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,Polynomials” H_ (z,Z) : mathematical properties
(polynomials of two real variables with complex coefficients called:
two index Hermite polynomials (Hong-yi Fan&J.R.Klauder ;1994,
V.Dodonov&V.I.Manko ;1994),incomplete Hermite polynomials (G.Dattoli;
2000-), 2D Hermite polynomials (G.Dattoli, A.Ghanmi, M.Ismail; 2005-),
2D Laguerre polynomials (A.Wunsche;1999-))

min{m,n} m 1 n r

Hon@D)= 2 Ty D 7

B

00 Smtn
exp(—st+zs+7t) =
m;O min!

i_[dzexp(—|z|2)Hm,n(z,Z)H_p’q(z,f):m'n|5 S
7Z-C

H..(z,7)

mp—nq

_Zexp(_|z| )Hmn(Z Z)Hmn(z z ) 5(2)(2_7,)

m!in!
This will create a problem
CIRM, Luminy, 16.11.2016

3



,Polynomials” H_ (z,Z) : physical applications |
(Hong-yi Fan, J.R.Klauder 1994)

1z, .
|Z)-_ =exp —7+ za(+)—7b(+)+a(+) ) [100) =

p— — N

2] = A
= exXp —m Z Hm,n(z’z) |mn> a(+)’b(+)
2 i Jml!n! standard boson great_ion
- - operators for a bipartite
system

Example of entangled states because:

- Not product states

- EPR states — eigenstates of relative coordinate and total momentum in a
bipartite system

Not a coherent state because the latter have to be normalizable and are
never orthogonal while we have

- (2 =09 (2, 2)
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,Polynomials”H_ .(z,Z) : physical applications I

A ,trick” leading to well defined coherent states
(N.Cotfas, J.-P. Gazeau, K. Gorska; 2010)

A subset of H (Z,Z) , hamely sk ok
- (=) |z]

s+ns(z Z)_SI(S+n)| kzc;(s—k)'k'(n—k)':

. S~t1s-ny (n) 2
= (=1)sIZ°L7(1 z[)
with s fixed, is orthogonal with respect to the gaussian measure

ijdzze"z' (z,7)H,,,.(z2,Z) =sl(s+n)!5,
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This means that 1€ 2 Hins(2.7)
s!(s+n)! o

may be used for a construction of
coherent states (and quantization).
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Holomorphic Hermite polynomials H (z)
(van Eijndhoven & Meyers, 1991) " Hermite polynomials
[n/2] (_1)k (Zz)n—Zk ]
H. (z)=n! Z=X+ly
k1(n—2k)!

1.0rthogonality with respect to a family of measures depending onx € (O 1)

J‘( imj

2 (1_
[ H,+ipH, (xrive e dxdy =
04

win (1=aY (1-—a)'"?e*H, (2)
L (Z"(Mj (mj N

2.Functions
are an orthonormal basis in the Hllbert space(s) Q of entire functions

jdxdye i | f (X +iy) < oo

nlo

nm,

which are Reproducing Kernel Hilbert Space(s) (RKHS) with the reproducing kernel(s)

o o - (o 1—&2 1+C¥2 1_a2 -
K ) = SN0 =2 g L (2 ) 2
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What we have got is completely analogous to the ,classical’

Zn
Bargmann’s approach for which monomials —\/m are

orthonormal basis in the Hilbert space of functions
Integrable with respect to the gaussian measure and which is a
Reproducing Kernel Hilbert Space with the Bargmann’s

reproducing kernel K(z,w)=¢e"
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Holomorphic Hermite polynomials H_(z) coherent states
(J.-P. Gazeau and F.H.Szafraniec, 2012)

N (a)(z) — K (@) (Z, Z) _ iﬁ(“)(z)h(a)(z) = @4 ~« exp[—axz + a‘lyz}

n=0 27

J.-P.G and FHSz used these states for the coherent states quantization of 2D non-
commuttative harmonic oscillator but one can ask a question : what are their
properties and (physical) meaning?
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Coherent states built using holomorphic Hermite
polynomials H*(z) are squeezed states!

(S.T.Ali, K. Gérska, A.Horzela and F.H.Szafraniec, 2014)

Intuition:
1. States of the form | Z; ) =

\/ (a)(z)

1/2

(*)
-« Z(l—a)nlz e " H (2) .
7JaN@(z2) ) S\ 1+a Jont "

have all the properties of coherent states - this is implied by the RKHS approach!

