space

Sp(1,2)/A into the group Sp(1,2) and an induced Lorentzian
metric on Sp(1,2)/A

g(X) = gu(g) "t = —X* X142

1
ds? = §Tr(dg g~ )? = —=2d\d¢ — (A +1)d¢?




Maureer-Cartan metric

1
ds? = 5T]r(dg g 1)? = —2d\d¢ — (N + 1) d¢?

1. The metric is invariant under the group left action

. The curvature is constant (R=-2) and the Ricci tensor is proportional to the

metric: .
R, — §Rg/w =R, +9u, =0
. The map X0 — )\
p: XN =X\ =< X'=Xcos(+sin¢
X? =cos¢ — Asin(

IS @ covering map.

= —2d\d¢ — (A\* 4+ 1) d¢?

ds? — (dX02 _dxt? dX22) .
dS2




de Sitter

X0 =)\
X1t =MXcos( +sin(
X? =cos¢ — Asin(

= —2d\d¢ — (A* + 1) d¢?

ds? = (dX02 _dx'? - dX22) .
dS2




Double covering of de Sitter

In conclusion: the symmetric space
Sp(l, 2)/A — dSQ

may be identified with the double covering of the two

dimensional de Sitter universe.

The spin group Sp(1,2) acts directly on the covering
space as a group of spacetime transformations:

X —gX
We were not able to find the above identification in
the (enormous) literature on the group SL(2,R).




Gursey and Lee’s trick

o,y ={B8" B} = g”
 There should (more than one) matrix S such
that . . )
o' = SB*S™

* The solution only exists on the covering
manifold. The most convenient choice

S(t.0) — 1 cos =2 isin 52
7 cost t+9 t+6

—1 81n COS ——




Gursey and Lee’s trick

e What is the relation between the two Dirac’s
equation? Introduce the matrices B:

0 1 0 1 i 0
0 __ 1 _ 2 _
=@ o) = (o) =0 Y

OyH X% =rtant
B = QXVWV’ yt = (t,0,r) X1 =rsinf/cost
X? =rcosf/cost

{B, B8}y =g", i,j =0,1

=L (58 =0




Dressing

S(t.0) = 1 cos =2 jsin 2
’ v/cost \ —%sin t+9 COS —HQ

* Given a solution U of the Dlrac D|rac
Equation the dressed spinor

0(t.0) = < F(1.0)S(t.0)(1 ~ X)W(t.0)

* Solves the Fock-lvanenko-Dirac equation

ol (0y +Ty) ¢ +ia® (09 +T9) & —ia®(O;In f)p — v =0



Remarks

S(t,0) = 1 COS% isin%
’ /cost \ —isin t+9 COS #

 The matrix S is anti-periodic well-defined only on the
double covering of the de Sitter hyperboloid.

* Themap (¢,0) — S(t,0) is thus a map from the double
covering of the de Sitter spacetime with values in the
spin group Sp(1,2)

* The dressing changes periodicities: periodic (R) fields
become anti-periodic (NS) and viceversa.



Answer to the second question

* Dress the DD field and get a quantum field solving the ¢y
standard Dirac-Fock-lwanenko) equation.

 The dressed field has NS antiperiodicity and therefore well-

defined only on the covering of the de Sitter manifold

W(X) = g (A (9)X)
¢ (X) =2(g,X) ¢p(g7 X),

~

X9, X)=5(X)gS(g7 X))
>:(g, X) is a nontrivial cocyle of Sp(1,2)

~

(g1, X)2(g2, 97 ' X) = X(g192, X).



Cocyclic de Sitter Covariance

 The de Sitter covariance of the de Sitter FI Dirac NS field is thus
expressed in terms of a cocycle.

¢'(X) =%(g9,X) p(g7 ' X),
(g1, X)X(g2, 97 ' X) = %(g192, X).

 On the other hand there is no covariant Dirac field (in the above
sense) in the Ramond sector.

 The following remarkable result play an important role in the
construction of the de Sitter - Thirring model :

For any g in the spin group Sp(1, 2)
the cocycle (g, X) is diagonal.



In the end: massless NS Spinors have a
hidden de Sitter symmetry

S(t,0)(2, Wy(t, 6’)@0(75’, 0"))S (t, 6”)_1
Vv costv/ cost!

. 1
i ( ) Ee) )
Am sin(%(fv—fv’)) 0

Wo(t,0) =+/costS(t,0) 1yN5(¢,0).




In the very end: the Thirring field
* Field Equation ia“(au + I‘M)qp — _ga“Jqu

* Solution gb(:c) = eiXJr(m)qu(:l:)eix_(x) .

* Under certain conditions it is possible to find
local and de Sitter covariant solutions



Perspectives

* Opens the way to he study of integrable QFT
models on the de Sitter manifold

* Based on work in progress with Henri Epstein
(IHES) and Emil Akhmedov (ITEP)