2. States (*) should have ,something common” with squeezed states because
2a. van Eijndhoven-Meyers measure is not rotationally invariant
2b. the long-time known operational formula gives

Squeezing operator

2 n _ An/2 i
exp[—aﬁz}z =a Hn(\/g S(g)zexp{%(gzz—féi)}
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The main results of the AGHSz paper reads:

For any & # 0 the squeezed basis vectors er(f)(z) coincide with the

holomorphic Hermite polynomials multiplied by an exponential factor

1/4 —

()= s(@pen() - L) ey JHQZZ

n

2'nl

§=tanh(|§|)% e (-1,0)u(0,1)

which fully confirms intuitive arguments listed on the previous slide.
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Holomorphic Hermite polynomials in two complex variables

min(m,n) (_1)k 7 m—kz n—k L =X + Iyl
H (z,z,)=m!n! L2 -
m,n( 1 2) kzz(; k'(m—k)l(n_k)| 22:X2+|y2

whose generating function is

o0 Smtn
exp(—st+zs+z;t)=
S mZn::om!n!

Hm,n (Zl’ 22)

may be considered as a complex generalization of the Fan-Klauder ,polynomials”

B min{m,n} (_1)| Zm—IZn—I
Ana(2,2) =min % (m-DI(n—1)!
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Van Eijndhoven-Meyers construction may be repeated step by step — we get

1.0rthogonality with respect to the family of « € (0,1) dependent measures

1), 1-a,_
@)y vap- %2

_[ H,.(2,2,)H,,(z,2,)e * 1w Nz dz, =" 2(““) minls, o,
c2 | | (1—a) l-«

2. We may introduce Hilbert space(s) of entire functions with bases

(m+n)/2 _—zz
l aj i 12Hm’n(zl’22)

(@) _
hm,n(zl’ZZ)_(ﬂ_\/_j (1+0{ Jmlin!

3. Reproducing kernel may be calculated explicitly for Vo € (0,1)

2
a 1—0{2 1+ QZ S 1_a2 — 7
K )(Zl,Zz,Wl,Wz):[ 5 ] exp{— 1oy (2,2, + WW, ) + (Zl""l”zwz)}

o
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Conlusion from our ,mathematical work”

We have all ,components” needed to construct coherent
states using the RKHS approach: such obtained (bipartite)

coherent states will satisfy the Gazeau-Klauder conditions:
-- continuity,

-- normalizabilty
-- resolution of unity,

moreover they lead to the unitary (generalized) Segal-
Bargmann transform.

CIRM, Luminy, 16.11.2016 i



Observation:

Polynomials _Hm’n(Zl, Z,) .as well as H..(z,7), cannot be
represented in the product form — it can be deduced from their generating
functions which, in both cases, do not factorize; it is also seen from the relation

Hm,n (Zl’ 22) - Holomorphic Hermite polynomials
e Iy mntiT (= i 7. +7 7 —7
:2 ( )ZZ I |(| ) IHk+I : 2me+nkl( - 2)

e (m—k)HI(n—1)! 2 2

The same statement is valid for functions hr(nan (Zl, 22)' S0, constructing
coherent states according to the RKHS recipe

: -1/
| Z) s 22’0‘> =N~ 2(21,’ ZZ)Zhr(nO,{r?(zl’ Zz) €
m,n

we get states which exhibit both entanglement and squeezing.
In what follows we assume

2 2,30) =N (2, 2) Y 0(2,2,) €, @1,
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What was said up to now is valid for & € (0,1) , what about the limits for
a—>1 and a—07?

Observation/remark: Orthogonality relations for functions

h(a)(Z Z)= (1 aj(mn)/z _leZHmn(Zlizz)
i - 72\/_ 1+« Jmin!

become;

a) product of orthogonality relations for monomials zlm/»\/m! and 22”/»\/n!
for ¢ —1,i.e. we end up with the 2D Bargmann case

b) orthogonality relation for hm ] (z, 7) (Fan-Klauder ‘s EPR states) for &« — 0

Theorem:
Bipartite coherent states

12,2,y =N"%(z,,2,)) h\?(z,,2,) e, ®f,

have the limits being:
a)product of two standard coherent states for ¢ —> 1 (in a weak sense)
b)entangled Fan and Klauder ‘s EPR states of for & — 0
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What to do next ?

It's needed to look for general properies of |z, ,Z,; ),
namely to answer the (standard) questions:

1.
2.
3.

are they ,anihilation operator coherent states” (AOCS)?
are they ,minimal uncertainty coherent states” (MUCS)?
IS It possible to generate them as ,,group theoretical
coherent states™?

how to understand their meaning as entangled coherent
states

and to study (probably) many their other properties,
especially applicabllity in (real) physical problems

Partial answers known,

work In progress

CIRM, Luminy, 16.11.2016



Thank for your attention
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Coherent states - three standard approaches

1.Anihilation operator coherent states (AOCS)

aHZ»:ZHZ» a|n>:\W|n—l>, a’ |n>:\/[n+1] |n+1>,
alz)=z|z) [aa’]l=[n+1]-[n]
2. Group theoretical coherent states (GTCYS)

T (g ) is an element of a group G (dynamical or in
| §> =T (gg) | O> general arbitrary Lie group) parametrized by

3.Minimal uncertainty coherent states (MUCYS)

hZ
0'(22) (X)G(Zz) (p) = 7 In general 0(22) (x) # 0(22) (P)
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Harmonic oscillator — all approaches are equivalent

AoCs a|z)=1|z), alny=+/n|n-2,a"|ny=vn+1|n+D),

[a,a"]=1
cTcs |z)=D(2)|0), D(z) =exp(za® — za)
wucs oty (ol (P =, ofy (0 =%y (P)

1 n
~~Jzf° Z

1 2 n
——z| Z N
give CS |2)=¢e 2 ny=e ?2 —(a")" |0y,
Zn: Jn! n) Zn: n!
which, a posteriori, satisfy a relation called the resolution of unity

%jd(Rez)d(lm 2) | 2z = Y Inxn| =1,

CIRM, Luminy, 16.11.2016 5



The resolution of unity as a fundamental property of HO CS
(in fact introduced independently of them)

1. ,Continuous representation of QM” (J.R.Klauder 1963)
1) normalizabllity, 1) continuity, iii) resolution of unity

2. ,Analytic representation of QM” (V.Bargmann 1961)

2a) Reproducing property for Bargmann funtions

- z" Unit
[£)=>" . |n)= fy(z) =€ <z|f>=szn S

Segal transform,

= [d(Rez)d(IM2)K (2,2) o (2) = f4 (2)
e

Ty
K(2,2) =¥ =g 2 T)

CIRM, Luminy, 16.11.2016
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2b) Mapping between Bargmann’s and usual ,x” representations

(x| f)= f(x):%jd(Re 2)d (Im 2)K,(x, 2) . (2)

2 Zn
K,(X,2) =2y ——(x|n)
' Zn: Jn!
3. Coherent states quantization (E.Lieb 1975, F.Berezin 1977)

f(q,p)= A :ijd(Rez)d(lmz)f(z,Enz><z|
7Z-C

- BT

qzﬁ(Z-I-Z), P \/Z
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Satisfying the resolution of unity has been considered so
Important property of coherent states that it has been
proposed to make it , a priori, basic requirement put on any
set of coherent states generalizing those of the harmonic
oscillator.

(J.R.Klauder 1963, J-P.Gazeau & J.R.Klauder 1999,
J-P.Gazeau 2009)

CIRM, Luminy, 16.11.2016
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How to solve the resolution of unity for generalized coherent
states ?
The answer is: One has to find a measure such that

| 1(d2)12) g a2 = 1, (+)
-for GTCS it is satisfied under natural conditions (unitarity,
irreducibility, square integrability of the representation)

-for_other constructions, generally ending up at wave-packet
type expressions

1)=N"2(zP)Y 0,()|n) eqg |2)= N2(|z|2)2nlzﬁ\n>

condition (*) has to be checked each time.But even if one can
show that a suitable measure exists, it is neither easy to find it
nor to answer the question how many solutions are admissible!

CIRM, Luminy, 16.11.2016
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Examples:
1.For harmonic oscillator CS the solution

O E 1 d(Rez)d(Imz)

IS unique under the additional assumption that the measure is
rotationally invariant. If it is not the case we have infinitely many
(discrete) measures concentrated on sufficiently dense von Neumann
lattices or another discrete subsets of the complex plane (Bargmann et
al. 1971, M.Boon & J.Zak 1978, J.Zak 2003, A.Vourdas 2003,
A.Vourdas et al. 2012)
2. For generalized CS of the type

1

— Zn
|Z) =N *(| z |2)ZF‘H>
the rotationally invariant solution is unique If the Stieltjies moment
problem W ()/)
=] by Y A= vv(| z")d(Rez)d(Imz),

is solvable and determlnate W (| z | )>0

CIRM, Luminy, 16.11.2016
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Non-unigue solutions

p, =T (an+p) le|l<l, m=%1%2,.., |mkal2

W(y) = y “ e x| 1+ ESiHEﬂ'm(l—%]-l— yé tan (@n

04

P =q 0<q<l, a>0
& _2a _In%(y)
W (y) _ g« y%e‘4a|n(1/q) y l&]<1
N(Y) 2 /zain(1/q)
B N J-M.Sixdieniers,
«| 1+ esin m(2a - f) n ZmIn(y) K.A.Penson &
20 201 In(]_/ q) A.Solomon 1999,

- -  K.A.Penson et al.2010

CIRM, Luminy, 16.11.2016
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Does it exist an alternative approach being (as long as
possible) free of introducing the measure and suitable
L2(1) space from the very beginning?

Yes, it does If , as starting point, one takes
the reproducing property and tries to formulate the
problem using (consequently) theory of the
reproducing kernel Hilbert spaces (RKHS).

F.H.Szafraniec, Przestrzenie Hilberta z jgdrem reprodukujgcym, Krakow 2004
F.H.Szafraniec, Operator Theory:Advances and Applications, 114 (2000)253-263

CIRM, Luminy, 16.11.2016
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The reproducing kernel Hilbert space-RKHS

Let X be aset. Suppose we are given a couple (H , K)
where H Is a Hilbert space of complex functions (with
iInner product denoted by (.,—) and K Is a complex
function on X x X . The function K Is called a
reproducing kernel of H and the space H a
reproducing kernel Hilbert space with respectto K if

K, eH
f(x)=(f.K))

where K = K(-, x) is called a kernel function. Formulael*)
appeal to as a reproducing kernel property of the couple

(H.K)

xeX,feH (*)

CIRM, Luminy, 16.11.2016 5



General properties of the RKHS (I)

(i) the kernel K must be necessarily positive definite

N
> K, X)AA4i 20  x,.x,eX, A,.A eC

(i1) the linear functionals
o, H=f - f(x)eC

are continuous for any X e X

CIRM, Luminy, 16.11.2016
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General properties of the RKHS (I1)

(i) the kernel is uniquely determined by a space Iin the
sense that if (H,K;) and (H,K;) are two RKHS
couples then K, =K, .

The kernel may be obtained from the formula

K(xy)=>f,(x)f.(y) xyeX

achA

where { f,} _, is any orthonormal basis of H .

(iv) the set{KX; = X} is total in H and, consequently, the
space is uniquely determined by the kernel in the
sense that if (Hl, K)and(Hz, K) are RKHS couples

then H, =H,.

CIRM, Luminy, 16.11.2016
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Standard RKHS constructions

A. ,Coupling the kernel with a functional space”

Suppose we are given a Hilbert spaceH of functions on X .If
the linear functional ¢, :H > f — f(x) €eC is continuous for
any xe X thenK,, (x,y)=d,4, where ¢ stands for the
adjoint of the operator ¢, becomes a kernel of H .

B. ,Coupling the functional space with a kernel”

Suppose we are given a kernel K : X x X — Cand let us set
D, =lin{K, :xe X}.If K is positive definite then

(K, | K,)»=K(Y,X) defines an inner product in D, and the
completion H, of D, can be still realized as a space of funtions.
The resulting space H, Is a RKHS with the kernel K.

CIRM, Luminy, 16.11.2016 -



We shall follow the construction ,B” — suppose that we
are given a family { f,} _ of functions such that

3| £, (X) [F<o0,x € X

achA

The kernel K'(x,y) defined by

KIy) =2 f,005()  xyeX

achA

is positive definite and following ,,B” results in the RKHS
H'.

CIRM, Luminy, 16.11.2016
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Theorem 1

Let £={¢ } , l?(A). Then, for every xe X,

the series ) &, f,(X) converges absolutely and
XeA

the function f,:x—> Y & f (x) isinHf;

achA

the series  2.¢.f. convergesin H' to f..

achA

In particuliar, any function f ,aeA belongsto H'

and 2. f.(¥)f. convergesin Hto K.

achA

CIRM, Luminy, 16.11.2016
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Theorem 2

The family f={f,}  is always completein H".
Moreover, the following conditions are equivalent:
(1)

Eel?’(A) and) & f (x)=0 forall xe X implies £=0
(“) achA

{f,} . isorthonormal in H' .

CIRM, Luminy, 16.11.2016
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General construction

Step 1

Let's take:

-a separable Hilbert space H with fixed
orthonormal basis (e )d,, d=dimH,

--a sequence(® )¢ . of complex functions on X
satisfying the conditions:

Zlq)n(X)|2<OO X € X
(92)2:0 el” (A) andenCDn (x)=0for all x e X implies £=0.
Recalling ,B” : K(nx, y) = Zq)n(y)an(x)

Step 2
If K(x,X)=0,Xe X, define a (prospectively coherent) state

| X) = ZK(X X) "D D, (x)e,

CIRM, Luminy, 16.11.2016 o



Step 3

Putting K (X, X) =1 does not change requirements of
the Stepl but simplifies the Step 2

Xy =, => @, (x)e
(Functions  @(x)/ > |®(x)[* satisfy Step 1 as well.)

Step 4

Because for any he H the sequence{(e. |h), } , €l?
the series Bh =) @ (e, |h) converges in the H,, we
can write n

H, > (Bh)(x) = ZCD )(e, [h) =(c, ),

Analogue of the Bargmann-Segal transform

CIRM, Luminy, 16.11.2016 o



Step 5
(BN[Bg)y, =D (D, |D@,)y (&, M) (e, 19, =

which means that B establishes an Isometry between
H, and H . Because Be, = @, for all k, itis surjective,
hence unitary.

Step 6
B‘lKX = B‘LKX =C,

makes the reciprocity between families Bh,h € H of the
step4 and c ,Xe X of the step 3 effective; any of
these two can be viewed as an alternative of the other

and deserve the name of the family of coherent states.

CIRM, Luminy, 16.11.2016
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Step 7

(N1 22(d6) [ 9) 5,y = [CRTXNXT Q) s, 11(dX) =

= [ (BM(x)(By(x))x(dx) =(Bh|Bg) ;. , =
=(Bh|Bg),, =(hQ),

l.e., the step 5 means the resolution of unity.

CIRM, Luminy, 16.11.2016
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Examples

1. A trivial” one - complex monomials

®,(2) ==

Jn!

do fit to our scheme - but can we give another example?

The answer is ‘'yes’ — such an example is provided by the
complex (holomorphic) Hermite polynomials defined
identically as the standard ones but considered as
functions of the argument being a complex number.

CIRM, Luminy, 16.11.2016

39



Complex Hermite polynomials
[k/2] (_1)k (2(X i iy))n—Zk

L0 = 2 = 2k
| H,(x+iy)H (x+iy) exp{—(l—s)xz —@—@ yz}dxdy =b,(8)J;,
bn(s):ﬂ_\/g(zh—sjnn!, s<1
1-s\ 1-s
1-5s n(Z)Hn(W)_
Z(Hsj 2"n! B
:1_8 exp —(1_8 )(22+W)+(1_S )zv_v <o
27S 4s 4s

van Eijnhoven & Meyers 1990

CIRM, Luminy, 16.11.2016 i



Relation to combinatorics? to combinatorial physics?

Let us give a problem: find polynomials of a complex variable
orthogonal with respect to the two dimensional gaussian
measure

| P.(x+iy)P, (x +iy) exp| —ax” - By* |dxdy =c, (@, A)S,,

assuming that P, 's are Sheffer polynomials, i.e. generated by

) n JOE
> F (X+iy)% = g()exp[ (x+iy) F (t)] 1) =0,
P ' f'(0)=0.

Then one finds two solutions: either monomials or complex
Hermite polynomials. Taking another measure one can end
up on other Sheffer polynomials which are often met as
solutions to combinatorial problems!

CIRM, Luminy, 16.11.2016 0



Conlusions/Outlook

,Replacing” the resolution of unity by reproducing property
enables us to look at the problem of completeness of coherent
states from another, broader, point of view emphasizing
properties of functions ® (2) used in their construction. They
do not need be monomials any longer which is important
because namely these functions carry probabilistic content of
coherent states and their choice is related to the physical
situation under consideration.

Proposed approach provides us with new tools useful to study
coherent states for which the resolution of unity cannot be
effectively investigated using methods based on the moment
problem, e.g. when the latter is indeterminate, or impossible to
be formulated.

CIRM, Luminy, 16.11.2016 .



